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HIGH-RESOLUTION PIV MEASUREMENTS FOR REAR-END AND HEAD-ON 

COLLISIONS OF TWO SOLITARY WAVES 

Motohiko Umeyama1, Narumi Ishikawa 1 and Ryota Kobayashi 2 

The flow visualization technique was applied to the collision of two solitary waves propagating in the same and 

opposite directions. Measurements of the velocity and trajectory of the solitary waves were conducted using a particle 

image velocimetry (PIV) system consisting of an 8-W ND:YAG laser and a high-speed CCD camera. In the solitary-

wave interaction tests, we set up three kinds of velocity fields—smaller, taller, and compound waves in the rear-end 

collision tests, and right-running, left-running, and colliding waves in the head-on collision tests. Instantaneous and 

spatial surface profiles were measured using the image thresholding method in which the boundary plane between the 

air and water can be detected as the interface having the maximum luminance value. The measured run-up elevation 

of the colliding wave was compared with the theoretical elevation using a third-order perturbation solution. Based on 

a Eulerian-Lagrangian algorithm, the PIV result was applied to the particle tracking process that occurred in the two-

dimensional plane. 
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INTRODUCTION  

According to a literature review by Weber and Weber (1825), a few water-wave experiments 

(Flaugergues 1793 and Coudraye 1796) were conducted before 1800. In the early nineteenth century, 

however, linear and nonlinear wave theories progressed quickly in France and Germany, respectively. 

Poisson (1818) and Cauchy (1827) conducted research on 2D linear sinusoidal waves in a finite depth, 

while Gerstner (1802) studied rotational waves in deep water. British scientists of that time made few 

original contributions to the subject of wave theories, because they did not even know linear wave 

theory well. In 1837, the British Association for the Advancement of Science set up a “Committee on 

Waves” with John Scott Russell and Sir John Robison as the sole members. This committee conducted 

surface wave experiments using a long wave tank, and published a substantial report (1837) in which 

they distinguished four types of waves: solitary, oscillatory, capillary, and corpuscular waves. After 

their laboratory study, the mechanism of surface waves in canals was investigated by several 

mathematicians, including Green (1838), who was the first to attempt to model Russell-Robison’s long 

wave observations in variable vertical shapes, and Kelland (1840), who described solitary-wave motion 

in arbitrary depths. In contrast, Airy (1841) described the Weber-Weber literature review and the 

Russell-Robinson experiments in his article “Tides and Waves,” but he couldn’t convince himself of 

their “The Great Primary Wave” experimental result or the solitary wave, because the observed wave 

contradicted his own linear shallow-water wave theory. The issue at that time was the problem of 

permanent profile waves. The formula for celerity of Airy’s harmonic wave disagreed substantially with 

that of their solitary wave. Airy’s celerity formula was independent of the height of the disturbance 

above the still water level but showed a noticeable dependence on wave height or a typical nonlinear 

feature. Russell expressed disappointment in Airy’s remarks about the contents of the 1837 report and 

objected to his opinion in his “Report on Waves” (1844). Russell’s prediction was finally independently 

confirmed by both Boussinesq (1871) and Rayleigh (1876), whereby they derived the celerity of the 

explicit dependence on the wave height from the equation of motion for an inviscid and incompressible 

fluid. They also showed that the surface displacement is given by the 2sech  profile. By considering the 

balance between nonlinearity and dispersion, Korteweg and de Vries (1895) derived a solution for a 

solitary wave propagating alone, in which the KdV theory of a first-order approximation can adequately 

explain the solitary-wave’s properties, and the theoretical wave profile agreed well with the surface 

displacement observed by Russell. The solitary wave was considered a relatively unimportant curiosity 

in the field of nonlinear waves for some time after the work of Korteweg and de Vries. Since the 1950s, 

however, the KdV equation and other equations, which admit solitary-wave solutions, have been the 

subject of intense study. Scientists remain intrigued by the physical properties and elegant mathematical 

theories of the shallow-water wave. A formula describing the surface displacement of a single solitary 

wave was solved to the second-order by Laitone (1960), to the ninth-order by Fenton (1972), and to the 
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70th-order by Schwartz (1974). 

