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Frequency downshift of gravity wave spectra in deep and finite water depths due to the nonlinear energy transfer 
are discussed. In deep water depths, numerical computationes of the nonlinera energy transfer are performed 
with DIA (Hasselmann et al., 1985), RIAM (Komatsu et al., 1993) and SRIAM (Komatsu et al., 1996). Then, 
differences in temporal changes of directional spectra computed with a modified WAM implemented with 
RIAM and SRIAM are compared with those computed with the original WAM implemented with DIA. In finite 
water depth, numerical computations are performed with a modified WAM implemented with FD-RIAM 
(Hashimoto, et al., 2002), an exact method, which was upgraded from an earlier version (Hashimoto et al., 1998) 
based on Komatsu et al., (2001). Differeces in frequency downshift of gravity wave spectra in deep and finite 
water depths are discussed based on the numerial results for various directional spectra in various water depths.  
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INTRODUCTION 

 Long period waves ranging from 15 to over 25 seconds occasionally cause damage to coastal 
structures. Nevertheless, the mechanism of the generation and development of the waves has not been 
clarified. The reproducibility of the long period waves by existing wave models has not been discussed 
thoroughly so far. We therefore numerically investigate characteristics of frequency downshift of 
directional spectra by considering the nonlinear energy transfer in deep and intermediate water depths 
as a possible mechanism.  
 There are many researches which have been performed in the past decades to compute nonlinear 
energy transfer. In 1960, Phillips found the dynamics of unsteady gravity waves of finite amplitude, 
and Hasselman derived the Boltzmann integral in 1962. Following Hasselman (1962,1963), a set of 
four waves exchange the energy when the following resonance conditions are satisfied: 

 

                                                           1 2 3 4+ = +k k k k                                                                          (1) 
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where ωi is the angular frequency and ki the wave number vector (i =1,…,4). The angular frequency ωi 
and the wave number ki are related through the dispersion relationship ( 2 tanh

i i igk k hω = ). Then, the 
nonlinear energy transfer can be computed with the following Boltzmann integral (Hasselmann ,1962): 
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where iiii nn ω)( )( kk Φ==  is the wave action density, )( ikΦ  is the wave number spectrum, and 
),,,( 4321 kkkkG is the coupling coefficient.  

 The computation of the the Boltzmann integral consists of a six-dimensional integrals, a 
complicated coupling coefficient, and two delta functions corresponding to the resonance conditions.  
Several computation techniques have been proposed for the solution of the Boltzmann integral. 
Hasselmann (1963), Sell and Hasselmann (1972), Webb (1978), and Masuda (1980) reduced the six-
fold integral into a three-fold integral which contributed to the improvement of the computational speed. 
The EXACT-NL which proposed by Hasselmann and Hasselmann (1985), the WRT code of Webb 
(1978) and Tracy and Resio (1982) were some efforts which also accelerated the calculation in the past 
(Young, 1999) . 
 The biggest advance in the spectral wave model for nonlinear energy transfer was the development 
of the Discrete Interaction Approximation (DIA) by Hasselmann et al. (1985), having been adopted by 
most of the third generation wave models, such as WAM, SWAN, and WW3. The DIA has been the 
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state of the art tool for calculating the nonlinear energy transfer in practical wave forecasting methods 
for more than two decades (Roland, 2009). However, the DIA does not have sufficient accuracy for 
sharp-pointed shape spectra such as the JONSWAP type spectrum, although it gives good performance 
for broader shape spectra such as the Pierson-Moskowitz spectrum (Hashimoto and Kawaguchi, 2001). 
  This study evaluates the frequency downshift of directional spectra computed by a third generation 
wave model, WAM, with several computation methods of the nonlinear energy transfer such as DIA, 
RIAM (Komatsu et al., 1993) and SRIAM (Komatsu et al., 1996) in deep water waves. Numerical 
simulations are carried out with a modified WAM (implemented with RIAM and SRIAM) to know the 
characteristic of the nonlinear energy transfer in relation to the various shapes of directional spectra in 
deep water depth. Differences between a modified WAM and the original WAM are also discussed. 
 Similarly, we evaluate the frequency downshift of directional spectra computed with a modified 
WAM implemented with FD-RIAM (Hashimoto, et al., 2002) in deep water waves, where FD-RIAM is 
an accurate method for computing the nonlinear energy transfer in finite water depth, which was 
upgraded from an earlier version (Hashimoto et al., 1998) based on Komatsu et al., (2001). Numerical 
simulations are carried to investigate characteristics of duration-limited evolutions as well as frequency 
downshift in various  shapes of directional spectra in various water depths. Then, we evaluate 
characteristics of the enhancement factor R used in most of the third generation wave models for the 
computation of the nonlinear energy transfer in finite water depth.  Moreover, we also discuss the 
downshift factor for various directional spectra in various water depths.  

