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REDUCING UNCERTAINTY IN EXTREME WAVES AND STORM SURGES USING A 
COMBINED EXTREME VALUE MODEL AND WAVELETS 

P. Galiatsatou1 and P. Prinos1 

In the present study the wavelet transform is combined with non-stationary statistical models for extreme value 
analysis, to provide more reliable and more accurate return level estimates. The continuous wavelet transform is first 
used to detect the significant “periodicities” of the wave height and storm surge signals under study by means of the 
wavelet global and scale-averaged power spectra and then it is used to reconstruct the part of the time series, 
represented by these significant and prominent features. A non-stationary point process is utilized to model the 
extremes. A time varying threshold with a period of one year and having an approximately uniform crossing rate 
throughout the year is used. The reconstructed part of the series variability representing the significant non-
stationarities of each signal is incorporated in the both the location and the scale parameters of the point process 
model, together with selected harmonic functions, formulating a number of candidate extreme value models. The 
quality of the fitted models is assessed by means of the Akaike Information Criterion, as well as by means of 
diagnostic quantile plots. The models which incorporate the reconstructed part of the wavelet transform in their 
location parameter, as a separate component of the parameter without any scaling coefficient, result in narrower return 
level confidence intervals and therefore tend to reduce uncertainty in extrapolated extremes.  
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INTRODUCTION 
Within a general framework of assessing risk of coastal flooding, uncertainty analysis is nowadays 

regarded as a crucial component in the decision-making process. A possible reduction of uncertainty in 
predicting extreme coastal events can be significantly beneficial for the arrangement of coastal 
activities, the development of strategic management plans in coastal areas, as well as the design of 
future flood protection structures or the upgrading of existing ones. Recent advances in statistical 
modeling have provided civil engineers with an increasing power for making decisions under 
uncertainty. Due to the fact that information involved in engineering problems is in most cases 
imprecise, insufficient and subject to change, reliance must be placed on the ability of the engineer to 
synthesize existing information and to develop tools and methods to effectively use the existing 
uncertain information. One of the main objectives of the present research is to investigate uncertainty 
reduction in predictions of extreme marine events when prominent and statistically significant non-
stationary features of the signals under study are included in the extreme analysis. 

Morgan and Henrion (1990) present what is probably the best available taxonomy of types of 
uncertainty. In particular, they note that uncertainty can arise from a) Statistical variation e.g. random 
error in direct measurements of a quantity, b) Systematic error e.g. bias in the measuring apparatus and 
experimental procedure, c) Subjective judgment e.g. for quantities where empirical data is largely 
unavailable, d) Linguistic imprecision e.g. translation of verbal phrases into numerical probabilities, e) 
Variability e.g. quantities that vary over time or space, or from one person to another, f) Inherent 
randomness or unpredictability, which cannot be reduced by further research, g) Disagreement e.g. 
among multiple experts, h) Approximation e.g. due to limits in the spatial resolution of a model and i) 
Uncertainty about the most appropriate model to represent some phenomenon. According to van 
Gelder (1999) uncertainties in risk analysis can be divided in two categories: a) those that represent 
randomness in samples (inherent uncertainty) and b) those that come from basic knowledge of 
fundamental processes (epistemic uncertainty). Inherent uncertainties are subdivided in inherent 
uncertainties in space and in time and it is not possible for them to be reduced. Epistemic uncertainties 
are caused by lack of knowledge of all the causes and effects in physical systems or by lack of 
sufficient data and they may change as knowledge increases. Epistemic uncertainty includes model and 
statistical uncertainty. The later can be divided in parameter uncertainty and distribution type 
uncertainty.  

The notion of uncertainty is closely related to extreme events associated with high return periods. 
Modern Extreme Value Theory (EVT), developed in the recent few decades, is regarded as the most 
promising approach to predict extreme events. EVT relies on the assumption that the limiting models 
suggested by the asymptotic theory continue to hold at finite but extreme levels. Nevertheless, a crucial 
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assumption in fitting distribution functions to data is that the data are independent and identically 
distributed. The basic theoretical framework of extreme value models and inferential techniques can be 
found in Coles (2001). Models for block maxima and excesses over high thresholds (Peaks Over 
Threshold - POT approaches) are used, according to data availability, to extract design values for 
different variables. The “Peaks-Over-Threshold (POT)” model is described by the Generalized Pareto 
Distribution (GPD) with Poisson arrival rate and is considered advantageous compared to more 
traditional techniques of extremal analysis. Among others, Smith (1989), Coles and Tawn (1996), 
Pandey et al. (2001) and Egozcue et al. (2005) have contributed considerably to the use of the model in 
various applications. Recent studies on extreme value analysis for variables associated with the marine 
and coastal environment have been published by different researchers within the EU Research Project 
FLOODsite (www.floodsite.net). Sánchez-Arcilla et al. (2008) present their results based on a wide 
range of models, parameters and fitting techniques to a variety of geographic and climatic coastal, 
estuarine and riverine environments. They focus on selecting models and techniques based on a 
parsimony principle, to propose robust extrapolations of characteristic variables for a reliable flood 
hazard assessment. Van Gelder and Mai (2008) present an overview of different methods and 
techniques used to determine extreme values of river and sea related variables. Applications include 
the prediction of extreme water discharges in northwestern and central Europe and extreme waves 
along the Dutch North Sea coasts. Callaghan et al. (2008) perform a statistical simulation of extreme 
values of the wave climate in selected areas of the Australian coast using techniques of the univariate 
EVT. 

