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SECOND-ORDER PARTIAL STANDING WAVE SOLUTION 
 FOR A SLOPING BOTTOM 

Meng-Syue Li1 Qingping Zou2 Yang-Yih Chen3 and Hung-Chu Hsu1 

This paper presents a second-order asymptotic solution in Lagrangian description for a nonlinear 
partial standing wave over a sloping bottom. The particle trajectories are obtained as a function of the 
nonlinear ordering parameters, wave steepness   and the bottom slope  ,  to the second order. The 
analytical Lagrangian solution assumes irrotational flow and satisfies the boundary condition of  
constant pressure 0p   at the free surface. This solution is applicable to progressive, standing and 

partial standing waves, shoaling from deep to shallow water. Mass transport and particle trajectory 
nonlinear partial standing waves on a sloping bottom are investigated using the closed form 
Lagrangian  wave solution  
Keywords: Lagrangian solution; partial standing wave; sloping bottom; mass transport, particle 
trajectory; nonlinear waves. 

 

1. INTRODUCTION 
The investigation of partial standing wave is a long-standing problem in ocean science and 

engineering (e.g. Rayleigh 1883; Longuet-Higgins 1953; Ünlüata and Mei 1970; Ng 2004b). Hughes 
and fowler (1995) described a partial standing waves on a horizontal bottom in front of an inclined 
coastal structure. Partial standing waves may also occur  at the slope  a coastal structure located in 
relatively deep water under moderate wave conditions. Brunoone and Tomasicchio (1997) analyze the 
the measured velocity distribution in a simple manner using the  vertical distribution of the horizontal 
velocity variance. Kobayashi (2000) assumed the linear wave theory developed for a horizontal bottom 
is approximately valid locally even on the steep slope. He pointed out that the linear wave theory, 
however, is not accurate enough to resolve the cross-shore variation of relatively small reflected waves. 
Therefore, the non-linear wave theory is developed here to study the partial standing wave over a slope. 

The motion of a fluid may be described by either observing the trajectory of a particle that is 
carried along with the flow through Lagrangian approach, or by the fluid velocity at a fixed position, 
through Eulerian approach. For an incompressible fluid, the Eulerian approach is clearly preferred 
because the governing equation is Laplace equation which is linear and it is also well known that the 
Eulerian description for a free surface is a differentiable single-valued function. On the other hand, the 
surface elevation is specified through the positions of the surface particles in the Lagrangian approach. 
Unlike an Eulerian surface, which is given as an implicit function, a Lagrangian form is expressed 
through a parametric representation of particle motion. Hence, the Lagrangian description is more 
appropriate for the free surface motion by overcoming some limitation of the classical Eulerian 
solutions (Naciri and Mei 1993, Ng 2004a~b, Buldakov et al. 2006, Chen and Hsu 2009, Hsu et al 
2010). 

In this study, we will construct a second order solution for partial standing surface waves 
propagating over a sloping bottom in a Lagrangian framework. The objective is to examine the effect 
of sloping bottom,  wave steepness on surface waves, by using perturbation expansion of the particle 
trajectories in terms of wave steepness   and the bottom slope   to the second order. The asymptotic 
solutions for other physical quantities related to the wave motion are then obtained up to the second 
order. Finally, we examine the effect bottom slope and wave reflection on the particle trajectories in 
the presence of a sloping bottom which to our knowledge has not received much attention in the 
literature. 
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2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 
We consider a two dimensional partial standing wave in a water depth d  over a sloping bottom. 

The negative x-axis is outward to the sea from the still water level (SWL) at the shoreline, while the y-
axis is taken positive vertically upward from the SWL, and the sea bottom is at y d x   , in which 

  denotes the bottom slope as shown in Fig. 1.  

O
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Fig. 1.  Definition sketch for partial stand wave propagating on a uniformly sloping bottom. 