NUMERICAL SIMULATIONS 

Computation methods of the nonlinear energy transfer 

 Masuda (1980) developed an accurate computation method by deriving approximate solution 
around the singular points of the Boltzmann integral. Komatsu et al.(1993) developed RIAM method 
by modifying Masuda’s method with the use of symmetry characteristics of the resonant four waves. 
The computation of RIAM method is 300 times faster than Masuda’s method, yet restricted to deep 
water wave applications.  Komatsu and Masuda (1996) simplified RIAM into SRIAM which makes the 
computation 100 times faster than RIAM. The SRIAM method, however, requires a computation time 
20 times longer than DIA. SRIAM is one of the important progress which has been made in optimizing 
the interactions, yet more expensive than DIA, making it economically unacceptable for application in 
a practical model at the moment (Tolman, 2003). 
 In this study, the computations of frequency downshift due to the nonlinear energy transfer are 
performed with DIA, RIAM, and SRIAM for deep water waves, and FD-RIAM for finite water waves. 
These methods are briefly explained below, following Hashimoto et al. (2002).  
RIAM method (accurate method)The RIAM method was developed from the initial work of Masuda 
(1980) who derived a reduction of the six-fold Boltzmann integral to a three-fold integral by taking the 
independent parameters  (𝜃1,𝜔3,𝜃3) as expressed by the following equation; 
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where, || 1k ≤ | |k 2  (or 21 ωω ≤ ) is assumed without loss of generality from the symmetry of Eq. (3). 
The variables are non-dimensionalised by 
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 As Masuda noted, a numerical instability in the integration of Eq. (4) is caused mainly by 
inappropriate treatment of singular points. Masuda hence solved this instability problem by analytically 
deriving an approximate solution of Eq. (4) around the singular points.  
 In order to improve the performance of wave models with the above technique of Masuda and to 
gain better physical understanding of the spectral evolution, Komatsu and Masuda (1996) developed a 
new scheme called the RIAM method (RIAM = Research Institute for Applied Mechanics, Kyushu 
University, Japan) for calculating the nonlinear energy transfer on the basis of the rigorous method of 
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Masuda (1980). This new scheme was developed by taking advantage of the symmetry of the integrand 
as in Hasselmann and Hasselmann (1981) or Resio and Perrie (1991), and by truncating less significant 
configurations of resonance to achieve a shorter computational time without loss of accuracy. 
       As Komatsu and Masuda (1996) mentioned, there are two kinds of symmetries in the resonant 
interaction. The first is based on the well-known nature of non-linear resonant interactions among 
gravity waves expressed by Eq. (1). As explained in Hasselmann and Hasselmann (1981), 

tdn ii  )( δδ kk  ( i =1, 2, 3, 4) have the following relationship: 
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where tn  )( δδ k  indicates the action transfer that is due to this particular resonance combination.  As 
shown in Equation (3.6), tdn ii  )( δδ kk  ( i =1, 2, 3, 4) are the equal magnitude but are different in 
sign. Accordingly, if we calculate tn  )( δδ k  for one component of the resonant four waves, then we 
immediately know tn  )( δδ k  for the other three components. The other type of symmetry is 
associated with the geometrical similarity of resonance configurations. One is the mirror image of a 
resonance combination that has the same interaction coefficient as the original one. The other is a 
rotation of a resonance combination that also gives the same interaction coefficient. 
 Now, we specify a particular wave number vector k4 (with 𝜔4 and 𝜃4) at which the non-linear 
energy transfer is to be evaluated, and then assume the sequence of frequencies as follows, considering 
the first kind of symmetry of the non-linear wave-wave interaction so as to eliminate the overlap 
computations. 

