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ESTIMATION OF THE TOTAL SLIDING DISTANCE OF COMPOSITE TYPE BREAKWATER 
IN SERVICE PERIOD APPLYING THE WAVE CLIMATE STATISTICS 

Teruko Kimura1, Akira Kimura2 and Takao Ota3 

Since 2007, damages of structures are accepted if they give less influence on their performance in Japan (Guideline 
for the performance design). To realize the idea of the guideline in a coastal structure design, assessment for 'state' and 
'degree' of damage becomes essential in advance. This study proposes statistical method to assess a sliding of the 
composite breakwater, applying Monte Carlo wave climate simulation method (kimura et al., 2012). A concrete 
method is shown to make clear about a relation between design conditions and a probability that the structure keeps 
the performance during the in-service period. 

Keywords: performance based design; composite type breakwater; sliding distance; wave climate statistics 

Introduction  In 2007, the guideline of the design scheme for public structures was changed from a conventional 
detailed specification design to a performance design in Japan. Slight damage of a structure came to be 
accepted in the new guideline as long as the demanded performance is maintained. It becomes possible 
to design the structure considering repairs during the in-service period. A flexible cost planning 
becomes possible. It becomes necessary that the ‘scales’ and ‘frequency’ of damages during the 
in-service period are statistically clear in advance. It is preferable that the repair strategy is also 
included in the overall planning. The present study selected the sliding of breakwater as an example of 
the structure damage. Statistical method is shown to estimate the sliding distance of a composite 
breakwater applying the wave climate statistics. Shimosako and Takahashi (1998) studied expected 
sliding distance of a composite breakwater during the in-service period. They used the extreme value 
(annual maximum wave height) statistics. From the statistical restriction they exerted waves to the 
breakwater only 2 hours every year during the in-service period. Since the present study used a wave 
climate statistics (Kimura and Ota, 2012), all waves act on the breakwater during its in-service period 
are taken into account in the calculation of its sliding distance. The scheme to simulated Probability 
Distribution Function (PDF) of the one year and the longer years sliding distances are explained in this 
study. Examples of the the ‘timing’ of repairs are shown in the last.     
Wave climate statistics 
    Monte Carlo wave climate simulation is briefly reviewed as follows (Kimura and Ota, 2012). 
Wave climate data observed along the Sea of Japan coast (7 observatories) are used as targets of the 
simulations. Figure 1 shows an example of the one year observed significant wave heights 𝐻𝟑 𝟑⁄  (every 
2 hours : Rumoi 2001; NOWPHAS). Numbers on the horizontal axis show days counted from Jan. 1st. 
Wave conditions are stormy in winter but very quite in summer in the Sea of Japan. Figure 2 shows a 
Fourier spectrum |𝐹′(𝑓𝟑)| of 𝐻𝟑 𝟑⁄  (Fig.1). Regardless of the observatories, |𝐹′(𝑓𝟑)| has a similar 
properties. According to the properties of |𝐹′(𝑓𝟑)|, the spectrum can be divided into 3 frequency 
regions as shown in Table 1.  
 

Table 1 Properties of |𝑭′(𝒇𝒏)| in the regions 

Region 𝑓𝟑 (d𝟑𝟑) Property  

A ~0.006 Rapid attenuation of |𝐹′(𝑓𝟑)|  according to an 
increase of the frequency 𝑓𝟑 

B 0.006~0.2 Almost constant |𝐹′(𝑓𝟑)| regardless of 𝑓𝟑 

C 0.2~ |𝐹′(𝑓𝟑)| attenuates almost proportional to 𝑓𝟑𝟑𝟑  
in which d  means one day. The frequency 𝑓𝟑  is determined as 𝑓𝟑 = 𝑛/365  [d𝟑𝟑] , (𝑛 = 0,1, ⋯ , 365 × 12). 𝐹′(𝑓𝟑) is approximated using the properties shown in the Table 1. In the 
region A, the values of 𝐹′(𝑓𝟑) are used. In the regions B and C, |𝐹′(𝑓𝟑)| is approximated as �Region B:                     |𝐹′(𝑓𝟑)|𝟑 = 𝑐𝟑        Region C:                    |𝐹′(𝑓𝟑)|𝟑 = 𝑐𝟑𝑓𝟑𝟑𝟑  𝟑                                                                 (1) 

in which 𝑐𝟑 and 𝑐𝟑 are constants. 
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Figure 1. Example of the one year observed significant wave heights 𝑯𝟏 𝟑⁄  

(every 2 hours : Rumoi 2001; NOWPHAS).  

 
Figure 2. Fourier spectrum |𝑭′(𝒇𝒏)| of 𝑯𝟏 𝟑⁄  (Fig.1). 