It should be emphasized that most environmental variables exhibit phenomena of non-stationarity 
and more specifically that their observed variability can be characterized by a non-stationary stochastic 
process with a few periodic or nearly periodic components acting within time scales that range from 
the annual, over decadal, centennial, millennial or longer time periods. Therefore, incorporating 
covariate effects within EV models can simulate a part of the studied series variability and can also 
lead to unbiased estimates of return values of the variables. In the context of environmental processes 
non-stationarity is often apparent because of long-term trends and seasonality. Méndez et al. (2006) 
and Menéndez et al. (2008) study the long-term variability of extreme wave heights in the Pacific 
Ocean and present models to simulate it properly. Coles and Tawn (2005a) and Huerta and Sanso 
(2007) present EV models which include seasonal components by means of covariate modeling of the 
model parameters. Méndez et al. (2008) introduce a time-dependent POT model for extremes of 
significant wave height, conditioning to the duration of the storm and accounting for seasonality, while 
Menéndez et al. (2009) develop a time-dependent GEV model for monthly wave height maxima using 
harmonic functions in the model parameters. Galiatsatou and Prinos (2011) combine a non-stationary 
point process model and the continuous wavelet transform to model extreme wave heights in the 
Aegean Sea, trying to incorporate statistically significant seasonal features of the signals in the EV 
analysis.  

The wavelet transform is a signal processing technique, very rapidly evolving in the recent years 
due to its ability to handle non-staionary signals and to provide immediate access to information that 
can be obscured by other time-frequency methods like the Fourier analysis. Numerous applications of 
the wavelet transform can be found in Torrence and Compo (1998), Massel (2001), Liu and Babanin 
(2004), Markovic and Koch (2005), Prinos et al. (2010) and many others. In the present study the 
wavelet transform is combined with non-stationary statistical models for extreme value analysis, to 
provide more reliable and more accurate return level estimates for storm surge and wave height 
extremes at the Dutch coast.  

The methodology developed in the present paper is applied to three hourly measurements of storm 
surge and wave height in a selected location of the North Sea for a time period of 23 years. The 
wavelet transform has a dual role in the present work. First, it is used to detect the significant 
“periodicities” of the signals by means of the wavelet global and scale-averaged power spectra and 
then it is used to reconstruct the part of the time series, represented by these significant and prominent 
features. A non-stationary point process is utilized to model the extremes. A time varying threshold 
u(t) with a period of one year and having an approximately uniform crossing rate throughout the year 
is used. The reconstructed part of the series variability representing the significant non-stationarities of 
each signal is incorporated in the location parameter of the point process model, together with selected 
harmonic functions, formulating a number of candidate extreme value models. The quality of the fitted 
models is assessed by means of the AIC (Akaike Information Criterion), as well as by means of 
diagnostic quantile plots. 
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METHODOLOGY 
Most environmental signals exhibit phenomena of non-stationarity. Non-stationarity is generally 

thought to indicate an underpinning driving force, regime or phase change(s) in the dynamics that 
generate the observed sequence/ signal. Trending behavior and seasonality are types of non-
stationarity, which most commonly appear in time series. In maritime data non-stationarity is often 
present in the form of seasonal variations-effects. If a process is strongly seasonal, high values (or low 
values) appear constantly during specific periods of the year (the winter or the summer period). Wave 
heights, as well as storm surges, for example, tend to be higher in the winter than in the summer 
period. In the present work, a signal processing technique, namely the continuous wavelet transform is 
used at first to identify the main frequencies present in the data and therefore the dominant non-
stationarities of the studied signals.  

The continuous wavelet transform is a linear transform that decomposes an arbitrary signal x(t) via 
basis functions with compact support that are simply dilations and translations of the parent wavelet 
(Kijewski-Correa and Kareem, 2007). The wavelet coefficients provide a measure of the similitude 
between the dilated/ shifted parent wavelet and the signal at time t and scale s. The continuous wavelet 
transform of a discrete sequence xn is defined as the convolution of xn with a scaled and translated 
version of the mother (parent) wavelet (Torrence and Compo, 1998), forming the wavelet coefficients 
Wn(s : 
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where ψ* is the complex conjugate of the wavelet ψ, the variable s is the scale of the wavelet 
transform, δt is the equal time spacing of the observations of xn, n=0,1,….N-1 is the localized time 
index of the time series and N is the number of points in the time series.          