                                                               4213 ωωωω ≤≤≤                                                                  (7) 

For the computation of realistic continuous energy transfer of tn  ),( ∂∂ θω , the computation must be 
carried out with the loops of frequency 𝜔4 and direction and 𝜃4. The computation of the configuration 
of resonant interactions are to be performed in advance with the computation of variables such as 𝐺�, S, 
etc. in the Boltzmann integral for both regular and singular points. The details of the computation 
procedure are explained in Masuda (1980) and Komatsu and Masuda (1996).  

The SRIAM method (approximate method) 
 The RIAM method turned out to have the same degree of accuracy as Masuda’s rigorous method. 
Although the RIAM method is 300 times faster than Masuda’s method, it is still a few thousand times 
slower than the DIA, simply because the RIAM method processes thousands of resonance 
configurations.  
 Hence, Komatsu (1996) developed a new scheme of practical efficiency with a slightly lower level 
of accuracy than the RIAM method. The method is called the Simplified RIAM (SRIAM) method, 
which processes 20 representative configurations chosen by some optimisation. The SRIAM method 
can be expressed by the following equation. 
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 Komatsu (1996) listed the optimum 20 combinations of the resonant configurations as well as the 
optimum positive coefficients Ci tuned by some optimisation, where 7 configurations are chosen for 
singular points and the other 13 configurations are chosen for regular points from )~,~,~( 31 θθ Ω  space. 
 It is noted that in the method of Komatsu (1996) the optimum resonant configurations and the 
coefficients Ci  depend on how many configurations we choose as well as how many directional and 
frequency bins constitute the directional spectrum in the model. That is, the optimum resonant 
configurations and the coefficients  Ci have to be re-determined for each different computation 
conditions. For these reasons, a simpler method is preferable to determine the optimum configurations 
and the coefficients Ci. 

DIA method 
 The Discrete Interaction Approximation (DIA) was developed by Hasselmann et al. (1985). The 
full solution to the Boltzmann integral (Eq. 3) uses a very large set of wave quadruplets with many 
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different configurations, whereas the DIA uses a small number of quadruplets which all have the same 
configuration. The resonant conditions expressed by the following equations: 
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where λ is a constant for determining the combination of the component waves. Hasselmann et al 
(1985) set λ = 0.25 based on numerical experiments. The rates of change of the energy densities (δnl, 
δnl

+, δnl,
-) with focused only on the configuration and simplified the Boltzmann integral are given by: 
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where ),( θωFF ≡ , ),( θω++ ≡ FF , ),( θω−− ≡ FF are the energy densities at the values of the 
interacting wave numbers, g is the gravitational acceleration, C is a constant equal to 3x107. In addition,  
DIA gives poor accuracy in the case of sharp-shaped spectra such as the JONSWAP spectrum although 
it gives good performance for wide-shaped spectra such as the Person-Moskowitz spectrum 
(Hashimoto and Kawaguchi, 2001). The advantage of DIA is, however, not its accuracy, but is in its 
retention of many important physical characteristics of nonlinear interactions, and its robustness when 
applied in a practical wave model (Tolman, 2003).  

FD-RIAM method (Hashimoto et al, 2002) 
 RIAM, SRIAM, and DIA method only apply to deep-water waves. Hashimoto et al. (1998) 
proposed a computational method for calculating the non-linear energy transfer in finite-depth gravity 
wave spectra, by extending the exact methods for deep water of Masuda (1980) and Komatsu and 
Masuda (1996; i.e., the RIAM method). It involves reducing the Boltzmann integral for finite-water 
depth as follows, 
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The detail explanation of the derivation of above equations and the computation method of FD-RIAM 
are described in Hashimoto etal., (1998, 2002).   