 
The fluid motion in the Lagrangian description is described by keeping track of individual fluid 

particles. For two-dimensional flow, a fluid particle is identified by the horizontal and vertical 
parameters ( 0x , 0y ) known as Lagrangian labels. These labels are initial particle positions or 
undisturbed coordinated, which has been demonstrated by Lamb (1932), Yakubovich and Zenkovich 
(2001), or Chen et al. (2010). Then fluid motion is described by a set of trajectories 0 0( , , )x x y t  and 

0 0( , , )y x y t , where x and y are the Cartesian coordinates. The dependent variables x and y denote the 

position of any particle at time t, and are functions of the independent variables 0x , 0y  and t. In a system of 
Lagrangian description, the governing equations for two-dimensional irrotational free-surface flow are as 
follows: 

The continuity equation is 

0 0 0 0

0 0

( , )
1.

( , ) x y y x

x y
x y x y

x y


  


  (1) 

Eq. (1) set the invariant condition on the volume of a Lagrangian particle, and the differentiation of 
Eq. (1) with respect to time is 

0 0 0 0 0 0 0 0

0 0 0 0

( , ) ( , )
0,

( , ) ( , )
t t

x t y y t x x y t y x t

x y x y
x y x y x y x y

x y x y

 
     

 
 (2) 

and irrotational flow condition are 

0 0 0 0 0 0 0 0

0 0 0 0

( , ) ( , )
0,

( , ) ( , )
t t

x t y y t x x t y y t x

x x y y
x x x x y y y y

x y x y

 
     

 
 (3) 

0 0 0 0

0 0

,  .t x t x t y t yx x y y x x y y
x y

  
   

 
 (4) 

The Eq. (4) defines the corresponding Lagrangian velocity potential by Chen (2010), the fundamental 
physical relationships defining the equations above have been derived previously (Lamb 1932; Miche 1944; 
Pierson 1962; Yakubovich and Zenkovich 2001, Chen et al. 2010). 
The Bernoulli equation for irrotational flow in Lagrangian description is 

 2 21
,

2 t t

P
g y x y

t





    


 (5) 
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Where subscripts 0x , 0y , and t denote partial differentiation with respect to the specified 

variable, 0 0( , , )P x y t  is water pressure, 0 0( , , )x y t  a velocity potential function in Lagrangian system.  

The wave motion has to satisfy a number of boundary conditions at the bottom and on the free 
water surface: 
(a)      On an immovable and impermeable sloping plane with an inclination to the horizon, the no-flux 
bottom boundary condition gives 

00 , t ty x y y d       (6) 

(b). The dynamic boundary condition of zero pressure at the free surface is 

0P  ,  0 0y    (7) 

(c). A stationary mass transport condition is required as waves propagate toward the beach. A 
horizontal hydrostatic pressure gradient, to balance the radiation stress of the progressive wave, will 
drive a return flow and a hence boundary condition should be imposed. This condition is necessary for 
the uniqueness of the solution and requires that at any cross-section of the x–y plane, the mass 
transport should vanish: 

0 0 0, 0
( ) 0, ( ) 0 ,

1, 0
c

L Ld d
U dy U U dy U y d


 

 


      

    (8) 

the superscript c  denotes the physical quantity at offshore boundary x  . Because of the 
nonlinear effect, waves over constant depth induce a net flux of water. Thus, a constant depth mass 
transport  term UL

c is introduced in (8) which is adjusted by a unit function ( )U   to ensure that it can 

be reduced to the constant depth condition when the bottom slope is equal to zero. 

3. ASYMPTOTIC SOLUTIONS 
To solve Eqs. (1)~(8), it is assumed that relevant physical quantities can be expanded as a double 

power series in terms of the bottom slope   and nonlinear parameter  . Thus, the particle 
displacements x and y, the potential function  ,  wave pressure P , wave number k  and Lagrangian 

wave frequency   can be obtained as.  