The wavelets are complex or real functions concentrated in time and frequency. Most wavelets are 
complex, which implies that the wavelet transform Wn(s) is also complex. If a wavelet transform is 
complex, it can be divided into its real and its imaginary part. One of the most extensively used mother 
wavelets is the Morlet wavelet: 
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where η is a non-dimensional time parameter and ω0 is the non-dimensional frequency. According to 
Farge (1992), for the Morlet wavelet to satisfy the admissibility condition, this frequency should be 
equal to 6. Eq. 2 represents a plane wave of frequency ω0 modulated by a Gaussian envelope (Massel, 
2001). The Morlet wavelet is a common non-orthogonal complex wavelet. For the Morlet wavelet, the 
scale, s, and the Fourier period are nearly identical. Another wavelet commonly used is the Mexican 
hat wavelet, which is derived from a function proportional to the second derivative function of the 
Gaussian probability density function: 
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The Mexican hat wavelet is a real valued wavelet function and does not have a scaling function, 
implying a non-orthogonal analysis. For the Mexican hat, the Fourier period is four times larger than 
the scale, s. The wavelet transform should reflect the features present in the signal. For time series with 
sharp steps, a boxcar-like wavelet should be selected, while for smoothly varying time series a smooth 
function is more appropriate (Massel, 2001). 
          The squared magnitude of the wavelet coefficients 2)(sWn

 can be presented as energy content in 

frequency and time and is called wavelet power spectrum. The wavelet power spectrum describes the 
time series variance at a selected scale (period) and at a selected moment in time (Torrence and 
Webster, 1999). To compare different wavelet power spectra, a normalization is performed, dividing 
the wavelet power spectrum by σ2, giving a measure of the power relative to white noise. The scale-
averaged wavelet power spectrum is used to examine fluctuations in power over a range of scales. It is 
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obtained by averaging the local wavelet coefficients along the N-vertical cuts of the time axis for a 
range of scales from s1 to s2 (Markovic and Koch, 2005): 
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where δj depends on the width in spectral-space of the wavelet function, while Cδ is a constant for each 
wavelet function. The scale-averaged wavelet power can be viewed as a time series of the average 
variance in a certain band of scales. The average of the wavelet power over all local wavelet spectra 
along the time axis is the global wavelet power spectrum (Torrence and Compo, 1998): 
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The wavelet power spectrum, the global wavelet spectrum and the scale-averaged wavelet 
spectrum can provide the main fluctuations in power of the studied signals at different scales and over 
a range of scales at different moments in time. This information can constitute the basis to perform 
reconstruction of the part of the signal indexed by these “periodicities”. 

The assembling of the wavelet components back into the original signal without loss of information 
is called reconstruction or synthesis. Reconstruction of the original time series is straightforward for 
the orthogonal wavelet transform, but it is complicated for the continuous wavelet transform by the 
redundancy in space and time. The delta function can be used to reconstruct the time series in case of 
continuous wavelet transform (Farge, 1992). By summing over a subset of scales, a wavelet filtered 
time series can be constructed (Torrence and Compo, 1998). For scales in the range j1 to j2, the wavelet 
filtered time series is: 
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For the Morlet wavelet ψ0(0) = π-(1/4) and for the Mexican hat ψ0(0) = 0.867. The constant Cδ is Cδ = 
0.776 for the Morlet wavelet and Cδ = 3.541 for the Mexican hat. 

In the present work a non-stationary point process model, namely the Poisson process is used to 
model extremes of wave heights and storm surges incorporating the effects of non-stationarity in the 
extremal analysis. Within the point process framework, seasonality and non-stationarity in general, can 
be expressed using an intensity function, proposed by Smith (1989): 
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where 0 < t < ny ,  x > u(t) and μ(t), σ(t), ξ(t) are parametric functions of time and u(t) is a time 
dependent threshold. Time dependent thresholds are very important in case of strongly seasonal 
processes. When such phenomenon is observed, constant thresholds will generate more exceedances in 
the winter than in the summer, leading to an unbalanced bias-variance trade off over the year. In this 
work seasonality of the wave and storm surge data is modelled using a time varying threshold u(t) with 
a period of one year, following the methodology of Coles and Tawn (2005b). The year is divided in a 
winter (October-March) and a summer (April-September) period and the threshold is specified as: 

 )cos(2π+=),;( tbabatu  (8)  

where t measures the time (years) and Eq. 8 corresponds to an annual cycle peaking at the 1st  January 
and having its minimum values during summer. Parameters a and b are chosen so as to obtain a fixed 
uniform crossing rate over the winter and summer periods by minimization of the function: 
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where ps(a, b) and pw(a, b) are the proportions of exceedances of the threshold u(t;a,b) in the summer 
and winter periods, respectively and q is the desired uniform crossing rate. The parameters a and b can 
be interpreted respectively as the median threshold level and the scale of variation between peak 
summer and winter periods.  