Initial conditions of directional spectrum for computations of the nonlinear energy transfer 
 Characteristics of the nonlinear energy transfer is polymorphous depending on the energy 
distribution of directional spectrum. In oreder to investigate the characteristics of the nonlinear energy 
transfer, first we have to assume directional spectrum for the computation. In this study, we assumed 
the directional spectrum as ( ) ( ) ( ),S f S f G fθ θ= , where the frequency spectrum S(f) and the 
directional function ( )G fθ are assumed as follows: 
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 For the simulations of unimodal directional spectrum, the suffix i is with i = 1 only, while two 
different wave groups with differnt stes of parameters, 𝐻1/3, 𝑇1/3 , 𝛾𝑖, 𝑆𝑖, 𝜃𝑖: (i = 2), are superposed for 
bimodal directional spectrum. 𝛼𝑖 and β𝑖 are propotionality coefficients. 
 When discussing possible frequency downshift for the cases under the wind wave conditions, it 
should be noted that a formula (Equation (15), Goda, 2003) obtained from the Wilson’s formulas for 
wind waves should be taken into account. 

T1/3≅ 3.3(H1/3)0.63                                                                                       (15)  

 That is, the formula gives the maximum H1/3 under a given T1/3 (as shown in Fig. 1).  
 

 
 

Figure 1. The steepness of wind waves  (This figure is cited from Fig. 3.4 in Goda (2010).) 
 

RESULTS OF NUMERICAL SIMULATIONS  

Long-term evolution of frequency spectra computed by WAM with RIAM, SRIAM, and DIA 
 As an initial value, JONSWAP type spectrum and Mitsuyasu’s directional function are assumed 
with γ = 3.3, peak frequency fp = 0.1Hz, and directional concentration parameter Smax = 15. Figure 2 
shows examples of long-term evolution of frequency spectra computed by taking account of only the 
nonlinear energy transfer Snl, without the wind input (Sin = 0), and the dissipation (Sdis = 0). They are 
computed in duration-limited conditions for 120 hours using the DIA, RIAM, and SRIAM. Thick line 
in Fig. 2 shows the initial spectrum, thin lines illustrate the evolutions of the spectra at 15, 30, 45 
minutes, and 1, 2, 6, 12, 24, 48, 72, 96, 120 hours. The horizontal axis is the frequency f, and the 
vertical axis shows the normalized energy density devided by the peak value of the initial spectrum. 
 As seen in Fig. 2, the peak frequency initially located at 0.1Hz moves toward lower frequency side 
in all cases of RIAM, SRIAM, and DIA. The amount of the energy downshift seems to be large in early 
stage, then slowly decays over time. During the time, the energy distributions of frequency specra 
incline toward the low frequency side gradually. RIAM and SRIAM show smooth and continuous 
frequency downshift in frequency spectra, while DIA shows relatively discontinuous frequency 
downshift. The evolution of the spectra by RIAM shows narrower shapes than those by SRIAM and 
DIA. The peak values of the spectra in RIAM tend to overshoot, and considerable differences are seen 
in those of DIA and SRIAM. Comparing with them in detail, the way of energy transfer seems to be 
different in each method, especially between DIA and the others. That is, the spectral peaks computed 
with DIA reduce once with downshift, and then increase again although the spectral peaks of RIAM 
and SRIAM show monotonaous and continuous downshift. 
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Figure 2. Long-term evolution of frequency spectra by (a) RIAM, (b) SRIAM, and (c) DIA 
 Figure 3 shows long-term evolution of frequency spectra computed by taking account of the 
nonlinear energy transfer Snl and the energy dissipation Sds under the same conditions as those in Fig. 2. 
Smooth and continuous downshift of the spectral peaks can be seen in those computed with RIAM and 
SRIAM. On the other hand, an unreasonable results are seen in the specra computed with DIA, where 
the peaks become smaller once and then increase thereafter. 
 Since the frequency downshift computed with DIA shows rough in Fig. 3, we evaluated the 
behavior of the nonlinear energy transfer in each time step computed with RIAM, SRIAM, and DIA. 
Figure 4 shows the time evolution of one dimensional nonlinear energy transfer functions Snl ( f ) as a 
function of frequency f, where Snl ( f, 𝜃 ) was integrated with respect to the direction 𝜃. Thick lines in 
the figures are the initial values of the nonlinear energy transfer corresponding to the each initial 
directional spectrum. The thin lines are the evolutions of nonlinear energy transfer corresponding to the 
spectra shown in Fig. 3, respectively. As seen in Fig. 4, the intensity of of the nonlinear energy transfer 
by RIAM and SRIAM show gradual decreases with the downshift of the spectral peak and the decrease 
of wave steepness, while the DIA shows two negative extreme values. As seen in Fig.4, although the 
distributions of the nonlinear energy transfer between RIAM and SRIAM are similar, they are very 
different from those of DIA. The locations and magunitudes of the negative extreme values of the 
nonlinear energy transfer of RIAM are slightly different those of SRIAM, but are very differnt from 
those of DIA.  
 Judging from these results, RIAM and SRIAM have similar characteristics inherently. In the 
following, therefore, we will discuss the characteristics of the frequency downshift on the basis of the 
numerical results computed with SRIAM, a practical computation method for deep water waves. 
 