  𝐻𝟑 𝟑⁄ (𝑡𝟑) with time interval 𝑑𝑡 is simulated as follows. 

      𝐻𝟑 𝟑⁄ (𝑡𝟑) = 𝐻𝟑(𝑡𝟑) × 𝟑1 + 𝟑 (𝑐𝟑 + 𝑐𝟑𝟑𝑅𝟑𝟑) cos(2𝜋𝑓𝟑𝟑𝑡𝟑+ 𝜀𝟑𝟑)𝟑𝟑
𝟑𝟑𝟑𝟑 �                                            

            + � 𝟑 (𝑐𝟑 + 𝑐𝟑𝟑𝑅𝟑𝟑) 𝑓𝟑𝟑𝟑𝟑cos(2𝜋𝑓𝟑𝟑𝑡𝟑+ 𝜀𝟑𝟑)𝟑𝟑𝟑
𝟑𝟑𝟑𝟑𝟑 𝟑                                   (2) 

�    𝑡𝟑= 𝑖𝑑𝑡                                                 𝜀𝟑𝟑 = 2𝜋𝑅𝟑𝟑𝟑,    𝜀𝟑𝟑 = 2𝜋𝑅𝟑𝟑𝟑      𝟑                                   (3) 

where   𝐻𝟑(𝑡𝟑) ≈ 𝐻𝟑(𝑡𝟑) + 𝐻𝟑(𝑡𝟑)𝑅𝟑𝟑𝟑                                                                                    (4)  𝐻𝟑(𝑡𝟑) = 12𝑎𝟑 + 𝟑 𝟑𝑎𝟑 sin 2𝜋𝑓𝟑𝑡𝟑+ 𝑏𝟑 cos 2𝜋𝑓𝟑𝑡𝟑𝟑𝟑
𝟑𝟑𝟑                                                (5) 

𝐻𝟑(𝑡𝟑) = 𝟑1𝑀 𝟑 𝟑𝐻𝟑𝟑 (𝑡𝟑) − 𝐻𝟑(𝑡𝟑)𝟑𝟑𝟑
𝟑 𝟑𝟑 𝟑𝟑 𝟑⁄                                                            (6)                            ( 𝑖= 1, 2, ⋯ , 365 × 12)                       
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in which 𝑐𝟑 and 𝑐𝟑 are the averaged values of the approximated 𝑐𝟑 and 𝑐𝟑 (Eq. 1) for the observed |𝐹′(𝑓𝟑)|𝟑  and |𝐹′(𝑓𝟑)|𝟑 every year from 1991 to 2008 (18 years). 𝑐𝟑𝟑 and 𝑐𝟑𝟑 are the standard 
deviation of 𝑐𝟑 and 𝑐𝟑, respectively. 𝑅𝟑𝟑, 𝑅𝟑𝟑 and 𝑅𝟑𝟑𝟑 are mutually independent normal random 
numbers with 𝑁(0,1) . 𝑅𝟑𝟑𝟑  and 𝑅𝟑𝟑𝟑  are also independent uniform [0~1]  random number. 𝐻𝟑(𝑡𝟑) is the 𝑀  years average of 𝐻𝟑(𝑡𝟑), (𝑖= 1, 2, ⋯ , 4380(= 365 × 12)). 𝑎𝟑, 𝑎𝟑, 𝑎𝟑, 𝑏𝟑 and 𝑏𝟑 are the real and imaginary parts of the Fourier components (𝑎𝟑= Re𝟑𝐹′(𝑓𝟑)𝟑, 𝑏𝟑= Im𝟑𝐹′(𝑓𝟑)𝟑. 
Over bar means an average over observation years 𝑀 .   

Table 2 Constants for the simulations (Kimura and Ota, 2012). 

 Rumoi Setana Akita Niigata Wajima Tottori Hamada 𝑎𝟑 1.119 1.188 1.088 1.000 1.197 1.093 1.119 𝑎𝟑 0.777 0.805 0.680 0.726 0.777 0.650 0.597 𝑏𝟑 0.093 0.088 0.144 0.106 0.093 0.062 0.081 𝑎𝟑 0.150 0.057 0.120 0.142 0.150 0.101 0.091 𝑏𝟑 0.067 -0.022 0.020 0.077 0.067 0.078 0.083 𝐻𝟑 0.107 0.120 0.138 0.108 0.129 0.111 0.123 𝑐𝟑 0.0818 0.0817 0.1000 0.0824 0.0741 0.0777 0.0778 𝑐𝟑𝟑 0.00718 0.00594 0.00860 0.00634 0.00462 0.00557 0.00722 𝑐𝟑 0.0155 0.0150 0.0184 0.0157 0.0130 0.0134 0.0137 𝑐𝟑𝟑 0.00093 0.00085 0.00150 0.00107 0.00101 0.00105 0.00128 Uinit: 𝑚 d⁄ : 𝑐𝟑, 𝑐𝟑𝟑, 𝑚 : otherwise.  