Regarding the parameters of the non-stationary point process, two different categories of models 
will be utilized. The first one includes simple sinusoidal harmonics in the location and/ or in the scale 
parameters of the EV model. The shape parameter is kept constant. The location and the scale 
parameters of this category can be represented as: 
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where the time t is measured in years, μ0 and σ0 are the mean values, μi and σi are the amplitudes of the 
harmonics and pμ and pσ determine the number of harmonics per year. It should be noted that candidate 
models are also tested that do not include the sine function in their location and/ or scale parameter, 
due to the form of the selected threshold that does not contain a phase shift. The parameter vector θ = 
(μ0, σ0, μi, σi, ξ0) of the model is estimated using MLE. In the present work, the largest parameterization 
used for this group of models has pμ=2 and pσ = 2. The second group of non-stationary point processes 
contains the reconstructed part of statistically significant signal features in the location and/or scale 
parameters. The shape parameter is again kept constant. The location and the scale parameters of this 
category of models can be represented as: 
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where μw(t) is the component of the signal produced using the inverse wavelet transform 
(reconstruction process), p΄μ and p΄σ determine the number of harmonics per year, and α and β are 
coefficients that are either fixed to α=1 and/or β=0, or estimated together with the other parameters 
using MLE. As for the first category of statistical models, some of the candidate models tested do not 
include the sine function in their location and/ or scale parameter. The largest parameterization of the 
harmonic functions used in the present work is p΄μ =1 and p΄σ=1 to represent the annual cycle and to 
comply with the annually periodic threshold used. 

For the non-stationary version of the point process model, return levels can still be estimated, 
though the precise form depends on the model for non-stationarity. If zm is the m-years return level and 
ny is the number of observations per year, for the special case of considering seasonality over a one-
year cycle: 
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which can be easily solved for zm using standard numerical methods for non-linear equations (Coles, 
2001). Confidence intervals for “aggregated” return levels can be computed by means of simulation. 
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To perform the simulation, the distribution of the parameters of each candidate model is assumed to be 
multivariate Normal with mean values of the parameters equal to their maximum likelihood estimators 
and variance equal to the variance-covariance matrix of the ML estimation. Simulating the model 
parameters vector from this distribution, k values of θ are produced, namely θ1, θ2,..., θk, and these 
values are then substituted in Eq. 12 to obtain approximate 95% confidence intervals.  

However, in a non-stationary context the usual interpretation of return levels with probability of 
exceedance 1/p is no longer valid and it is better to think of it as a quantile of the distribution of the 
variable under study in the current year. Therefore “local” return levels can be used in such cases.  For 
a constant shape parameter ξ≠0, the time-dependent extreme quantiles associated with return periods of 
R years are estimated as:  
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Confidence intervals for “local” return level estimates can be computed using the delta method, 
assuming normality of the maximum likelihood estimators.  

The quality of the fit of different candidate models can be judged using the Akaike Information 
Criterion (AIC). The AIC is a penalty function that is used to compare models that come from the same 
parent distribution: 
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where l(θ) is the maximum log-likelihood resulting from each candidate model and p is the number of 
parameters of the model estimated by MLE. The model that minimizes the AIC is the simplest one that 
provides a good fit to the data. The goodness of fit of the different models is also assessed my means 
of quantile plots. When time-dependent variables are used, to construct appropriate diagnostic plots the 
data are usually transformed to the frequency, Z, and intensity, W, statistics introduced by Smith 
(1989). The two statistics are estimated at time tk є [t1, tn]as: 
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If the model is correct the Z, as well as the W variables for all k should be independent exponential 
random variables with mean 1. Quantile plots can be produced for both Z and W. Since the 
hypothesized distribution G is unit exponential, for which G-1(p)= -log(1-p), this means plotting either 
Zi:n or Wi:n (the ith smallest of n ordered values) against -log(1-pi:n) where pi:n=(i-0.5)/n. 

ANALYSIS OF RESULTS 
In the present work wave height and storm surge data from the Dutch coast are used to test the 

efficiency of the proposed methodology. More specifically, the Dutch station Swb (Schouwenbank), 
located in a depth of 15m in the Dutch part of the North Sea is selected. The data files available for 
Swb contain three hourly data of wave height Hm0 and its standard deviation, average wave period 
Tm02, main wave direction Th0, average wave height and period of the highest third part H1/3 and TH1/3 
and the wave height of the low frequency waves HTE3. In addition to the wave parameters, the files also 
include data on wind speed and direction, water level relative to NAP/MSL, set-up or storm surge and 
a column indicating the origin of the measured variables. These values are always calculated from 
samples lasting 20 minutes, but they are supposed to represent a 3-hour period. The datasets consist of 
a sequence of 23 years over the period 1979–2001. Two wave survey instruments, namely a main 
sensor and a secondary sensor, were used to perform the measurements. If both sensors have registered 
values for a parameter, then the mean value is given. If, however, data are only present from one 
sensor, then this is used in the file and if neither of the sensors have values, then estimated values are 
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retained. Missing records are patched by hindcasting. It should be noted that at most wave sites in the 
North Sea, waves are only measured, not wind or water level. The data for wind and water level 
originate from other neighbouring locations. In the present paper, from all available datasets, three 
hourly measurements of significant wave height (H1/3) and storm surge are utilized.  