 
 

Figure 3. Long-term evolution of frequency spectra by RIAM, SRIAM, and DIA（Snl and Sdis are applied.） 
 

 
 

Figure 4. Long-term variation of the nonlinear transfer Snl by RIAM，SRIAM，DIA (correspond to Figure 3) 
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Relation between frequency downshift and wave steepness H/L 
Figure 5 shows examples of the time evolutions of the frequency spectra, where JONSWAP 

spectra and Mitsuyasu’s directional functions are assumed as the initial conditions of directional 
spectra. In each panel in Fig. 5, the peak frequencies (the significant wave periods) are assumed to be 
the same (fp = 0.1Hz), while the significant wave heights are different in each case. In case (a) the 
maximum wave height are assumed with Goda’s formula Eq. (15) as the possible maximum significany 
wave height, i.e., the maximum wave steepness under the condition of fp=0.1 Hz. That is, the 
magnitude of the wave steepness is (a), (b), and (c) in descending order. As seen in the Fig. 5, intensity 
of frequency downshifts due to the nonlinear energy transfer is reduced with the decrease of the wave 
steepness. 
 

 
 

Figure 5.  Relation between frequency downshift and wave steepness H/L (fp =const.) in time evolution of 
frequency spectra (Snl is computed by SRIAM) 

 

Relation between frequency downsift and peak frequency fp 
 Figure 6 shows examples of time evolutions of frequency spectra, where energy concentration 
parameters are assued to be the same, i.e., γ = 3.3 and Smax = 15 in all cases, while the peak frequencies 
are respectively assumed as  fp = 0.047 Hz in (a), 0.075 Hz in (b), and 0.133 Hz in (c). In each case, the 
significant wave periods are determined based on Eq. (13) as T1/3 = 20.03s in (a), 12.44s in (b), and 
7.02s in (c), respectively. Then, the significant wave heights, H1/3 are determined by Eq. (15) as the 
possible maxmum values as wind waves, i.e., the steepest waves in a statistical sense under each wave 
condition. As seen in Fig. 6, intensity of frequency downshift due to the nonlinear energy transfer is 
more intense in cases where the peak frequencies are at higher frequencies. That is, the intensity of 
frequency downshift seems to decrease with the decrease of fp (with the increase of T1/3) even under the 
condition of the maximum H1/3. This may indicate that there seems to be a maximum limit in the 
significant wave period. Our numerical experiments indicate that possible frequency downshift caused 
by the nonlinear energy transfer is up to T1/3 ≈ 30s approximately at a maximum. Longer waves than 
T1/3 ≈ 30s can not be generated by the nonlinear energy transfer under reasonable initial wind wave 
conditions in  H1/3 and T1/3.   
 

 
 
Figure 6. Relation between frequency downsift and peak frequency fp in time evolution of frequency spectra 

(Snl is computed by SRIAM) 
 

Relation between frequency downsift and energy concentration parameters 
 Figure 7 (a), (b), and (c) show exampes of evolutions of frequency spectra computed under the 
same condition with the peak frequency fp = 0.075Hz, while the combination of energy concentration 
parameters γ and Smax are different with each other, i.e., γ = 3.3 and Smax = 75 in (a), γ = 7.0 and Smax = 
15 in (b), γ = 7.0 and Smax = 75 in (c). Depending of the differencies in γ and Smax, the significant wave 
height H1/3 and the period T1/3 are slightly different due to Eqs.(13) and (15), i.e., H1/3 = 8.26m and T1/3  
= 12.44s in (a), H1/3 = 8.56m and T1/3  = 12.73s in (b), H1/3 = 8.56m and T1/3  = 12.73s in (c). In addition, 
Fig.6 (b) and Fig. 7 (a) are computed with almost the same conditions except Smax, i.e., Smax = 15 in 
Fig.6 (b), while Smax = 75 in Fig.7 (a). Compared Fig.6 (b) with Fig. 7 (a), and Fig. 7 (b) with Fig.7 (c), 



 COASTAL ENGINEERING 2014 
 
8 

the intensity of frequency downshift seems to increase with the increase of the energy concentration 
parameters γ and Smax. 
 