* *
0 , 0 0 1 , 0 0 0 , 0 0 1 , 0 0 0

0 0

( , , ) ( , , ) ( , , ) ( , , )m n
m n m n m n m n

m n

x x f x y t f x y t f x y t f x y t 
 

   

 

        

* *
0 , 0 0 , , 0 0 0 , 0 0 , , 0 0 0

0 0

( , ) ( ) ( , ) ( , ) ( ) ( , )m n
m n m n m n m n m n m n

m n

x A x y F S A x y t A x y F S A x y t 
 

       

 
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 

   

 
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( , ) ( ) ( , ) ( , ) ( ) ( , )m n
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 

       

 

        (10) 

*
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*
0 0 , 0 0 0 , ,0 0 0 0

( , , ) ( , , )+ ( , , )

( , , ) ( , )
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x y t x y t x y t
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
  



  
 


 

   
 
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


 

*
, 0 0 , , 0 0 0 , ,

*
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,
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m n m n m n

x y F S x y t F S

x y t M x t dx

  
 


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 


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 (11) 

0 , 0 0 1
0 0

( , , )m n
m n

m n

P gy P x y t  
 

 
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, 0 0
0 0

( , )m n
m n

m n

k k x y 
 

 

                                                                  (13) 

, 0 0
0 0

( , )m n
m n

m n

x y   
 

 

  ,                                                   (14) 

where S   is the phase function of the incident wave 0 ,S kdx t   S   is the phase function of 

the reflection wave 0 ,S kdx t   0 0( , , )x x y t (e.g. Longuet-Higgins 1953; Mei 1985; Ng 2004b) 

0 0( , , )x x y t  and 0 0( , , )y x y t  are the particle displacements and the Lagrangian variable 0 0( , )x y are any 

two characteristic parameters,  is the nonlinear ordering parameter characterizing the wave steepness, 

, ,0m nM  is the return flow, 1t  is t  and 0t  is 0,0t  for simplicity. The superscript “+” denotes the 

physical quantity of incident wave, and the superscript “-” denotes the physical quantity of reflection 
wave. Additional, the subscript “*” denotes the no-periodic function.  2 / T   is the angular 
frequency of the particle motion or the Lagrangian angular frequency, where T  is the period of 
particle motion. For a relatively gentle bottom slope  , it may be assumed that the q-th differentiation 

of ,m nA , *
,m nA   , ,m nA , *

,m nA  , ,m nB , *
,m nB  , ,m nB , *

,m nB  , ,m n , ,m n , , ,0m nM  and ,m nk  with respect to 0x  are in the 

order of q : 

* *
, , ,0 , , , , ,

0 0 0 0 0 0 0

* *
, , , , ,

0 0 0 0 0

( , , , , , ,

, , , , ) ( ), , 0,1,2

q q q q q q q
m n m n m n m n m n m n m n

q q q q q q q

q q q q q
m n m n m n m n m n q
q q q q q

d k M d A d A d B d B d

dx x dx dx dx dx dx

d A d A d B d B d
O q n N

dx dx dx dx dx






    

    





  
 (15)  

Substituting Eqs. (9)~(14) into Eqs. (1)~(8), and collecting the terms of the like order in   and  , 
we obtain the necessary equations to each order of approximation. Then different orders of ( )m  and 

( )n  may be separated, yielding a set of partial differential equations for each index (m,n). It is 

assumed that the ( )O   which is the same as Chen et al. (2005, 2006). Following these procedures, 

analytical solutions can then be obtained. 

3.1 1 0  -order approximation 
The solution is not affected by the sloping bottom and is given by: 

1,0 1,0

1,0 1,0

0,0 0,0
1,0 1,0

0,0 0,0

1,1 0,0 0

2
0,0

2
0,0 0,0 0,0

( )sin , ( )sin ,

( )cos , ( )cos ,

( )sin , ( )sin ,

sinh
[( cos cos )],

cosh

co
tanh ,

f B ch S f B ch S

g B sh S g B sh S

B ch S B ch S
k k

P k y
g B S B S

k d

gk k d ch

 





     

    

     

   

   

 

    

  

  0,0 0

0,0

0,0 0

0,0

sh ( )
,

cosh

sinh ( )
.

cosh

k y d

k d

k y d
sh

k d











 



 


 

3.2 1 1  -order approximation 

To the next order in 1 1( )O   , A general solution for 1,1A , 1,1A , 1,1B and 1,1B , which satisfies 

both continuity equation and irrotational flow condition, can be obtained. 
 