The first stage of the proposed methodology includes the implementation of the wavelet transform 
to the available datasets of wave height and storm surge. To construct the wavelet transform of both 
series, the mean value of the entire record is removed, since the wavelet transform is mainly used to 
isolate the timescales of strong variability of the process under study. To reduce the wraparound 
effects, the time series is padded with zeros. To perform the wavelet analysis of both time series two 
non-orthogonal wavelet functions, namely the Morlet and the Mexican hat are used in the present 
work. The most noticeable difference between the two wavelet functions is the fine scale structure 
resulting utilizing the latter one. It should be noted that regarding the wavelet power spectrum, the 
same features appear when both wavelet functions are implemented, approximately at the same 
locations and with similar power. Therefore for the sake of brevity in the present work results are 
presented for storm surges by means of the Morlet and for wave heights using the Mexican hat wavelet 
functions. For both time series, results using the two wavelet functions do not differ significantly. 
Figures 1 and 2 present the normalized wavelet power spectrum for storm surges and wave heights at 
station Swb, respectively. As mentioned earlier, for storm surge data, the complex Morlet wavelet is 
utilized to construct the spectrum of Fig. 1, while for wave height data the wavelet power spectrum 
(Fig. 2) is constructed using the real-valued Mexican hat wavelet. It should be noted that the power 
spectrum is given as a base-2 logarithm of wavelet power. The broken line in both Figures represents 
the Cone of Influence (COI) of the wavelet transform, a region of the spectrum in which edge effects 
become important and oscillations can possibly be artifacts of padding the time series with zeros.   

From Figures 1 and 2 it is evident that there exists a high wavelet power concentration near the 1-
year band for both storm surges and wave heights along most of the time series length. Comparing the 
two Figures, the main difference between the two wavelet functions can be conceived. For the Morlet 
wavelet the wavelet power spectrum combines both positive and negative peaks into a single broad 
peak, while the Mexican hat captures positive and negative oscillations as separate peaks (Torrence 
and Compo, 1998). Therefore, the non-stationarity present near the 1-year band, which can be 
attributed to seasonal effects due to different climate patterns in different months, is presented with a 
broad wavelet power concentration for the Morlet and with separate highs and lows for the Mexican 
hat wavelet. For the latter, seasonality is better illustrated, because the highest values of the wavelet 
coefficients are observed at the beginning and at the end of a year during the winter period, while the 
lowest ones are observed during summer. Taking into account that the storm surge and wave height 
time series have the same length, it should also be noted that the Mexican hat has a narrower COI.  

Another prominent feature of the wavelet power spectrum for storm surges is the existence of high 
variability in the [2, 8]-years band of scales. These oscillations can be possibly attributed to the 
influence of the North Atlantic Oscillation (NAO), which is a mode of large-scale variability within the 
North Atlantic. Butler (2005) has shown that the NAO indices exhibit variability at a number of 
different temporal scales, including year-to-year variations, short-term and decadal variations and has 
also studied and proven the existence of a relationship between the NAO and extreme storm surge 
characteristics. 

Figure 3(a, b) presents the global wavelet power spectrum for both the storm surge and the wave 
height time series at station Swb. To test the statistical significance of the spectrum peaks, a theoretical 
red noise spectrum is defined. The AR(1) model is used to simulate this spectrum, with autocorrelation 
factor estimated directly from the datasets. After defining the univariate lag-1 autoregressive model, 
the background spectrum for red noise is multiplied by the 95th percentile value for χ2

2, to determine 
the 5% significance level (95% confidence level) of the wavelet global spectrum (Torrence and 
Compo, 1998). The autocorrelation coefficients for storm surge and wave height series are estimated as 
ass = 0.84 and aw = 0.95, respectively.  