Russell’s report (1844) motivated Stokes to work toward an irrotational oscillatory wave with open 

water-particle orbits; i.e., a Stokes wave whose amplitude is not necessarily small. Stokes (1847) 

developed the second-order theory for finite amplitude waves using a power series based on the ratio of 

the amplitude to wavelength known as the Stokes expansion, which is viewed as one of the modern 

method cornerstones in the study of weakly nonlinear wave theory. There is no doubt that Russell’s 

work is one of the greatest early contributions to mechanisms not only for solitary wave but also for the 

oscillatory wave. Needless to say, his measurement was unique and astonishingly accurate in the period 

before the innovation of electric equipment. 

Just after the mid-twentieth century, a surprising or unusual fact was revealed regarding the KdV 

equation (Fermi et al. 1955). Zabusky and Kruskal (1965) found from numerical solutions of the KdV 

equation that multiple solitary waves retain their original shapes and speeds, but they undergo a phase 

shift with respect to each other after a rear-end collision. The exact solution of the KdV equation for 

collisions of multiple solitary waves was first given by Hirota (1971). Byatt-Smith (1971) obtained 

some approximate analytical solutions, including a second-order approximation, for the reflection of a 

solitary wave by a vertical wall. The Boussinesq equation admitted solutions that consisted of two 

solitary waves (incident and reflected waves), with each solitary wave satisfying an appropriate KdV 

equation. A smaller-order interaction term has been added to separate the two solitary-wave terms into 

functions of their respective phase variables. 

Head-on collision experiments were performed by Chan and Street (1970), and Maxworthy (1976). 

The significant results of these experiments were the phase shift whose magnitude was independent of 

the wave amplitude, and the maximum run-up height that was greater than twice the initial wave 

amplitude during reflection at a vertical wall. The major quantitative difference between the theory of 

Byatt-Smith (1971) and the experiment of Maxworthy (1976) was in the magnitude of the spatial phase 

shift, where the theory gave a square root dependence on wave amplitude. The experiment of Renouard 

et al. (1985) also showed that there was a transient loss of amplitude in the reflected wave but this loss 

was recovered after sufficient time had elapsed. This observation could be explained by the presence of 

the dispersive tail behind the solitary wave. On the other hand, Weidman and Maxworthy (1978) 

performed a series of experiments on the interaction between two shallow-water solitary waves 

propagating in the same direction in a rectangular channel with the aim of testing Hirota’s solution for 

the interaction of isolated solitary waves. Since then, experimental confirmation of various solitary 

waves and their interactions has been provided in many wave tanks (Hammack et al. 2004, Craig et al. 

2006), and the findings have led to rapid theoretical development (Fenton and Rienecker 1982, Mirie 

and Su 1982, Byatt-Smith 1987a 1987b, Marchant and Smith 1990). The KdV equation and other 

equations admitting solitary-wave and soliton solutions have intrigued mathematicians for a half-

century (see, e.g., Drazin and Johnson 1989, Remoissenet 1999, Dauxois and Peyrard 2006, and 

Constantin 2011). 

Many investigations have focused on surface properties since the great discovery of the solitary 

wave, but some researchers have considered the underlying particle velocity and trajectory. In the latter 

half of the twentieth century, experimental studies have generally relied on point measurement 

techniques. Modern electric equipment is excellent for measuring fluid velocities, but it has other 

limitations. Recently, visualization techniques have played a more important role, yielding both 

qualitative and quantitative insights in wave kinematics. Significant developments in particle image 

velocimetry (PIV) and particle tracking velocimetry (PTV) have enabled the visualization of velocity 

fields and particle paths. The PIV technique evaluates instantaneous velocities by recording the position 

of images of small tracers that are suspended in the fluid at successive instants in time. In contrast, PTV 

measures the velocity of each particle in a 2D slice, with respect to its frames and separated by a time 

interval, and then reconstructs the flow field from the velocity at the seeding particle location points. 

We have investigated internal waves propagating in a two-layer system using PIV. Shimizu et al. (2006), 

Umeyama (2008), Umeyama and Shinomiya (2009), Umeyama and Matsuki (2011), Umeyama and 

Nguyen (2012), and Umeyama et al. (2012) set up an apparatus to measure the instantaneous velocity of 

internal waves with an illumination source (frequency-doubled Nd:YAG laser with 50 mW of energy at 

532 nm) and a camera (CCD or high-definition digital video camera). Using the same PIV system, 

Umeyama et al. (2010) and Umeyama (2011, 2012) measured and analyzed the water particle velocity 

and trajectory for surface Stokes waves with and without a steady current. In this study, we focus on the 

collision of two solitary waves using a new PIV system, which improves the spatial resolution of the 

previous PIV analysis. Following a precedent set by Umeyama (2013), we estimate the velocity vector 
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and trajectory of each particle. Measurements of the water surface are also made using the image 

thresholding method. 

THEORIES 

A solitary wave propagates in a 2D channel in which the motion is identical in any direction 

parallel to the crest line. Consider a cross section of the wave field that is perpendicular to the crest line 

with Cartesian coordinates ),( zx , with the x -axis being the direction of the wave propagation and the 

z -axis pointing vertically upward, and with the origin laying on the flat bottom. Dean and Dalrymple 

(1984) gave the surface elevation as 
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where a = wave amplitude, and h =depth. The celerity was defined as 
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where g  = gravity acceleration. 

            We also determined the velocity of a water particle under a solitary wave. The horizontal and 

vertical velocity components became 
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For a head-on collision of two solitary waves, Su and Mirie (1980) derived a third-order 

solitary-wave solution using the perturbation method. They expressed the surface elevation as 
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where haRR /=ε , haLL /=ε , Ra = right-running-wave amplitude, La = left-running-wave amplitude, 

Rc =right-running-wave celerity, Lc =left-running-wave celerity, and θ =phase. 

EXPERIMENTS AND ANALYSES 

We performed experiments in a wave tank 25.0 m long, 0.8 m wide, and 1.0 m deep (see Figure 1). 

The wave tank consisted of 10 steel flanges and 12 glass panels 90 cm long, 73 cm high, and 1.0 cm 

thick. The wave-generating system consisted of a servo controlling device and a vertical plate that 

moved horizontally at one end of the tank. For the single solitary wave and rear-end collision 

experiments, a wave absorber was installed at the other end of the tank. The wave absorber consisted of 

a vinylidene chloride mat that limited the reflection to 5% over a wide range of test conditions. For the 

head-on collision experiments, a vertical wall was fabricated at the end of the tank. The wave-

generating system accepted a programmed input electrical signal into a displacement that was directly 

proportional to the magnitude of the voltage. Hence, the displacement-time history, or the wave paddle 

trajectory, of the movement was proportional to the voltage-time history of the input signal. We used a 

14-bit arbitrary waveform generator (Wave Station 2022, Teledyne LeCroy) to control the movement of 

the wave paddle and to create highly accurate and repeatable solitary waves. A variety of modulation 
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schemes, intuitive waveform editing software, and remote control capabilities enabled the versatile 

generation of waveforms up to 160 MHz. The maximum sample rate was 125 MS/s and the memory 

contains about 16,000 points. This arbitrary waveform generator allowed almost unlimited 

programming flexibility for the wave paddle motion, and although it had some mechanical limitations, 

the wave generating system was still flexible in its operation. The exact position of the wave paddle was 

determined by the servo controlling device. The test section was located in an area between 14.0 m and 

15.0 m downstream of the wave paddle. 

 

Based on the extensive experimental data supporting wave generation theory, Goring (1979) 

proposed the following formula for generating a solitary wave, 
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where A =stroke and τ =duration of motion. The oscillatory tail, which is approximately 25% of the 

height of the main wave when a linear trajectory is being used, could be reduced to approximately 10%. 

Therefore, in our experiment, we have used Goring’s theory for generating single and dual solitary 

waves. The trajectory of the wave paddle for a single solitary wave is given by, 

τπ

τπ
τ

πξ
≥

≤≤+















−

=

tA

t
AtA

t

tanh

0tanh
22

1
2tanh

2)(  

Figure 2 shows an example of the wave paddle motion and the programmed signal for A =100 mm and 

τ =1.2 s. 