 
Figure 3. Simulated one year 𝑯𝟏 𝟑⁄  (Tottori). 

 
Figure 4. Observed 𝑯𝟏 𝟑⁄  (Tottori, 2000) 
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4 Standard deviations for 𝑎𝟑, 𝑎𝟑, 𝑎𝟑, 𝑏𝟑, and 𝑏𝟑 are negligibly small for 𝑖 in Eq.(5). 𝐻𝟑(𝑡𝟑) ≈ 𝐻𝜎. 
Figure 3 shows a simulated one year 𝐻𝟑 𝟑⁄  (Tottori). Figure 4 shows an observed 𝐻𝟑 𝟑⁄  (Tottori, 2000).  
 However, 2~3 % of entire simulated 𝐻𝟑 𝟑⁄  (Eqs.(2) ~(6)) have negative values. In the former 
study (Kimura and Ota, 2012), one method to correct this property was explained using a skew 
symmetric function. A modified correction method without the function is explained here. The 
simulated 𝐻𝟑 𝟑⁄  is converted to 𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑𝟑

 so that they satisfy Eq.(7) to correct the negative value 
problem. 𝐹𝟑𝟑𝟑𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑𝟑 𝟑= 𝐹𝟑𝟑𝟑 𝟑𝐻𝟑 𝟑⁄ 𝟑                                                (7) 
in which 𝐹𝟑𝟑𝟑[ ] and 𝐹𝟑𝟑𝟑 [ ] are cumulative frequency distributions of observed and simulated 𝐻𝟑 𝟑⁄ . This method is effective if there are large number of observed data. If an agreement between the 
cumulative distributions of the converted 𝐹𝟑𝟑𝟑𝟑 𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑𝟑 𝟑 and 𝐹𝟑𝟑𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑 is insufficient, repetition 
of the conversion improves the result.   𝐹𝟑𝟑𝟑𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑𝟑 𝟑= 𝐹𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑           (𝑛 = 2, 3, ⋯ )                      (8) 

in which 𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑𝟑𝟑𝟑
 is the 𝑛− 1 times converted value and 𝐹𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 is its cumulative 

distribution. Two or three times conversions (𝑛 = 2, 3) give very good result. In the high end of the 
frequency distributions of observed and simulated 𝐻𝟑 𝟑⁄ , uneven properties appear due to data shortage. 
Exponential function of the type 𝑎𝑒𝟑𝟑𝟑𝟑 𝟑⁄  gives good approximation of their frequency distributions 
in the large 𝐻𝟑 𝟑⁄  region (Kimura and Ota. 2012, 2013) in which 𝑎 and 𝑏 are constants. Figure 5 
shows an example of the frequency distributions of 𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑𝟑

 (black line) and observed 𝐻𝟑 𝟑⁄  (+) 
(Tottori).   

 
Figure 5. Example of the frequency distributions of 𝟑𝑯𝟏 𝟑⁄ 𝟑𝒄𝒐𝒏𝟑  (black line) and observed 𝑯𝟏 𝟑⁄  (+) (Tottori).   Detailed statistical properties of 𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑𝟑

 are in good agreements with the observed values 
(Kimura and Ota, 2013).   

Sliding distance of composite breakwater  Studies on coastal structures have mainly aimed at clarifying the start of damages (limit states) to 
meet with the ordinary design manual (detailed specification design). Very few studies deal with the 
behavior of structures after the damages start. There is a flow of the studies on the breakwater damage 
started by Ito (1971). Shimosako and Takahashi (1994) and Tanimoto et al. (1996) are the studies 
follow the flow. These studies together with a wave pressure model by Goda (1974) are the very few 
examples treated the behavior after the damage (sliding) starts. The present study applies their models 
to study the long period statistical property of a sliding distance of the composite breakwater. The study 
by Shimosako and Takahashi (1998) on the composite breakwater sliding is briefly reviewed as 
follows. 
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Figure 6. Model composite type breakwater.   Figure 6 shows the model composite breakwater. Vertical wave pressure distribution is 

approximated by a trapezoid (below the mean water level MWL) and a triangle (above MWL, height : 𝜂∗) (Goda, 1974 : Fig.6). Wave pressures at the MWL and the bottom of the caisson are given by 𝑝𝟑 
and 𝑝𝟑. If the crest height of the breakwater is lower than 𝜂∗, pressure above the crest is ignored 
(Fig.6). The whole wave pressure 𝑃 is given by              𝑃 = 12 (𝑝𝟑 + 𝑝𝟑)ℎ′ + 12 (𝑝𝟑 + 𝑝𝟑)ℎ𝟑∗                                                         (9) 
where 𝑝𝟑 = (𝛼𝟑 + 𝛼∗)𝜌𝟑𝑔𝐻,      𝛼∗ = max{𝛼𝟑, 𝛼𝟑}                                     (10) 𝑝𝟑 = 𝛼𝟑𝑝𝟑                                                                                                  (11) 𝑝𝟑 = 𝟑𝑝𝟑(1 − ℎ𝟑 𝜂∗⁄ ) ∶      𝜂∗ > ℎ𝟑                      0    ∶      𝜂∗ ≤ ℎ𝟑 �                                                    (12) 

in which 
�

ℎ𝟑∗ = min{𝜂∗, ℎ𝟑}𝜂∗ = 1.5𝐻𝛼𝟑 = 0.6 + 12𝟑 4𝜋ℎ 𝐿⁄sinh(4𝜋ℎ 𝐿⁄ )𝟑𝟑𝛼𝟑 = min𝟑ℎ∗ − 𝑑3ℎ∗ 𝟑𝐻𝑑𝟑𝟑 , 2𝑑𝐻 𝟑
𝛼𝟑 = 1 − ℎ𝟑ℎ 𝟑1 − 1cosh(2𝜋ℎ 𝐿⁄ )𝟑⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

                                            (13) 

�
𝛼𝟑= 𝛼𝟑,𝟑 ∙ 𝛼𝟑,𝟑𝛼𝟑,𝟑 = min𝟑𝐻𝑑 , 2.0𝟑𝛼𝟑,𝟑 = 𝟑cos 𝛿𝟑 cosh𝛿𝟑⁄                         ∶  𝛿𝟑 ≤ 01 [cosh𝛿𝟑 × cosh𝟑.𝟑𝛿𝟑]⁄      ∶  𝛿𝟑 > 0 �𝛿𝟑 = 𝟑20𝛿𝟑𝟑           ∶   𝛿𝟑𝟑 ≤ 015𝛿𝟑𝟑           ∶   𝛿𝟑𝟑 > 0�𝛿𝟑 = 𝟑4.9𝛿𝟑𝟑           ∶   𝛿𝟑𝟑 ≤ 03.0𝛿𝟑𝟑           ∶   𝛿𝟑𝟑 > 0� ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

                                 (14) 

� 𝛿𝟑𝟑 = 0.93𝟑𝐵𝐿− 0.12𝟑+ 0.36𝟑0.4 − 𝑑ℎ𝟑𝛿𝟑𝟑 = −0.36𝟑𝐵𝐿− 0.12𝟑+ 0.93 𝟑0.4 − 𝑑ℎ𝟑𝟑                                  (15) 

MWL    
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in which 𝐻  and 𝐿 are the wave height and the wave length, ℎ is the water depth, ℎ𝟑 is the height of 
the breakwater crest above MWL, 𝑑 is the water depth on the covering on the mound, 𝐵 is the front 
width of the mound top, 𝜌𝟑  is the water density, 𝑔 is the gravitational acceleration. All waves act at 
right angle to the breakwater. 𝜂∗ = 1.5𝐻𝟑 𝟑𝟑 (Eq.(13)) and ℎ∗ is the water depth at 5𝐻𝟑 𝟑⁄  off the 
breakwater in the original model (Goda, 1975) and 𝐻𝟑 𝟑𝟑 = 1.8𝐻𝟑 𝟑⁄ . Since all waves are handled 
individually in the present study, 5𝐻  and 𝐻  are used instead of 5𝐻𝟑 𝟑⁄  and 𝐻𝟑 𝟑𝟑, respectively. 
Since a shock wave pressures effects is taken into account in the present study, next improved model 
by Shimosaki et al. is applied. Their whole wave pressure 𝑃 is given by 
 𝑃(𝑡) = max{𝑃𝟑(𝑡), 𝑃𝟑(𝑡)}                                                                      (16) 𝑃𝟑(𝑡) = 𝛾𝟑(𝑃𝟑)𝟑 𝟑𝟑 sin

2𝜋𝑡𝑇                                                                    (17) 

𝑃𝟑(𝑡) = ⎩⎪⎨
⎪⎧2𝑡𝜏𝟑 (𝑃𝟑)𝟑 𝟑𝟑                    ∶ 0 ≤ 𝑡≤ 𝜏𝟑2               2 𝟑1 − 𝑡𝜏𝟑𝟑(𝑃𝟑)𝟑 𝟑𝟑     ∶ 𝜏𝟑2 < 𝑡≤ 𝜏𝟑            0                                    ∶  𝜏𝟑 < 𝑡                    

�                          (18) 

𝛾𝟑 = 1 − 𝜋(𝑃𝟑)𝟑 𝟑𝟑𝑇𝟑 𝟑𝑃𝟑(𝑡) − (𝑃𝟑)𝟑 𝟑𝟑 sin
2𝜋𝑡𝑇 𝟑𝑑𝑡𝟑𝟑𝟑𝟑                                                            ∶   𝑃𝟑(𝑡) − (𝑃𝟑)𝟑 𝟑𝟑 sin 2𝜋𝑡 𝑇⁄ ≥ 0                                  (19) 

in which (𝑃𝟑)𝟑 𝟑𝟑 is the horizontal whole pressure (Eq.(9)) (only 𝛼𝟑 is considered in Eq.(10)), (𝑃𝟑)𝟑 𝟑𝟑 is also the horizontal whole pressure, (only 𝛼∗ is considered in Eq.(10)). Figure 7 shows a 
shock wave pressure model shown by Tanimoto et al. (1996).  

 
Figure 7. Shock wave pressure model shown by Tanimoto et al. (1996).    The mild curve (𝑃𝟑(𝑡): Fig.7) shows a standing wave pressure and the triangle shows a shock 

pressure (𝑃𝟑(𝑡): Fig.7). (𝑃𝟑)𝟑 𝟑𝟑 and (𝑃𝟑)𝟑 𝟑𝟑 are their maximum values. 𝑇 is the wave period and 𝜏𝟑 is the duration of the shock pressure given by, 𝜏𝟑 = 𝑘𝜏𝟑,𝟑                                                                                      (20) 

𝜏𝟑,𝟑 = 𝟑 𝟑0.5 − 𝐻8ℎ𝟑𝑇   ∶   0 < 𝐻ℎ ≤ 0.80.4𝑇                     ∶    0.8 < 𝐻ℎ           � ,    𝑘 = [(𝛼∗)𝟑.𝟑 + 1]𝟑𝟑                  (21) 

    Equation of motion of the breakwater is given by 𝟑𝑊𝟑𝑔 + 𝑀𝟑𝟑𝑥𝟑′′ = 𝑃− 𝐹𝟑                                                                          (22) � 𝑀𝟑 ≈ 1.086𝜌𝟑 ℎ′𝟑𝐹𝟑 = 𝜇[(𝑊𝟑 − 𝑊𝟑 ) − 𝑈]𝟑                                                                      (23) 

in which 𝑥𝟑  is the sliding distance of the caisson, ′′ means 𝑑 𝑑𝑡𝟑⁄ , 𝑊𝟑 is a weight of the caisson in 
the air, 𝑀𝟑 is an added mass of the breakwater in the water, 𝑃 is given by Eq.(16), 𝐹𝟑 is the friction 
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force, 𝜇 is the friction coefficient between the caisson and the mound, 𝑊𝟑  is the buoyancy of the 
caisson, 𝑈 is the lift force acting on the caisson given by, 𝑈 = 12𝑝𝟑𝐵                                                                                    (24) 𝑝𝟑 = 𝛼𝟑𝛼𝟑𝜌𝟑𝑔𝐻                                                                         (25) 
 Solving Eq.(22), sliding distance 𝑠 by the wave with 𝐻  and 𝐿 (and 𝑇) is given by, 𝑠= 𝑔𝜏𝟑𝟑(𝐹𝟑− 𝜇𝑊𝟑)𝟑(𝐹𝟑+ 𝜇𝑊𝟑)8𝜇𝑊𝟑𝑊𝟑𝐹𝟑𝟑                                                          (26) 

in which 𝐹𝟑 = 𝑃𝟑 𝟑𝟑 + 𝑈 and 𝑊𝟑 = 𝑊𝟑 − 𝑊𝟑 , 𝑃𝟑 𝟑𝟑 is the maximum value of 𝑃(𝑡) (Eq.(16), both 𝛼𝟑 and 𝛼∗ in Eq.(10) are taken into account).     
Probability distribution function of the sliding distances     It is possible to consider wave breaking effects in the wave pressure model (Eq.(10)). Therefore 
information about the breaking/non-breaking of individual waves included in the waves represented by 𝐻𝟑 𝟑⁄  (calculated by Eq.(2)) is required. Applying the Goda model (1975), status of wave (breaking / 
non-breaking) is identified statistically. Waves arriving at the breakwater are assumed statistically 
stationary during 𝑇𝟑 (2 hours observation interval for example).  
 Changes in wave height due to shoaling is calculated applying the linear wave theory. 𝟑𝐻𝟑 𝟑⁄ : 𝑇𝟑 𝟑⁄ 𝟑𝟑𝟑𝟑 →  𝟑𝐻𝟑 𝟑⁄ : 𝑇𝟑 𝟑⁄ 𝟑𝟑 → 𝟑𝐻𝟑 𝟑⁄ : 𝑇𝟑 𝟑⁄ 𝟑𝟑                                      
in which ( )𝟑𝟑𝟑 , ( )𝟑 and ( )𝟑 are the values at the wave observatory (wave gauge point), deep 
water and the breakwater, respectively.  
 Since the wave period 𝑇 distribute around 𝑇𝟑 𝟑⁄  when 𝐻 > 𝐻  (𝐻  : mean wave height) in the 
joint distribution of observed 𝐻  and 𝑇 (Goda, 2010). 𝑇𝟑 𝟑⁄  distribute around 𝑇𝟑 𝟑⁄  when 𝐻𝟑 𝟑⁄  is 
large in the joint PDF of 𝐻𝟑 𝟑⁄  and 𝑇𝟑 𝟑⁄  (Kimura and Ota, 2014). Sliding of the breakwater takes 
place only when wave height 𝐻  is very large. 𝑇𝟑 𝟑⁄  is , therefore, approximately used for the period (𝑇) of individual waves in this study. This approximation about the period may not be too rough. If 
detailed investigation is necessary, better approximation using joint PDFs of 𝐻𝟑 𝟑⁄  and 𝑇𝟑 𝟑⁄  and 𝐻  
and 𝑇 is possible (Kimura and Ota, 2014). 
 Breaking wave height 𝐻𝟑 at the water depth ℎ is given by the next equation (Goda, 1975).     𝐻𝟑𝐿𝟑 = 𝐴𝟑1 − exp𝟑−1.5𝜋ℎ𝐿𝟑 𝟑1 + 15tan𝟑 𝟑⁄ 𝜃𝟑𝟑𝟑                                                  (27) 

in which 𝐿𝟑 is the deep water wave length, tan𝜃 is the sea bottom slope. Since Eq.(27) has some 
uncertainty for 𝐻𝟑 , Goda introduced the selective breaking probability 𝑃𝟑(𝐻) to cope with the 
uncertainty.  𝑃𝟑(𝐻) = 𝟑         0 : 𝐻 < 𝐻𝟑(𝐻 − 𝐻𝟑) (𝐻𝟑 − 𝐻𝟑)⁄  : 𝐻𝟑 ≤ 𝐻 ≤ 𝐻𝟑          1 : 𝐻 > 𝐻𝟑                                                               � (28) 𝐻𝟑 and 𝐻𝟑 are given by Eq.(27) putting 𝐴 = 0.12 and 0.18, respectively.  
 PDF of wave height in the deep water condition with 𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑  is calculated (Rayleigh 
distribution). 𝐻𝟑 and 𝐻𝟑 are converted to the wave heights in deep water condition as, 𝐻𝟑𝟑 = 𝐻𝟑 𝐾𝟑⁄                     (𝑖= 1, 2)                                                     (29)  Figure 8 shows the PDFs of wave heights which are breaking and non-breaking in deep water 
condition. Solid and broken lines show the PDFs of non-breaking 𝟑𝑃𝟑𝟑𝟑(𝐻𝟑)𝟑 and breaking 𝟑𝑃𝟑𝟑(𝐻𝟑)𝟑 waves, respectively (𝐻𝟑 𝟑⁄ = 6 𝑚，𝑇𝟑 𝟑⁄ = 8.95 𝑠，ℎ = 15 𝑚，tan𝜃 = 1 50⁄ ).  
 Wave height in the position of the breakwater is given as follows (Goda, 1975).  
Non-breaking wave (solid line in Fig.8) : 𝐻 = 𝐶𝟑𝐾𝟑 𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑                                                                                              (30) 
Breaking wave (broken line in Fig.8) : 𝐻 = 𝐶𝟑1.8 min𝟑𝟑𝛽𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑 + 𝛽𝟑ℎ𝟑, 𝛽𝟑 𝟑𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑                                    (31) 

where 
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� 𝛽𝟑 = 𝟑0.052 𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝐿𝟑 𝟑⁄ 𝟑𝟑𝟑
𝟑𝟑.𝟑𝟑

×exp[20 tan𝟑.𝟑𝜃]𝟑 𝛽𝟑 = 0.63exp[3.8 tan𝜃]                                               𝛽𝟑 𝟑𝟑 = max𝟑1.65, 0.53𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑 𝟑𝐿𝟑 𝟑⁄ 𝟑𝟑𝟑 𝟑𝟑𝟑.𝟑𝟑  �× �exp[2.4 tan𝜃]} ⎭⎪⎪
⎬⎪
⎪⎫                                (32) 

 
in which 𝐶𝟑 in Eqs.(30) and (31) is a constant to give an arbitral wave height in deep water condition 𝟑𝐻𝟑 = 𝐶𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑. 
 

 
Figure 8. PDFs of wave heights which are breaking and non-breaking in the depth position of the breakwater. 

 
 Total number of waves during 𝑇𝟑 is 𝑁𝑊 = 𝑇𝟑 × 3600/𝑇𝟑 𝟑⁄ . Number of waves with 𝐻𝟑 =𝐶𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑 in the deep water condition is given as, 
 Non breaking : 𝑃𝟑𝟑𝟑𝟑𝐶𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝑑𝐻𝟑 ∙ 𝑁𝑊                 0 < 𝐻𝟑 ≤ 𝐻𝟑𝟑                                    (33) 
 Breaking :  𝑃𝟑𝟑𝟑𝐶𝟑𝟑𝐻𝟑 𝟑⁄ 𝟑𝟑𝟑𝑑𝐻𝟑 ∙ 𝑁𝑊                       𝐻𝟑 ≥ 𝐻𝟑𝟑                                         (34) 
    Sliding distance is calculated substituting the converted wave height 𝐻  from 𝐻𝟑 and wave 
period 𝑇𝟑 𝟑⁄  in equations from Eq.(9) to Eq.(26). Total sliding distance induced by 𝑁𝑊  waves during 𝑇𝟑 is obtained by 𝑠𝟑𝟑𝟑= 𝑁𝑊 𝟑𝟑 𝑠∙ 𝑃𝟑𝟑𝟑(𝐻𝟑)𝑑𝐻𝟑𝟑𝟑𝟑𝟑 + 𝟑 𝑠∙ 𝑃𝟑𝟑(𝐻𝟑)𝑑𝐻𝟑∞

𝟑𝟑𝟑 𝟑                            (35) 

in which 𝑠 is the sliding distance induced by a single wave with 𝐻𝟑  and 𝑇𝟑 𝟑⁄ . Breaking or 
non-breaking property of the waves must be carefully considered in the calculations from Eq.(9) to 
Eq.(26).  
 Applying one year 𝐻𝟑 𝟑⁄  and 𝑇𝟑 𝟑⁄ , PDF of the one year total sliding distances 𝑃𝟑𝟑(𝑠𝟑)  is 
obtained in which 𝑠𝟑 is the one year total sliding distance.  
 

Numerical simulations 
    Horikawa et al. (1989) reported about the properties of existing breakwaters in Japan. The present 
study used almost the average properties of the existing breakwaters along the Sea of Japan coast. The 
properties used in the calculations were listed in Table 3. Specific gravity of the caisson is assumed to 
be 2.8. Two different water depth cases are used in the simulations. 
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Table 3 Properties of the breakwater (Fig.6). 

Case 1 2  ℎ 15𝑚  20𝑚   𝑑 10.5𝑚  13.5𝑚  𝑑𝟑 1.5𝑚  1.5𝑚  ℎ𝟑 6𝑚  6𝑚  𝐵 6m 8𝑚  𝑊  9~12𝑚  10~15𝑚  𝑑𝟑  3𝑚  5𝑚  𝜇 0.6 0.6   

  
Figure 9. Flow of calculations.  
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Figure 10. PDF of the one year total sliding distances 𝒔𝟏  

 
Figure 11. PDF of the one year total sliding distances 𝒔𝟏  

 
Figure 12.  Relation between the average 𝐬𝟏 and the breakwater thickness.   Figure 9 shows the flow of the calculations. Figures 10 (case 1) and 11 (Case 2) show the PDFs of 

the one year total sliding distances 𝑠𝟑. Water depth and breakwater thicknesses are shown in the 
figures. 10000 years 𝐻𝟑 𝟑⁄  simulations were conducted. Figure 12 show the relation between the 
average of 𝑠𝟑 and the breakwater thickness 𝑊 .  
 One year sliding distance 𝑠𝟑 is given by one year summation of 𝑠𝟑𝟑𝟑 (Eq.(35)). If the wave 
climates characteristics are independent every year, PDF of two years total sliding distance 𝑝𝟑𝟑(𝑠𝟑) is 
derived as,  𝑃𝟑𝟑(𝑠𝟑) = 𝟑 𝑃𝟑𝟑(𝑠𝟑)𝟑𝟑𝟑 𝑃𝟑𝟑(𝑠𝟑 − 𝑠𝟑)𝑑s𝟑                                                         (36) 