 
 



 COASTAL ENGINEERING 2012 
 
8 

 
 
Figure 1. Normalized wavelet power spectrum for storm surges at station Swb using the Morlet wavelet and 
the COI (dashed line) 

 

 
 

Figure 2. Normalized wavelet power spectrum for wave heights at station Swb using the Mexican hat wavelet 
and the COI (dashed line) 

 
 

 
 
Figure 3. The global wavelet spectrum (continuous line) for: a) storm surges using the Morlet wavelet, b) 
wave heights using the Mexican hat wavelet and the associated 95% confidence levels (dashed line) 

(b)(a) 
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From Figure 3(a) it is evident that the global wavelet spectrum for the storm surge data presents 
statistically significant peaks at a 5% significance level near the periods of 0.5 and 1 years, as well as 
in the intervals of 2-4 and 4-8 years. However, although the most prominent peak of the global wavelet 
spectrum lies within the [4, 8] years band, these oscillations are ignored in the rest of the analysis, 
because of the fact that most of the time series variability within this interval is included in the COI 
(Fig. 1). Therefore periods in the range of [0.3, 1.6] and [2.2, 4] years are considered statistically 
significant for storm surges at Swb. For wave heights (Fig. 3(b)), there is one single evident peak near 
the 1-year band. The statistically significant periodicities at a 5% significance level lay within the 
interval [0.35, 1.7] years. Comparing the two spectra in terms of the wavelet functions used, the peaks 
for the Mexican hat wavelet appear more outspread, because the Mexican hat is broader in spectral 
space than the Morlet.  
    A measure of the average variance of a series versus time within a range of scales is given by the 
scale-averaged wavelet power. Figure 4(a, b, c) presents the scale-averaged wavelet power spectrum 
over the identified statistically significant scales at a 5% significance level (continuous line) for storm 
surges (Fig. 4(a, b)) and wave heights (Fig. 4(c)), together with the respective 95% confidence levels 
(dashed line). The variability of the storm surge signal in the range of scales [0.3, 1.6] and [2.2, 4] 
years (Fig. 4(a) and Fig. 4(b), respectively) seems to be statistically significant along almost half of the 
entire time period considered. For wave heights, the variability within the range of scales [0.35, 1.7] 
years (Fig. 4(c)) seems to present statistically significant peaks along the entire time series. The form 
of the scale-averaged wavelet spectrum of the Mexican hat was expected by the shape of the local 
wavelet spectrum (Fig. 2), characterized by a narrow structure in time-space and low values of wavelet 
power during some periods of the year. 
 

 

 

                
 
Figure 4. The scale-averaged wavelet spectrum (continuous line) for: a) storm surge periods in the range [0.3, 
1.6] years using the Morlet wavelet, b) storm surge periods in the range [2.2, 4] years using the Morlet wavelet 
c) wave height periods in the range [0.35, 1.7] years using the Mexican hat wavelet and the associated 95% 
confidence levels (dashed line) 

(a)

(b) 

 (c)
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The global wavelet spectrum and the scale-averaged wavelet spectrum can provide the main 
fluctuations in power of the signal at different scales and over a range of scales at different moments in 
time. This information can constitute the basis to perform reconstruction of the part of the signal 
indexed by these “periodicities”. Figures 5 and 6 present the reconstructed part of the storm surge and 
wave height without the mean value, for the range of periods [0.3, 1.6] years and [0.35, 1.7] years, 
respectively, using the Morlet and the Mexican hat wavelets. Points (crosses) in both Figures represent 
the observations of storm surge and wave height at station Swb, without the mean value of the series. 
The reconstructed part of storm surge data in the range of periods [2.2, 4] years, although included in 
the analysis that follows, is not presented here for the sake of brevity.  
 

 
 

Figure 5. Reconstructed part of the storm surge series at station Swb for periods in the range [0.3, 1.6] years 
using the Morlet wavelet (red line) and original data (crosses) without the mean value. 
 

 
 

Figure 6. Reconstructed part of the wave height series at station Swb for periods in the range [0.35, 1.7] years 
using the Mexican hat wavelet (red line) and original data (crosses) without the mean value.  

 
The application of EVT assumes independence of successive extreme observations. However, 

extreme events are typically found during storms, lasting for hours or even days (Zachary et al. 1998). 
It is therefore important to consider the effect of such short-term dependence in the data. Previous 
studies of offshore data use period lengths between 24 and 60 hours to select independent observations 
in a rather simple way. Galiatsatou (2009) has proven that a time interval of 24h is adequate for both 
storm surge and wave height data at the Dutch part of the North Sea. Therefore daily storm surge and 
wave height maxima are selected to apply the proposed methodology. Most of the successive maxima 
in both storm surge and wave height series are not supposed to be caused by the same storm events. 
But, there also exist daily maxima of the original three hourly observations that cluster at the 
boundaries between successive periods, but the effect of this is relatively minor and has a small 
probability within the series considered and it should be emphasized that its effects with respect to 
return levels and return periods is conservative.  

The non-stationary point process described by Eq. 7 with time varying location and scale 
parameters and a time varying threshold is utilized in the present work.  The time varying threshold 
u(t) has a period of one year and is characterized by a uniform crossing rate within the year. The 
constant rate used for both variables is set to q = 0.05. This threshold is define as u=0.62+0.28cos(2πt) 
and u=2.86+0.66cos(2πt) for storm surge and wave height daily maxima, respectively, where t is 
measured in years. 