 
 

Figure 7.  Relation between frequency downsift and energy concentrate parameters (Smax and γ) 

 

Characteristics of frequency downshift in bimodal spectra 
 We investigate characteristics of the nonlinear energy transfer in various bimodal spectra. Figure 8 
shows the evolutions of bimodal spectra computed with SRIAM, where the spectra having the peak 
frequency at fp = 0.1Hz are assumed with γ=3.3 and Smax=15 in each panel (a), (b), and (c), while 
spectra on lower frequency side are assumed with fp = 0.08Hz, γ = 7.0 and Smax = 75 in (a), fp = 0.075Hz, 
γ=7.0 and Smax=75 in (b), and fp = 0.07Hz, γ=7.0 and Smax=75 in (c), respectively. The crossing angle 
Δθ between the principal wave propagation directions of two wave groups is assumed to be Δθ=0 ° in 
all cases of (a), (b), and (c). That is, the ratios between two peak frequencies in each case are 0.8 in (a), 
0.75 in (b), and 0.7 in (c), respectively. The other parameters are assumed to be the same. 
 As seen in Fig. 8, by the influence of the nonlinear energy transfer Snl, the energy distributions of 
the bimodal spectra gradually change into unimodal ones where the peaks on higher frequency 
gradually disappear. Although clear frequency downshift can be seen in (a), where ratio between two 
peak frequencies is relatively larger (fp1/fp2 = 0.80), while no frequency downshift can be observed in 
(c), where fp1/fp2 = 0.70. Instensity of frequency downshift in (b) is between (a) and (c). That is, the 
intensity of frequency downshift decreases with the decrease of frequency ratio of fp1/fp2. Similar 
phenomena had been reported in previous studies (e.g., Masuda, 1980, Komatsu et.al, 1996). 
 Figure 9 shows examples of evolutions of frquency spectra computed under the same condition as 
those in Fig. 8 (a) except the crossing angle Δθ.  The cases (a), (b) and (c) in Fig. 9 are computed with 
Δθ are 30°, 60°, and 90°, respectively. Predominant frequency downshift can be seen in Fig. 8 (a) 
where Δθ = 0°. As seen in Fig. 8 (a) and Fig. 9, the intensity of frequency downshift decreases with the 
increase of Δθ. Masson (1993) investigated the nonlinear energy transfer for a swell of finite bandwidth 
and indicated a maximum coupling when the swell direction is about 40° to the mean direction of the 
short waves. The results in Fig. 8 and 9 seem to be different from that of Masson.  
 

 
 

Figure 8. Characteristics of frequency downshift in bimodal spectra with different fp1/ fp2  
(Snl is computed by SRIAM) 

 

 
 

Figure 9. Characteristics of frequency downshift in bimodal spectra with different Δθ 
(Snl is computed by SRIAM) 
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Investigation of frequency downshift of spectra in finite water depths by FD-RIAM 
 We investigate the characteristics of the nonlinear energy transfer, Snl ( f, 𝜃 ), of various directional 