PDF of the 𝑁  year total sliding distance 𝑠𝟑  is given as  𝑃𝟑𝟑 (𝑠𝟑 ) = 𝟑 𝑃𝟑𝟑(s𝟑)𝟑𝟑𝟑 𝑃𝟑(𝟑𝟑𝟑)(𝑠𝟑 − 𝑠𝟑)𝑑𝑠𝟑                                                 (37) 

in which 𝑃𝟑(𝟑𝟑𝟑) is the PDF of 𝑁 − 1 years total sliding distances. Repeated calculations of Eq.(37), 
PDF of the arbitral year siding distances can be derived from 𝑃𝟑𝟑(𝑠𝟑).  Figures 13 and 14 show the 
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11𝑃𝟑𝟑 (𝑠𝟑 ) for every 10 years in each case. Water depths and the breakwater thicknesses are shown in the 
figures. Sliding distance after 𝑁  years of in-service period is given as 𝑠𝟑 = 𝟑 𝑠𝟑𝟑𝟑

𝟑𝟑𝟑                                                                                        (38) 

in which 𝑠𝟑𝟑 (𝑖= 1, ⋯ , 𝑁) is the one year total sliding distance of the 𝑖-th year. If each year 𝑠𝟑𝟑 is 
independent and 𝑁  is sufficiently large, 𝑃𝟑𝟑 (𝑠𝟑 ) can be approximated by a normal distribution (low 
of large numbers).   

 
Figure 13. 𝑷𝒔𝑵(𝒔𝑵) for every 10 years (Case 1)    

 
Figure 14. 𝑷𝒔𝑵(𝒔𝑵) for every 10 years (Case 2)  

 
Figure 15. Relation between the breakwater thicknesses and the elapsed years  

until the total sliding distances exceed 𝟎.𝟑𝒎 . 

25

20

15

10

5

0

P
s
N(
s
N
)

0.40.30.20.1
sN

h=15m
W=11.5m

  N (years)
 10
 20
 30
 40
 50

20

15

10

5

0

P
s
N(
s
N
)

0.40.30.20.1
sN (m)

h=20m
W=13.5m

  N (years)
 10
 20
 30
 40
 50

100

80

60

40

20

0

Y
e
ar

s

11.611.411.211.010.810.6
W (m)

Water depth h=15m
 

 
 sm

   sm+ss

   sm+2ss

  in-service period (50 years)



 COASTAL ENGINEERING 2014 
 
12

 
Figure 16. Relation between the breakwater thicknesses and the elapsed years  

until the total sliding distances exceed 𝟎.𝟑𝒎 .      Japanese new guideline indicates that the performance of the composite breakwater is maintained 
unless the sliding distance exceeds 0.3𝑚 . Figures 15 (Case 1) and 16 (Case 2) show the relation 
between the breakwater thicknesses and the elapsed years until the total sliding distances exceed 0.3𝑚 . 
Three representative values 𝑠𝟑 , 𝑠𝟑 + 𝜎𝟑 and 𝑠𝟑 + 2𝜎𝟑 of 𝑃𝟑𝟑 (𝑠𝟑 ) are used in which 𝑠𝟑  and 𝜎𝟑 
are the mean and the standard deviation of 𝑃𝟑𝟑 (𝑠𝟑 ) (Fig.13, 14). These figures show that 𝑊  must be 
larger than 12𝑚  (Case 1) and 14𝑚  (Case 2) if there is no plan to repair its during the in-service 
period (50 years : 𝑠𝟑 + 2𝜎𝟑, for example). Figure 17 shows the relations between 𝑠𝟑  and elapsed 
years for each case (Case 1, 𝑊 = 11.5𝑚  ; Case 2, 𝑊 = 13.0𝑚  : 𝑠𝟑 + 2𝜎𝟑). Horizontal line in the 
figure shows the 0.3m. Necessary maintenance time can be read in this figure.  

  
Figure 17. Relations between 𝒔𝒎 + 𝟐𝝈𝒔 and elapsed years for each case 

 (Case 1, W=11.5m ; Case 2, W=13.0m).  
Remarks     Present study shows the scheme to simulate the statistical properties of the sliding distance of the 
composite breakwater applying the wave climate statistics. Two average type breakwaters installed in 
different water depths were used as examples in the simulations. Numerically simulated yearly change 
of the PDF of sliding distances and the statistical representative values such as the average, 
average+standard-deviation and average+2×standard-deviation are shown. Maintenance timings are 
also shown for two breakwater thicknesses during their in-service years.    
 The model to estimate the sliding distance of the breakwater is one of the very few examples that 
can be applied immediately to the performance design scheme. Many existing physical models mainly 
studied the process until the damage start. Very few studies showed the information after the damage 
take place. To activate the application of the new design scheme, accumulation of the information on 
the progress after damages may be important. New physical modeling on the damage progress is 
expecting. If there is sufficient information, effective Life Cycle Management of the coastal structures 
will be possible from the planning stage. 
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