Having specified the time varying threshold for both variables, the two categories of non-stationary 
point process models presented in the previous section are fitted to the daily maxima using the 
procedure of MLE. The performance of all different models belonging to the same category is judged 
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by means of the AIC defined in the previous section. After estimating the model parameters, return 
level estimates are extracted for both storm surges and wave heights corresponding to return periods of 
100, 1000 and 10000 years for all different distribution functions assessed. The return period of 10000 
years is very large for the return level estimates to be reliable, considering the fact that the sample size 
for both marine variables is limited to 23 years. However, results are also presented for this return 
period, because it is used to estimate flooding risk, as well as for designing purposes in parts of the 
Dutch coast.   

Tables 1 and 2 present “aggregated” return level estimates for storm surge and wave height data, 
respectively, corresponding to return periods of 100, 1000 and 10000 years using Eq. 12 for 
representative models of the first and second category analyzed earlier. In Tables 1 and 2, the median 
return level is presented together with its 95% confidence interval (lower 2.5% and upper 97.5% 
confidence intervals). Despite the fact that Eq. 12 is used to estimate return levels for the special case 
of considering seasonality over a 1-year cycle, it is used here to provide an approximate estimate of 
return level confidence intervals for a representative year of the samples. The concentration of the 
wavelet power near the 1-year band, resulting in a peak period of one year partly justifies the 
approximate use of this equation. 

 
Table 1. “Aggregated” return level estimates (median and 95% confidence intervals) of storm surge for 
return periods of 100, 1000 and 10000 years for representative models with harmonic functions or μw(t)
and harmonic functions in the parameters of the EV model, with associated AIC values. 

Storm Surge (m) Model 100 years 1000 years 10000 years AIC 

(1a) μ=μ0, σ=σ0 2.26 
(1.97, 2.61)

2.58 
(2.16, 3.12)

2.84 
(2.29, 3.62) -1947.68

(1b) μ=μ0+μ1cos(2πt), σ=exp(σ0+σ1cos(2πt)) 2.23 
(2.00, 2.45)

2.59 
(2.28, 2.96)

2.90 
(2.46, 3.46) -2250.69

(1c)  μ=μ0+μ1cos(2πt)+μ2sin(2πt), 
σ=exp(σ0+σ1cos(2πt)+σ2sin(2πt)) 

2.18 
(1.98, 2.44)

2.51 
(2.25, 2.94)

2.79 
(2.41, 3.41) -2251.12

(1d) μ=μ0+μ1cos(2πt)+μ2sin(2πt)+μ3cos(4πt)+μ4sin(4πt), 
σ=exp(σ0+σ1cos(2πt)+σ2sin(2πt) σ3cos(4πt)+σ4sin(4πt)),  

2.24 
(1.99, 2.56)

2.58 
(2.22, 3.14)

2.87 
(2.39, 3.72) -2247.56

(2a) μ=μ0+aμw(t)+μ1cos(2πt), σ=exp(σ0+σ1cos(2πt)) 2.23 
(2.02, 2.48)

2.59 
(2.26, 3.00)

2.89 
(2.44, 3.55) -2248.69

(2b) μ=μ0+aμw(t)+μ1cos(2πt), σ=exp(σ0+βμw(t)+σ1cos(2πt)) 2.22 
(2.02, 2.44)

2.59 
(2.29, 2.98)

2.91 
(2.49, 3.52) -2247.08

(2c) μ=μ0+μw(t)+μ1cos(2πt),σ=σ0 2.04 
(1.83, 2.34)

2.41 
(2.06, 2.95)

2.77 
(2.26, 3.63) -2180.64

(2d) μ=μ0+μw(t)+μ1cos(2πt),σ=exp(σ0+σ1cos(2πt)) 2.28 
(2.10, 2.45)

2.62 
(2.36, 2.92)

2.89 
(2.56, 3.32) -2233.41

(2e) μ=μ0+μw(t)+μ1cos(2πt),σ=exp(σ0+ βμw(t)) 2.17 
(1.88, 2.63)

2.71 
(2.19, 3.66)

3.29 
(2.47, 5.00) -2202.23

 
 

Table 2. “Aggregated” return level estimates (median and 95% confidence intervals) of wave height for 
return periods of 100, 1000 and 10000 years for representative models with harmonic functions or μw(t)
and harmonic functions in the parameters of the EV model, with associated AIC values. 