Based on the above solutions, let us briefly discuss the effect of bottom slope on the free surface 
displacement 0 0( , 0, )y x y t . First, the correction to the free surface displacement at 1 1( )O    is 90° out 
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of phase with respect to the leading order solution ( 1 0  ). Second, the wave amplitude is enhanced 

and the phase is modified due to the effect of the slope. The solutions of 1 1   are determined as 

2 2
0,0 0

1,1 0,0 0 0,0 02
0,0 0,0 0,0

0,0 0 0,0 0
0,0 02

0,00,0

2 2
0,0 0
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0,0 0,0
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sinh 2tanh
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
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k y dB
g k y d k y d
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D








  

 
   


    


 0,0 0
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2 2
0,0 0

1,1 0,0 0 0,0 02
0,0 0,0 0,0
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1]cosh ( )}sin ,

sinh 2tanh

( ) 1
{[ ( ) ]sinh ( )

cosh sinh 2 tanh

( ) 2 ( )
[ 1]cosh (

sinh 2tanh

k y d
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g k y d k y d

k d D k d D k d

k y d k y d
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







  


    

 
   
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tanh
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S
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k y d k
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 

 












    


 


   0
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sinh ( )}sin ,
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[ ]sin [ ]sin

0.

y d

k y d
k y d S

D k d

P
gB S gB S

k

   






     





























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
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
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 


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 

 (16) 

0,0tanh

a
B

k d


  , 0

02
0,0 0,0 0,0sech tanh

s

a
a a K

k d k d k d


  


 (17)            

0,0tanh

a
B

k d


  , 0

02
0,0 0,0 0,0sech tanh

s

a
a Ra K

k d k d k d


  


   (18) 

where, R  is the reflection coefficient; 0a  is the amplitude of the incident waves in deep water and a  

is that on the sloping bottom; 0a  and a  are related as follows,  

0 0 0/ tanh sa a D k d a K    . (19) 

where parameter sK  is the conventional shoaling coefficient that are same as Mei (1985). The solution 

includes the sloping bottom effect by the sloping bottom at this order and wave reflection. 
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3.3 2 0  -order approximation 

In the same manner as for 1 1( )O    is solved. Although laborious, the procedure to obtain the 

solutions at this order is lengthy but straightforward manipulations, the solutions can be given by 

2 2
2,0 0,0 0,02 2

0,0 0,0

0,0 02
0,0

2 2
2,0 0,0 0,02 2

0,0 0,0

0

0,0 2
0,0

3 2 1 sin 2
( ) sin 2 ( )

8 4sinh cosh

1 2
sin(2 ),

8 cosh

3 2 1 sin 2
( ) sin 2 ( )

8 4sinh cosh

sin(2 )1 1

2 cosh
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f k B S k B

k d k d
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k d k d
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
   
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  

 
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1
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2

R
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   

 

 




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  
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 (20) 

In Eq. (20), 0k  is the wave number in deep water. The horizontal Lagrangian particle trajectory, x, 

in the second order approximation includes periodic components 2,0f   and 2,0f   which are similar to 

that of the second-order Lagrangian solution at a constant depth, non-periodic function *
2,0f   and 

*
2,0f  that increases linearly in time and represents the mass transport and the return flow term. This 

implies that on average a fluid particle moves forward and does not form a closed orbit as it occurs in 
the first-order approximation. The velocity of Lagrangian particle is given by dx/dt, so differentiating 
non-periodic function * *

2,0 2,0( )f f   with respect to time, we can obtain the mass transport velocity 

LU of particle as 
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2 2 2
0,0 0,0 0 02 2

0,0 0,0
0,0 0,0 0,0 0,0

( ) ( )1
[( ) ( ) ] 2 ( ) ,

2 2 2L

gk a gk k a
U B B k ch U

k d k d
 

 

 
      (21) 

When the reflection coefficient is zero, the first term in Eq. (21) becomes the wave drift velocity 
solution of a progressive wave over the whole water column. This  is the second-order drift current 
solution obtained previously by Longuet-Higgins (1953) for constant water depth. When the reflection 
coefficient is unity, namely, 1R   in case of complete reflection, LU  becomes zero, the wave has no 

mass transport, which implies that particles moves up and down via space and time symmetrically. The 
last two terms in Eq. (28) are for the return flow. These terms have been obtained previously by Chen 
et al. (2012).  

In Fig. 2, the dimensionless mass transport velocity is given for different reflection coefficient 
with incident wave steepness 0 0 0.06k H   and bottom slope 1/10  . The mass transport velocity 

decreases when the magnitude of reflection increases. In addition, the mass transport velocity increases 
when the water depth decreases. 

The vertical trajectory y in this order includes a second harmonic component, a Lagrangian mean 

level that is a function of 0y  and independent of time and a mean sea level change. From Eq. 29d and 

Eq. 29e the present theory derives a second order Lagrangian mean level of partial standing wave  

0 0( , ,t)y x y  for all particles at different values of vertical marked level 0y .  

2 2
0 0 0,0 0,0 02

0,0

2 2
0 0,0 0,0

0,0 0 0,0

1 1 2
( , ,t)= [( ) ( ) ] 2 cos(2 )

4 4 cosh

(1 )( ) (1 )( )1 1

2 sinh 2 2 sinh 2

ch
y x y k B B ch k B B kdx

k d

R a k R a k

k d k d

   

 

 

 
 


 (29) 

This second-order vertical mean level of particle decays with water depth. The mean sea level 
change was first predicted by Longuet-Higgins and Stewart (1964) as the consequence of radiation 
stresses. If we consider the case of waves originating from deep-water depth without wave reflection 
R=0, the wave set-down, 2 2

0 0 0 0 0,0 0,0( ) / 2sinh 2 ( ) / 2sinh 2a k k d a k k d  , is exactly the one that has 

been obtained by Longuet-Higgins and Stewart (1962). If we consider the case of constant depth with 

complete reflection 1R  , 0,0 02
0,0

1 2
cos(2 )

4 cosh

ch
k B B kdx

k d
   , is same as that derived by Ng(2004b) 

which holds true only at the free surface of pure standing waves. 
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Fig. 2.  Dimensionless mass transport velocity 0/LTU L  versus dimensionless water depth 0 /y d  in five 

different wave reflection R. (Solid line: 0R  , dash line: 0.25R  , dash-dotted line: 0.5R  , dot line: 0.75R  , 
red solid line: 1R  ). 

4. RESULTS AND DISCUSSIONS 
The Lagrangian solution for water-particle displacement developed in this study can be employed 

to demonstrate the validity for water particle motion. The parametric functions for the water particle at 
any position in Lagrangian coordinates ( , )x y  have been obtained as follows.  

1 1 1 2 * *
0 0 0 1,0 1,0 1,1 1,1 2,0 2,0 2,0 2,0( , , ) ( ) ( ) ( )o ox x y t x f f f f f f f f                         (31) 

1 1 1 2
0 0 0 1,0 1,0 1,1 1,1 2,0 2,0( , , ) ( ) ( ) ( )o oy x y t y g g g g g g                      (32) 

0y

d  

0/LTU L

0,0 0 0.03

1 /10

k a 



 



0,0 0 2.1k x    
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Figure 2(a) shows that the variation of surface elevation of a standing wave over the sloping 
bottom with complete reflection by a virtual vertical wall at the position 0,0 2.1k x    at section (1). T 

Fig. 2(b) to (f) shows the second order trajectories of at five sections (1) to (5) indicated in figure 2(a) 
over a sloping bottom, with anti-node in Fig. 3b and Fig. 3f and the node in Fig. 3d. The particle 
trajectory moves almost vertically but not exactly under the anti-node due to affected by bottom slopes 
in Fig 3f. Nevertheless, the particle trajectory moves vertically at the wall in Fig 3b. As shown by Fig. 
3d, the particle trajectories under the node change from a concave at the surface to a straight  line 
parallel to the bottom at the as discussed in Zou et al. (2003), Zou & Hay (2003) and Chen et al. (2012). 
When surface particles are not at the node or anti-node,  at Fig. 3e where the wave make transition  
from anti-node to node, the particle trajectory follows almost straight line inclining upwards with the 
higher ; while at Fig. 3f, where the wave make transition from node to anti-node,  the particle trajectory 
follows almost straight line inclining downwards.  

The trajectories of a progressive wave over a sloping bottom without reflection is shown in Fig. 4. 
The particles do not move in closed orbital motion and each particle advances a larger movement in the 
horizontal direction at the free surface. Near the bottom, the trajectory becomes more like an ellipse 
because the vertical velocity of the particle decreases exponentially with the vertical position of 
particle, in contrast to the trajectories near the mean water level. Fig. 4b shows that the particle orbit 
near the surface has an upward convex point in the shallow water at section 1.  

Fig. 5 shows that the particle orbit of partial standing wave over a sloping bottom a wave 
reflection R=0.5. Under the node, due to the increase in wave reflection, the vertical excursion of 
particle decreases while the horizontal excursion increases (cf. Fig. 5d. However, the particle under the 
anti-node gives the opposite result. In Fig. 2-5 also show that the mass transport velocity indicated by 
the non-closed orbital motion decrease with increasing reflection R which is consistent with the results 
in figure 2. 
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Fig. 3 a-f. The second order particle trajectories for a standing wave over a sloping bottom for complete wave 
reflection R=1. 
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Fig. 4 a-f. The second order particle trajectories for a progressive wave over a sloping bottom without wave 
reflection R=0. 

 

-8 -7 -6 -5 -4 -3 -2 -1 0
-0.8

-0.4

0

0.4

0.8

 

-2.5 -2.3 -2.1 -1.9 -1.7
-0.6

-0.4

-0.2

0

0.2

0.4

-3.2854 -3.0854 -2.8854 -2.6854 -2.4854
-0.6

-0.4

-0.2

0

0.2

0.4

-4.0708 -3.8708 -3.6708 -3.4708 -3.2708
-0.6

-0.4

-0.2

0

0.2

0.4

 

-4.85619 -4.65619 -4.45619 -4.25619 -4.05619
-0.6

-0.4

-0.2

0

0.2

0.4

-5.64159 -5.44159 -5.24159 -5.04159 -4.84159
-0.6

-0.4

-0.2

0

0.2

0.4

 

Fig. 5 a-f. The second order particle trajectories for a progressive wave over a sloping bottom for wave 
reflection R= 0.5. 

5. CONCLUSIONS 
We constructed a new second-order Lagrangian asymptotic solution for partial standing wave over 

a uniform sloping bottom for  any given wave reflection R. The solution, developed in explicit form, 
includes parametric functions for water-particle motion and the wave velocity in Lagrangian 
description. When wave is shoaling from deep to breaking point toward the shore, the wave particle 
trajectory evolves in the cross shore direction over a sloping bottom. This generalized solution reduces 
to that of  progressive wave when  wave reflection 0R  , and standing wave  when wave reflection 

1R  . The solution also provides information for the process of successive deformation of a wave 
profile and water particle trajectory. The solution to the nonlinear boundary-value problem is presented 
after including a mean return current which is needed to maintain zero mass flux in a bounded domain.   
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