The arbitrary waveform generator can prescribe the motion that creates the dual solitary waves. 

Figure 3 shows the programmed input signal to control the wave paddle motion. There are seven 

duration periods: (i) the wave paddle moves toward the initial position (150 mm from the center); (ii) a 

stationary period (50 s); (iii) the first wave is generated; (iv) a stationary period; (v) the second wave is 

generated; (vi) a stationary period; and (vii) the wave paddle moves toward the initial position. In the 

case of two solitary waves traveling in the same direction, the second wave is generated immediately 

after the first wave moves toward the far end of the tank so that the second wave passes the first wave at 

a fixed location in the tank. In the case of counter-propagating solitary waves, while the first wave is 

reflected from the vertical wall set at the end and propagates backward toward the wavemaker, the 

second wave is generated so that these two waves collide head-on near the center of the test section. 

The image thresholding method has been used to study the spatial variations of a water surface. 

This method was originally designed to reduce a grayscale image to a binary image (Umeyama 2008). 

The algorithm assumes that the image contains two classes of pixels following a bi-modal histogram 

(object and background pixels). It calculates the optimum threshold separating the two classes. In the 

present study, a laser sheet induces the water to fluoresce and identifies a water-surface profile as the 

threshold’s spatial distribution. The processed data were saved to ASCII files and transformed to real 

scale during the analysis.   

For velocity measurement, we employed PIV based on a single-exposure image. The instantaneous 

water particle velocity was observed using a PIV system consisting of an 8-W frequency-doubled 

Nd:YAG laser (LaVision Flow Master) and a high-speed CCD camera (Photoron’s FASTCAM SA4). 
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Figure 1.  Sketch of apparatus.
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The laser consists of a laser head (FKLA-800e), power supply (LABP-D40-CW), and a visualization 

probe (LVS) connected to the laser head with an optical fiber. The probe was set at a beam and 

fabricated above the wave tank (approximately 120 cm from the bottom), and then emitted a laser sheet 

2 mm thick from an upper point toward the water surface. This light sheet had very uniform intensity 

and was well suited to PIV measurement over a large area. The frame rate of the CCD camera was 

3,600 fps for a maximum resolution of 1,024×1,024 pixels, although this new technology can follow a 

fast particle motion at 500,000 fps at a resolution of 128×16 pixels. The CCD camera was arranged in a 

line 2 m from the sidewall of the wave tank to cover an area up to 60.0 cm×20.0 cm. The water in the 

tank was seeded with DIAION (DK-FINE HP20), having a grain size of 0.25 mm and a specific gravity 

of 1.01. Vector fields were obtained with the PIV system by processing a pair of image frames of 

1024×800 pixels at 250 fps. The size of the interrogation window was set to 8×8 pixels and the size of 

the candidate region was set to 16×16 pixels. 

 

Figure 2. Wave-paddle motion and programmed signal for a solitary wave. 

 

 

Figure 3. Programmed signal for two solitary waves. 

 

 
Table 1.  Experimental Conditions in the Present Experiment. 

 

Case h (cm) 1
st
 H (cm) 2

nd
 H (cm) Remarks 

W1 5.0 1.00 – single wave 

W2 5.0 1.30 – single wave 

W3 5.0 2.20 – single wave 

W4 10.0 1.25 – single wave 

W5 10.0 2.00 – single wave 

W6 10.0 3.35 – single wave 

W7 15.0 1.25 – single wave 

W8 15.0 2.25 – single wave 

W9 15.0 4.00 – single wave 

WW1-1 5.0 1.00 2.20 rear–end collision of W1 and W3 

WW1-2 10.0 1.25 3.35 rear–end collision of W4 and W6 

WW1-3 15.0 1.25 4.00 rear–end collision of W7 and W9 

WW2-1 5.0 1.30 1.30 head–on collision of W2 and W2 

WW2-2 10.0 2.00 2.00 head–on collision of W3 and W3 

WW2-3 15.0 2.25 2.25 head–on collision of W8 and W8 

A [mm]A [mm]
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In our study, we conducted a series of collision tests for two solitary waves. A summary of the 

experimental conditions is presented in Table 1. W1–W9 are the single solitary-wave cases. The wave 

height ranged from 1.0 cm to 4.0 cm, at water depths of 5.0 cm, 10.0 cm, and 15.0 cm. WW1-1, WW1-