Wave Height (m) Model 100 years 1000 years 10000 years AIC 

(1a) μ=μ0, σ=σ0 5.33 
(5.12, 5.35)

5.49 
(5.24, 5.76)

5.57 
(5.29, 5.78) -1121.38

(1b) μ=μ0+μ1cos(2πt), σ=exp(σ0+σ1cos(2πt)) 5.92 
(5.44, 6.57)

6.42 
(5.72, 7.42)

6.79 
(5.92, 8.37) -1416.20

(1c)  μ=μ0+μ1cos(2πt)+μ2sin(2πt), 
σ=exp(σ0+σ1cos(2πt)+σ2sin(2πt)) 

5.98 
(5.49, 6.67)

6.51 
(5.83, 7.63)

6.93 
(6.00, 8.55) -1414.40

(1d) μ=μ0+μ1cos(2πt)+μ2sin(2πt)+μ3cos(4πt)+μ4sin(4πt), 
σ=exp(σ0+σ1cos(2πt)+σ2sin(2πt) σ3cos(4πt)+σ4sin(4πt)),  

5.84 
(5.35, 6.52)

6.32 
(5.65, 7.39)

6.71 
(5.85, 8.20) -1410.34

(2a) μ=μ0+aμw(t)+μ1cos(2πt), σ=exp(σ0+σ1cos(2πt)) 5.92 
(5.41, 6.57)

6.44 
(5.69, 7.43)

6.82 
(5.88, 8.23) -1414.42

(2b) μ=μ0+aμw(t)+μ1cos(2πt), σ=exp(σ0+βμw(t)+σ1cos(2πt)) 5.90 
(5.43, 6.50)

6.46 
(5.78, 7.41)

6.91 
(6.05, 8.30) -1413.24

(2c) μ=μ0+μw(t)+μ1cos(2πt),σ=σ0 5.65 
(5.42, 6.00)

5.95 
(5.63, 6.50)

6.29 
(5.86, 7.07) -1406.03

(2d) μ=μ0+μw(t)+μ1cos(2πt),σ=exp(σ0+σ1cos(2πt)) 5.91 
(5.48, 6.47)

6.31 
(5.72, 7.18)

6.67 
(5.92, 7.86) -1407.17

(2e) μ=μ0+μw(t)+μ1cos(2πt),σ=exp(σ0+ βμw(t)) 5.97 
(5.58, 6.46)

6.58 
(6.00, 7.41)

7.09 
(6.30, 8.30) -1416.65
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From Table 1, it is evident that among the models of the first category and the ones of the second 
that include a scaling coefficient, a, in front of μw(t) in the location parameter, the one which 
incorporates a harmonic with a period of one year in both its location, μ, and its scale, σ, parameters 
presents the lowest AIC value (model (1c) with AIC=-2251.12) and is therefore judged to be the best 
fitted model. The parameter vector of the selected model is θ = (μ0, μ1, μ2, σ0, σ1, σ2, ξ). The inclusion 
of more harmonics leads to an overparameterization of the extreme value model. For the models 
belonging to the second category, where the reconstructed part from the wavelet transform, μw(t) is 
included in the location parameter of the non-stationary point process without any scaling coefficient, 
the best fitted model for storm surges has a parameter vector θ = (μ0, μ1, σ0, σ1, ξ), presenting an AIC=-
2233.41 (model (2d)). It should be noted that AIC values for the models which include the 
reconstructed part from the wavelet transform in their location parameter without a scaling coefficient 
and the rest of the models can not be performed (AIC values for the former models shown in italics). 

Comparing the 95% confidence intervals resulting from models (1c) and (2d) of Table 1, it can be 
concluded that the latter, which incorporates the statistically significant features of the storm surge 
signal in its location parameter produces narrower confidence intervals for all return periods 
considered. More specifically, these differences reach up to almost 27%, for return periods of 100 and 
10000 years. Median return level estimates increase for the latter model up to almost 5% for the return 
periods considered. But it should be noted that although the uncertainty seems to be reduced with 
model (2d), compared to the one that ignores the statistically significant periodicities of the signal 
(model (1c)), the largest observation of the sample is still underestimated. The largest observation of 
the sample which corresponds to a return period of 23 years, lies quite far from the rest of the extreme 
sample. Galiatsatou (2009) developed and used tests for outlier detection in extreme samples, to prove 
that there is very little evidence that this event should be excluded from the sample. The use of a 
different parameter estimation procedure, apart from the MLE, could provide better results.  

From Table 2, among the representative models (1a)-(2b), the simplest one that provides a good fit 
to the data is model (1b) with AIC=-1416.20. The selected model is represented by a parameter vector 
θ = (μ0, μ1, σ0, σ1, ξ), including a single harmonic in its location and scale parameters. For the models 
belonging to the second category, where the reconstructed part from the wavelet transform, μw(t) is 
included in the location parameter of the non-stationary point process without any scaling coefficient, 
the best fitted model for wave heights has a parameter vector θ = (μ0, μ1, σ0, β, ξ), presenting an AIC=-
1416.65 (model (2e)). Although not comparable, the best fitted model with the component μw(t) results 
with an AIC value even lower than the one of the purely statistically evaluated model (1b). As for the 
storm surge data, comparison of the 95% confidence intervals for models (1b) and (2e) shows a 
significant reduction in uncertainty, when the latter one is implemented. