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Impulsive loads are difficult to predict due to the extremely non linear response to incident wave conditions. This behavior is related
to air dynamics and local wave shape. The present study focuses on the latter.We propose a new method to predict pressure peaks
generated during breaking wave impacts. In this method, the plunging jet is assimilated to two equivalent triangular jets (wedge
impact) with variable inclination in time. The basic case of wedge impact is first studied in the paper. Semi empirical laws relating
pressure peak and incident angle are derived based on numerical results obtained with a Navier-Stokes model . The more general
case of a breaking wave is then investigated. By making an analogy with the wedge impact case and inverting the relation obtained
before, we computed the location where the equivalent angles have to be taken on the free surface. We show that these points
correspond to the minimum curvature section on the free surface. In another simulation of a breaking wave, we finally show how
the relation can be applied to give a first approximation of the pressure peak only based on the free surface local shape.
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INTRODUCTION
Impulsive loads generated by breaking waves are known to greatly affect structure stability. They are charac-

terized by high pressure peaks occurring during relatively short times. Experimental observations report a wide
scatter in pressure peak measurement. Consequently, impulsive loads are usually predicted by empirical formulae
(Nagai 1973) or integrated like in pressure impulse model (Cooker and Peregrine 1995).

Two main processes are involved in that phenomenon. Air compressibility greatly affects impact dynamics.
Several mechanisms have been experimentally observed (e.g., air pocket oscillation, air leakage, expulsion, cush-
ioning effects, etc.) The free surface local shape at impact also has a great influence on pressure peak (Whillock
1987). This has been observed in lots of studies devoted to sloshing or hull slamming (Greco 2001). Hull and
Muller (2002) observed a great variability in wave impact measurement (even with weak air entrapment). More
recently, Lugni et al. (2006) showed that two millimeters high instabilities on interface profiles could produce a
30kPa variation in pressure peaks. Finally, plunging jet shape determines air pocket dimensions and consequently,
all subsequent entrapment effects.

In our study, we use numerical simulations to provide a way to approximate the instantaneous pressure peak
only base on the free surface shape. The method is described hereafter.

TRIANGLE WEDGE IMPACT
Our aim is somehow to predict the impact of a plunging jet given the geometrical properties of the interface.

For that purpose, we propose to use the particular case of a triangular wedge impacting a wall (cf. Figure 1a).
This is the most basic impact flow as in this case, the geometrical properties of the free surface are reduced to
one single data (i.e., the angle α). During the impact, the free surface moves up the wall. The highest position
of the free surface on the wall is denoted y2 in the following . The pressure peak is located at position y0, which
also moves up the wall. Greco (2001) shows that corresponding solutions are self-similar due to the absence of a
characteristic length scale.
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Figure 1: (a) Symmetrical triangular wedge impact - (b) : Geometrical stretching property of solution
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Therefore, solutions can be expressed with stretched coordinates, and pressure profile on the wall follows an
homothetic transformation (i.e., dilatation) as presented on figure 1b. In particular, the maximum pressure keeps
constant in time and both the peak position and the point A move with constant velocity. Thus, a specific impact
dynamics which does not vary with time is associated to a particular value of α.

t = t
1

β
1

α
1

β
2

α
2

t = t
2

(a) (b)

E
1

F
1

F
2

E
1

Figure 2: Approach proposed to investigate the dynamical process

Given that, the main idea of our work is to use this wedge flow in order to interpret the more general breaking
wave jet impact. More specifically, we propose to interpret the breaking wave jet impact as a succession of time
evolving triangular jet impacts. Figure 2 illustrates this idea. The plunging wave jet is assimilated to two triangular
jets parametrized by angles α and β. The value of α and β varies in time. But we think that for a given value of α
and β, the breaking wave impact should not be to far away from the one of the corresponding wedge impact. The
locations where the angles are taken on the jet are so far arbitrary (cf. Figure 2, points E1, E2, F1, F2). However,
figure 1 a shows that in the wedge case, the angle α is a measure of the free surface slope right upstream the
free surface through. For the wave case (figure 2b), it seems logical to place the equivalent angles in the most
linear section of the free surface right upstream the trough. In section 3 we will propose an inverse approach to
determine the optimum position of the angles.

In the following, we focus on the evolution of three particular parameters : the peak magnitude , the peak
position , and the time position of the point A (cf. figure 1a). The objective is to obtain a set of equations linking
these parameters.

The wedge impact can be described by the 2D incompressible Navier-Stokes equations (NSE), in which gravity
and viscous effects are neglected. Mokrani (2012) shows that this equation can be written in the self-similar
domain in the following form :

G′(η) = F ′(η)(η − F (η)) (1)

with η = y
s , P (y, t) = P0.G(η), V (y, t) = V0.F (η), s = V0t and P0 = ρV 2

0 . The peak position and peak
magnitude are denoted η0 and G(η0) respectively in the self-similar plan. To calculate the pressure peak mag-
nitude, it is necessary to integrate equation (1) according to the vertical strectched coordinate η. However, the
pressure peak magnitude is obtained according to the vertical velocity F (η) and the latter remains unknown.
Consequently, more assumption on F is needed. Several studies in the literature propose to neglect rotational
effects in order to consider the potential function (Cumberbatch (1960), Dobrovol’skaya (1969)). The problem is
complex to solve analytically. Instead, in the present study, semi-empirical results are developed from numerical
simulations performed with the code THETIS. This model solves the incompressible Navier-Stokes equations in
1-fluid formulation with a VOF interface tracking (Yougs et al. 1982). In our study, water an air are simulated but
compressibility effects are not included as we focus more on the interface shape problem than the air effect. An
improved smoothing algorithm (Pianet et al. 2010) is used in order to control the interface thickness. This allows
to deal with interface fragmentation generated in violent impacts. THETIS has been extensively validated in wave
related studies among (Abadie et al. 1998, Lubin et al. 2006) . In the following, it is tested on the symmetrical
wedge impact.

The first step of the approach is the validation of the numerical model in the wedge impact problem
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Validation of the numerical model
As previously mentioned, self-similar properties ensures that the peak magnitude keeps stable in time in this

problem. Likewise, both peak position and point A move with a constant velocity. This will be the first thing to
verify in the numerical results. The wedge impact has also been studied by Wu (2007) using analytical and BEM
methods. Wu (2007) gives pressure profiles on the wall and interface deformations in the self-similar plan for three
particular values of α. These results are also used as reference in the present study.
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Figure 3: Evolution of the peak magnitude for α = 70˚ and 80˚ - Comparison with Wu (2007)’s results (- -)

Numerical simulations of wedge impacts have been carried out for α ranging from 10˚ to 80˚ with step
∆α = 10˚. Results for the case α = 70˚ is presented on figure 3. The peak magnitude converges toward
the expected value. An accuracy of 1% is reached after V0t = 2. Obviously, there is a transitory stage in the
simulated flow, which in theory should not exist. This transitory period is shown to increase logically with α, as the
flow is more and more violent and therefore more difficult to solve. For 10˚ < α < 70˚ , pressure peaks are also
stable in time and their values in good agreement with results from Wu (2007). On the contrary, for the highest
angle (i.e., 80α), the pressure peak keeps increasing and does not stabilize at any time in contradiction with the
self similar theory. The result can be slightly improved by using finer mesh grids and smaller time steps but so far,
a constant pressure peak is still not reached. So, for the highest inclination tested and thus for the most violent
impacts, pressure peaks computed by the model are not accurate.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
V0 t

1

0

1

2

3

4

5

6

7

8

y
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
V0 t

0

5

10

15

y
2

α=10

α=80

(a)

Figure 4: (a) : Evolution of the peak position and wedge through in time - (–) : NS-VOF results, (–) : Linear interpolation,
(- -) : Wu (2007)

Computed positions y0(t) and y2(t) are presented on figure 4. We recall that they correspond to the position
of the peak and the highest free surface point on the wall. A linear regression has been performed using the least
square method. Corresponding residuals are assessed to 10−4 for α = 10˚ and 10−1 for α = 80˚, demonstrating
that the positions are a linear function of time. As expected, these particular points move with constant velocity
respecting the self-similar properties.
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Derivation of analytical laws
Taking into account that pressure peaks seems not accurate for high values of α, whereas positions of pressure

peak and A remain valid, we have tried to develop a relation that allows to deduce the peak from these specific
positions.
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Figure 5: (a) : Schematization of velocity and pressure profiles on the wall - (b) : Pressure peak assessment according
to specific positionon the wall

The details of the theory can be found in Mokrani (2012). An intermediary position η1, corresponding to the
lowest position from which the pressure is zero (cf. figure 5a) is defined. By integrating (1), we can show that
the peak magnitude equals the area represented in yellow on figure 5a. We then approximated this area by the
triangular area represented on red on figure 5b which gives :

Pmax =
1

2
(η2 − η1)(η2 − η0)P0 (2)

Computed positions η0, η1, and η2 have been interpolated by second order polynomial functions in tanα, in
order to compare our result with Greco (2001), who provides a similar analytical law for η0. Results are presented
on figure 6. Subsequent expressions and corresponding residuals (R) are :

η0 = −0.007 tan2 α+ 1.99 tanα–0.85 R0 = 0.054 (3)

η1 = 0.08 tan2 α+ 1.57 tanα+ 0.21 R1 = 0.024 (4)

η2 = 0.21 tanα+ 2.3 tanα+ 0.95 R2 = 0.0062 (5)

Greco (2001) derived the exact solution of η0 for small value of α : η0 = 2 tanα . Contrary to Greco (2001),
we obtained a constant term in (3), which means that it exists a minimum inclination from which a pressure peak
is detected on the wall. Previous results have shown that this minimum value is about α ∼ 40˚. The present
results suggests that the velocity of the peak position also evolves quasi linearly in tanα (the coefficient in tan2 α
being low) for high interface inclinations and thus for more violent impacts. On the contrary, η2 has a significant
contribution of tan2 α.
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Figure 6: Position η0, η1, and η2 numerically obtained (•) and corresponding extrapolations functions (dashed lines)

By using expressions (3), (4), and (5) in equation (2), we obtain an semi empirical law for the pressure peak
in the wedge impact case:

Pmax

P0
= 0.01 tan4 α+ 0.1 tan3 α+ 0.38 tan2 α+ 0.77 tanα+ 0.56 (6)

Expression (6) is plotted in green dashed line on figure 7. Zhang et al. (1996) computed pressure peak magni-
tude for similar case, using a B.E.M. method. Our analytical law agrees well with there results and also with the
values obtained in Wu (2007), for low as well as for high inclinations. For example, for α = 80˚, expression (6)
estimates the pressure peak within 7% of accuracy compared to Wu (2007)’s value. Relation (6) shows that the
peak magnitude increases strongly with higher angles for high inclinations [as 0.01 tan4(α) ]. To a certain extend,
this characteristics is one reason for the high sensitivity of the pressure peaks observed in numerical simulations
(e.g., Abadie and Mokrani (2012)) or in experimentations.

10 20 30 40 50 60 70 80
α

0

10

20

30

40

50

60

P
m

ax

P
0

(b)

Figure 7: Pressure peak magnitudes according to α- (•) : Wu(2007), (–) : Zhang et al. (1996), (- -) : Analytical law (6)

APPLICATION TO A PLUNGING WAVE IMPACT
In this part, we apply (6) in the case of a plunging wave impact. As previously mentioned, the jet impact of the

plunging breaker is interpreted as a succession of elementary wedges impact. The analogy is sketched on figure
8. αC and βC denote the instantaneous inclinations respectively associated to the superior and inferior triangular
jet. As illustrated in figure 8, the idea is to estimate pressure peak values by using relation (6). But before that,
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we will use it the other way around to estimate where the equivalent angles have to be placed exactly on the free
surface.
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Figure 8: Method used ot analyze dynamical results in a geometrical way - (a) : Equivalent inclination on the interface
profile, (b) : Corresponding pressure profile on the wall and pressure peaks obtained from computation

Calculation of the equivalent inclinations
To simulate the plunging breaker, we consider the problem of a solitary wave propagating over a sloping beach.

This case has already been studied by Grilli et al. (1997). Their solution just before impact are used to initialize the
Navier-Stokes model. Figure 9 presents a free surface comparison between Grilli’s results and the present work
at two different stages of breaking. The dynamics of the breaking is very similar in both case which validates
our simulation considering B.E.M. results as a reference (several papers already demonstrated the accuracy of this
method to describe wave breaking).
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Figure 9: Breaking stage - (- -): Present results, (•) : Grilli et al. (1997)

To simulate the wave impact, the wave breaking simulation is stopped after the jet has developed enough.
Then, an obstacle is included in the computational domain and the calculation is restarted. In the case presented,
the impact computation has been initialized when the plunging jet velocity was horizontal (similar to Figure 1a).
Figure 10 shows that in this case, the stagnation point approximately keeps a constant position on the wall during
the impact, similarly to the wedge impact case, justifying the analogy. Note that the wall shape used in the
computation and shown in figure 10 allows air leakage and by this, avoid any air entrapment to occur.

At a given time, the pressure peak on the wall is calculated by THETIS. We have verified that the angles remain
lower that 70˚ so that the results are valid. Then relation (6) is inverted to obtain the angle which would produce
the same peak in the wedge impact. Finally, we locate the free surface point that has the corresponding local slope
(Figure 11). For this particular case involving a regular interface profile, a unique couple of points exist at each
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Figure 10: Impact process at three different instants - (- -) : Altitude of the stagnation point

time which is located a bit upstream the free surface local minimum. However the position of both points changes
slightly with time as the free surface deforms.

To see whether these points verify any specific geometrical properties, we have compared the position calcu-
lated by inverting (6) and the position of the minimum curvature on the free surface (Figure 12). The choice of
the minimum curvature seems logical as it may be the location of the free surface the closest to a linear interface.
We can see on the figure that both sets of points are very close to each other. This suggests that the local tangent
at the minimum curvature point may be used as a proxy to determine the instantaneous impact pressure. This will
be verified in the next section.
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Figure 11: Visualization of point having an equivalent inclinations assessed by (6) - (- -) : αC , and (- -) : βC

First application of the method
The method is now applied on a new simulation for which a near vertical wave front impacts the vertical wall.

This flip-through like impact has been obtained by including an obstacle right before the start of the breaking stage
to stop the entire wave motion before the jet develops.

Figure 13a shows snapshots of the interface computed by the modeland the evolution of the minimum curvature
point. Based on the previous results, this point is the location where the equivalent angle required in equation (6)
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Figure 12: Interface deformation during the impact (•) : Positions of the minimal curving point (•) : Positions of equiva-
lent inclinations

has to be calculated. In figure 13b, we have plotted the time evolution of the pressure peak computed directly by
THETIS, together with the approximation of the peak pressure obtained by using equation (6) and the inclination
at the minimum curvature point. As observed, the evolution of the pressure peak can be predicted very well during
the first instants of the impact. After ∼ 10 ms, this prediction is no longer accurate. This could be due to the error
generated by the VOF method (for high inclinations, the curvature assessment becomes more difficult). The last
point could however be improved by using finer mesh grids. This will be investigated in further works.
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Figure 13: Interface profiles during a flip through process (a) : Evolution of the minimum curvature point (•) and the
point having maximal inclination (•) - (b) : Comparison between the time evolution of the pressure peak numerically
assessed (•) and predicted by using the inclination at the minimum curvating point and expression (6) (•)

CONCLUSION
This study focuses on the wave shape effects on impact dynamics with the help of a Navier-Stokes model

(THETIS). We have developed a method to calculate the instantaneous pressure peak generated by a breaking
wave knowing the free surface evolution. The main idea is to assimilate the breaking jet to two symetrical wedges.
For the wedge case, we have developed a semi empirical law relating pressure peak and incident angles based on
numerical simulations. We have also shown that our numerical simulations are accurate only for incident angles
lower than 80˚. In the first simulation involving a breaking wave, we have determined, by that inverting our law
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that the position where the equivalent angle has to be taken corresponds to the minimum curvature point on the free
surface. For another simulation, we have then tried to assess the pressure peak by using our relation which only
uses the free surface information. The comparison with the direct computation using the Navier-Stokes model
shows that the method can work but needs further investigations to be more deeply validated.
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