2, and WW1-3 are the rear-end collision cases. The first and second solitary waves (i.e., W1, W3, W4, 

W6, W7, and W9) propagate in the same direction and the second wave overtakes the first one in the 

test section. WW2-1, WW2-2, and WW2-3 are the head-on collision cases by W2, W5, and W8, 

respectively. The second wave collides with the first one that has been reflected back from the vertical 

wall set at the end of the wave tank. 

RESULTS  

Rear-end collisions 

Figure 4 shows the spatial surface profiles for three rear-end collision cases: (a) WW1-1, (b) 

WW1-2, and (c) WW1-3. Each panel consists of three wave profiles for the smaller-amplitude, higher-

amplitude (taller), and compound waves; for instance, in order of depth, W1 and W3 in WW1-1, W4 

and W6 in WW1-2, and W7 and W9 in WW1-3. In all cases, the smaller and taller waves propagate in 

the right direction. The time at t=0.00 s is the moment when the combined water surface attains 

maximum elevation, so that the negative and positive signs define the moments before and after the 

collision, respectively. Figure 4(a) shows the wave profiles at three different times, while the taller 

wave of IIa =2.20 cm catches up with and interacts with the shorter wave of Ia =1.00 cm at a water 

depth of h=5 cm. We can observe a special type of nonlinear process from the figure. The two waves do 

not satisfy the linear superposition principle. The combined wave forms a single long wave that 

gradually increases the water surface elevation before the crest of the taller wave catches up with that of 

the smaller wave and decreases the surface elevation after the taller wave passes the smaller wave. The 

surface elevation attains its highest level at this time, which is lower than the taller wave amplitude but 

higher than the smaller wave amplitude. Very quickly, the taller wave leaves the smaller one behind. 

The two waves moving in the far positive x region after the collision are identical to the pair that moved 

in the far negative x region previously, although the dispersion event occurs outside the measurement 

area. Figure 4(b) presents similar wave profiles for Ia =1.25 cm, IIa =3.35 cm, and h=10.0 cm. Both 

single solitary-wave profiles are symmetrical. The surface of the compound wave rises somewhat before 

the taller wave overtakes the smaller one, and it decreases gradually before both waves escape 

unscathed from the rear-end collision. Figure 4(c) shows another example of surface displacements for 

Ia =1.25 cm and IIa =4.00 cm at a deeper depth of h=15.0 cm. In this case, it is clear that the original 

pattern of each waveform varies entirely during the interaction, and the compound wave behaves like a 

single wave. The water surface of the compound wave equals that of the taller wave at the left boundary 

in the measurement area prior to the collision. The former exceeds the latter except at the near-crest 

region at t=0.00 s. Finally, for a short time after the collision, the surface elevation of the compound 

wave lies between the taller and smaller wave surfaces. 

Figure 5 shows the instantaneous velocity fields for WW1-1 during a rear-end collision. The upper, 

middle, and lower rows are for the compound, smaller, and taller waves, respectively. These vector 

maps indicate velocity very precisely while two solitary waves pass in front of the recording area. For 

both single solitary waves, the measured horizontal velocity is always positive, while the direction of 

the vertical velocity component is upward before the crest but downward behind it. The horizontal 

velocity clearly increases from the negative x area to the crest, and thereafter decreases to the positive x 

area at the same rate. In contrast, the measured vector for the compound wave is almost flat for the total 

depth during the interaction. The velocities increase gradually with time until t=0.00 s. After that, the 

wave reduces the water-particle speed until the disappearance of the waves. The experimental result of 

the compound wave shows a decay in the velocity throughout the area when wave-wave interaction 

occurs. Generally, the direction of a water particle is the same as that of the wave propagation. It is 

uncertain from these pictures whether the nonlinear collision effect decreases the velocity. Figure 6 

shows the PIV results of the instantaneous velocity maps for WW1-2 together with W4 and W7 at an 

interval of 0.42 s. A weak velocity appears in front of the smaller and taller waves when the former 

moves forward for a short distance toward the latter at t=−0.42 s, and the weak velocity appears behind 

them when the latter is ahead of the former at t=0.42 s. In this case, the interaction reduces the speed of 

the water particles beneath the crest of the compound wave.  