spectra in deep and finite water depths with FD-RIAM since RIAM, SRIAM, and DIA can only be 
applied to deep water waves. As the initial conditions for the computations, the directional spectra are 
assumed with Eqs. (13) and (14). Figure 10 shows examples of one dimensional nonlinear energy 
transfer functions, Snl ( f ), as a function of frequency f, where Snl ( f, 𝜃 ) are integrated with respect to 
the direction 𝜃. The left and center panels, (a1), (a2), (b1), and (b2) are computed with γ = 1.0 as the 
Pierson–Moskowitz (PM) type spectra, while the right panels, (c1) and (c2) are computed with γ=3.3 as 
the JONSWAP type spectra. The differences between (a1) and (b2) or (a2) and (b2) are a parameter in 
directional function in Eq. (14). That is, the directional energy concentration parameter S is assumed to 
be constant as S = 2 in (a1) and (a2),  while directional function is assumed as a function of frequency f  
by assuming Smax = 10 in (b1) and (b2).  
 The upper panels, (a1), (b1), and (c1) are examples of Snl ( f ) computed under the conditions of kph 
= 8.0, 1.0, and 0.8, respectively, while the lower panels, (a2), (b2), and (c2) are the ones computed 
under the conditions of kph = 0.8, 0.65, and 0.6, respectively. It should be noted that the example of 
Snl( f ) computed with kph = 0.8 is shown in both the upper and the lower panels for convenience. That 
is, as seen in Fig. 10, the absolute values of Snl( f ) incease with the decrease of kph, and the value under 
kph =8.0 is very different from that under kph =0.6. Therefore, it seems inconvenient to show all the 
results in the same panel. Instead, these results are separated into the upper and the lower panels, and 
the value under kph =8.0 is shown in both panels as a reference value.  
 As seen in Fig. 10, although the distributions of Snl ( f ) are very different in each case, there seems 
to be common features in that the intensity of the nonlinear energy transfer Snl ( f ) increases with the 
decrease of the relative water depth kph and the positive peak of Snl( f ) moves toward lower frequency 
side as kph decreases. 
 

 
 

Figure 10.  One-dimensional nonlinear energy transfer functions for PM spectrum (a and b)  
and JONSWAP spectrum (c) in several water depths. 

 

Enhancement factor and downshift factor  
 Computations of the nonlinear energy transfer for directional spectra in finite water depths are 
more complicated and time consuming than those in deep water depths. In the third generation wave 
models, therefore, an enhancement factor R is introduced to convert the nonlinear energy transfer in 
deep water depth to that in finite water depth, and is expressed by:  

                                    )depth infinite()()depth finite( nlnl ShkRS =                                                    (15) 

where k is the mean wave number and nlS (infinite depth) is the nonlinear energy transfer computed by 
DIA for waves in deep water depth. 
 Enhancement factor R in DIA is expressed by the following equation: 
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 Although the TMA spectrum (Bouws, 1985) seems to be a suitable one for expressing shallow 
water waves (Tsagareli, et al., 2005), however in the following, we will apply the same types of 
directional spectra used for deep water waves to investigate differences in characteristics of the 
nonlinear energy transfer and frequency downshift between deep water waves and finite water waves. 
In this sense, the following discussions may be merely comparative studies just for convenience. In the 
near future, we will show and discuss the results applied to TMA specrum in other chances.  
 The plotted marks, ■, ○, and △, in Fig. 11 indicate the enhancement factors R (in upper panels) 
and downshift factors (in lower panels) computed by FD-RIAM for various directional spectra in 
several water depths. The enhancement factor R in Fig. 11 is defined by the ratio of the maximum of 
nonlinear energy transfer for finite-depth waves to that for deep water waves computed by FD-RIAM. 
The downshift factor is defined by the ratio of the frequency of transfer maximum for finite-depth 
waves to that for deep water waves computed by FD-RIAM. As a reference, the enhancement factor ‘R’ 
(Eq. (16)) adopted in WAM is shown as a solid lines in the upper panels. The results shown in the left 
panels (a1) and (a2) in Fig. 11 are those computed for the directional spectra with the directional 
energy concentration parameter S being assumed as S =2. The results in the middle panels, (b1) and 
(b2), and the right panels, (c1) and (c2), are computed with Smax = 10 and Smax = 25, respectively. That 
is, the directional distributions of directional spectra assumed in (b) are wider than those in (c).  The 
marks, ■, ○, and △, in each panel indicate the results computed under the conditions with γ = 1.0, 
3.3, and 7.0, respectively. As seen in the upper panels, the characteristics of the enhancement factor R 
are different depending on the energy distribution of directional spectra. That is, R shows better 
agreement with those computed by FD-RIAM in the cases of smaller Smax and γ. Stated differently, R 
shows better agreement for broader directional spectra, but does not so for narrow directional spectra in 
frequency and direction. It should be noted that R is not a monotonous function in the cases of narrower 
directional spectra.  
 Since R works only for the enhancement of the enrgy distribution, and does not work for the 
frequency downshift, the downshift factor therefore seems to be more important than the enhancement 
factor. As seen in the lower panels in Fig. 11, although the frequency downshit factors of the broder 
spectra with γ=1.0 gradually change to smaller values and return to around the original values as the 
relative water depth x decreases, while those of the narrow spectra with γ=3.3 and 7.0 change to 
smaller values sharply as the relative water depth x decreases. In other words, although the behaviour 
of frequency dawnshift factors of the broader spectra shows similar characterristics with those of the 
narrower spectra, the changes of the frequency dawnshift factor of the broader spcectra to smaller 
values start at deeper water depths than those of the narrower spectra. In very shallow water depths, the 
downshift factors of the broader spectra suddenly change to very small values. This sudden changes 
might be due to an applicable limit of the nonlinear energy transfer of Eq. (3).  
    

 
 

Figure 11. Enhancement factor (upper) and downshift factor (lower) for various directional spectra 
 in several water depths.  ( x=(3/4)kh : nondimensional depth.) 
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Characteristics of duration-limited evolutions and frequency downshift of the spectra computed 
by FD-RIAM in finite water depths.  
 Figure 12 shows duration-limited evolutions (for 2 hours) of frequency spectra computed by WAM 
with FD-RIAM, where only the nonlinear energy transfer term, Snl (kph), is taken into account in the 
source term. The evolutions of the spectra in finite water depths are much faster than those in deep 
water depths. There is little difference between (a) and (b), but is big difference between (c) and the 
others. Although the spectra evolve with changing its peak frequency toward the lower frequency side 
in the cases of deep water waves as seen in Fig. 2, the spectra in Fig. 12 (c) evolve by transferring the 
energy toward the lower frequency side with keeping the peak frequency at almost the same frequency 
and decreasing its magnitude. 
 In addition, we applied the original WAM with DIA to the same conditions of the upper panels in 
Fig. 12. The examples of the results are shown in Fig. 13. Strangely, the evolution of the spectra are 
almost the same regardlessas of the difference in water depths. This may be due to a ‘limiter’ 
introduced in WAM for suppressing divergence of the computations.  
 

 
 

Figure 12. Duration-limited evolutions (for 2 hours) of frequency spectra by FD-RIAM for PM (a1~c1) & 
JONSWAP spectra (a2~c2) in several water depths（only Snl is applied.） 

 

 
 
Figure 13.  Duration-limited evolutions (for 2 hours) of frequency spectra by DIA with enhancement factor R 

for PM spectra in several water depths. 
 

CONCLUTIONS 
This study evaluated the characteristics of the nonlinear energy transfer and the frequency 

downshift of the directional spectra with a third generation wave model, WAM, implemented with DIA 
(Hasselmann et.al., 1985), RIAM (Komatsu et al., 1993) and SRIAM (Komatsu et al., 1996) in deep 
water waves. Numerical simulations on duration-limited evolutions of directional spectra were carried 
out with various initial conditions of directional spectra having various energy distributions in 
frequency and direction. As a result, interesting features are clarified, especially on the relation 
between frequency downshift and the energy concentration parameters of directional spectra. That is, 
intensity of frequency downshifts due to the nonlinear energy transfer is increased with the increase of  
energy concentration in frequency and direction. The characteristics of the freuency downshift of 
bimodal directional specra are also discussed. 
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 Characteristics of duration-limited evolutions and frequency downshift of the spectra in finite 
water depths were investigated with a modified WAM implemented with FD-RIAM (Hashimoto, et.al., 
1998, 2002). The evolution of directional spectra in finite water depths due to the nonlinear energy 
transfer was confirmed to be much faster than those in deep water depth. The enhancement factor R 
used in the third generation wave models as well as the downshift factor were also evaluated for 
various directional spectra in various water depths. Intriguingly, although the spectra evolve with 
changing its peak frequency toward the lower frequency side in deep water depth, the spectra in finite 
water depth, kph=0.6, evolve by transferring the energy toward the low frequency, yet with keeping the 
peak frequency at almost the same frequency and decreasing its magnitude. Further investigation seems 
to be necessary. 
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