Figure 7 shows the water-particle paths for WW1-2 during a rear-end collision. The circular 

symbol indicates the instantaneous position of a water particle based on a Eular-Lagrangean algorithm 
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 Figure 4.  Water surface displacements for rear-end collisions.
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(Umeyama 2010) using the PIV result. The water-particle paths are plotted at 1 cm intervals between 

the surface and the bottom. The particle trajectory takes a bell-type path, which flattens toward the 

bottom. This feature matches with the description of the flow field shown in Figure 6. The distance 

moved is nearly constant with depth except at the surface where the distance is somewhat shorter.  

 

 

 

 

 

 

Figure 5.  Experimental results of velocity field for rear-end collision (d=5 cm).
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Figure 6.  Experimental results of velocity field for rear-end collision (d=10 cm).
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Figure 7.  Particle trajectories for a rear-end collision (d=10 cm).
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Head-on collisions 

Su and Mirie (1980) calculated the maximum run-up amplitude of a colliding wave formed by two 

counter-propagating solitary waves. When two solitary waves have identical amplitude, the run-up at 

the colliding point is defined by the value of the perturbed free surface elevation of Equation (5). The 

maximum run-up elevation up to })/{( 3haO  exists where Rη = Lη = a , and is expressed as 
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The phase shift of a single solitary wave is  
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where the + and − signs indicate the right- and left-running waves, respectively. 

Figure 8 shows the spatial surface profiles for three head-on collision cases: (a) WW2-1, (b) 

WW2-2, and (c) WW2-3. The surface profiles were chosen in a similar way to those for the rear-end 

collision experiments. In each case, the panels were put in the order of the chief moments during the 

interaction. Two single solitary-wave profiles are superimposed on the measured colliding-wave profile 

in the panel. The wave moving from left to right (i.e., right-running wave) is coming directly from the 

wavemaker, while the one moving from right to left (i.e., left-running wave) was reflected from the 

vertical wall at the end of the tank. Figure 8(a) shows the collision process by two counter-propagating 

solitary waves of Ra = La =1.30 cm for h=5 cm. Two original waves interact with each other and 

deform between these crests at t=−0.16 s. The water-surface profile of the colliding wave is similar to 

that of the linear superposition of the right-running and left-running solitary waves. The water surface 

reaches its maximum level at t=0.00 s. The maximum elevation of the measured water surface is 

crestη =2.77 cm while the theoretical prediction by Su and Mirie (1980) yields maxη =2.83 cm. The 

calculated elevation agrees well with the measured one when the two crests collide. The surface 

descends to the initial water level at t=0.16 s. The two crests separate from the colliding wave into two 

solitary waves that shift phase from the original waves. The phase shift calculated using Equation (9) is 

361.0/ ±=∆ hθ . Figure 8(b) shows another colliding wave that emerged by the collision of the right- 

and left-running solitary waves of amplitude a = Ra = La =2.00 cm for h=10 cm. Two waves merge into  
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Figure 8.  Water surface displacements for head-on collisions.
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a colliding wave with their interaction at t=−0.16 s, combine completely at t=0.00 s, and maintain their 

individual wave function at t=0.16 s. The measured and calculated elevation at t=0.00 s is crestη =4.35 

cm and maxη =4.26 cm, respectively, and the phase shift is 3034.0/ ±=∆ hθ . Figure 8(c) presents the 

resulting space-time plots of the surfaces of the two solitary waves and the colliding wave, for 

a = Ra = La =2.25 cm and h=15 cm. In the test, the agreement of the measured surface peak with the 

theoretical prediction is excellent: crestη =4.73 cm and maxη =4.71 cm, respectively. The calculated 

phase shift for the right- and left-running waves is 253.0/ ±=∆ hθ , although we cannot make a proper 

judgment from the figure alone. 

Figure 9.  Experimental results of velocity field for head-on collision (d=5 cm).
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Figure 10.  Experimemtal results of velocity field for head-on collision (d=10 cm).
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The right-running wave is generated by a wave paddle motion and subsequently travels through a 

water body from one end to the other end of the tank, transporting energy as it moves. The wave 

propagates itself as the water particles interact; one particle applies a push or pull on its adjacent 

neighbor, causing a particle displacement from the rest position. A solitary wave has a distinct flow 

pattern that continues to move in an uninterrupted fashion until it encounters a boundary. When the 

right-running wave arrives at the end of the tank, it reflects and travels back in the opposite direction. 

This interference produces the left-running wave that has a new flow field, as shown in Figure 9(c), and 

indicates a contrasting pattern from the right-running wave in Figure 9(b). Flow patterns of the right-

running (incident) and left-running (reflected) waves continue along the flume. When they meet up with 

one another in the test section, water particles produce a rather irregular and non-repeating flow pattern, 

as shown in Figure 9(a), which tends to change appearance over time. This irregular pattern is the result 

of the interference of an incident wave motion with a reflected wave motion in a rather non-sequenced 

manner. For example, at t=−0.16 s the water particles experience upwelling just ahead of each crest to 

generate a new crest of the colliding wave; at t=0.00 s they come to rest in an instant; and at t=0.16 s 

the water particles change direction downward in the space between both crests. Each flow pattern of 

the colliding wave is expected to be close to that of the superposition of the vectors given by right- and 

left-running waves. Later, uninterrupted traveling waves are observed in the flume. Another PIV result 

is a series of instantaneous velocity maps for WW2-2, as presented in Figure 10. Upon approaching the 

test section, the right- and left-running waves start their interference at t=−0.42 s. The right-running 

wave meets up with the left-running wave at t=0.00 s. As these two waves pass through each other, they 

undergo inversion until t=0.42 s. The figure shows snapshots of the interaction of the two waves at three 

different stages. The individual waves are shown in the middle and lower rows, and the resulting flow 

field is shown in the upper row. Careful inspection of the single and multiple wave velocity maps shows 

that the quasi-linear superposition principle is satisfied at all moments. 
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Figure 11.  Particle trajectories of head-on collision of two solitary waves (d=10 cm).
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Figure 11 shows the particle trajectories at seven cross sections for WW2-2. In each cross-section, 

we set the initial points at 1 cm intervals from the bottom to the surface. At the beginning, the water 

particle advances in the upper right or left direction to the first incident wave, and then moves a certain 

distance until the head-on collision occurs. It reaches a maximum level when the crests of the first and 

second solitary waves meet near the middle of the test section. After the collision, as the second wave 

approaches, the particle tends to return to its initial point. Most particles go back the way they came, but 

some do not turn back to the starting point. This asymmetric profile may be attributed to the difference 

between the two wave amplitudes, which attenuate due to dissipation during propagation and after the 

head-on collision. 

CONCLUSIONS  

We experimentally investigated the spatial velocity variations for two different kinds of dual 

solitary wave collisions using PIV. In rear-end collisions, we generate a smaller wave first, and then 

generate a taller wave, which catches up and interacts with the smaller one, and then moves away from 

it. In head-on collisions, the first wave is reflected at the end of the flume and propagates back toward 

the wavemaker, and a second wave is generated so that these two waves meet at a prefixed location. We 

used the image thresholding method to capture various water-surface displacements. The observed data 

shows that the compound wave amplitude becomes smaller than the taller wave amplitude during rear-

end collisions, but the colliding-wave amplitude is more than twice as large as the single-wave 

amplitude during head-on collisions. The experimental wave profiles suggest that there is a phase 

difference in each solitary wave before and after a head-on collision. We have not made a detailed 

inspection of the phase shift phenomenon because the horizontal distance of the test section was limited 

for some depth conditions. We presented instantaneous velocity vector maps to compare them with two 

single solitary wave results. We used a PIV algorithm to track water particle displacements. The high 

accuracy of the proposed approach could be applied to a Lagrangian description of the trajectory of a 

water particle for both rear-end and head-on collisions. 
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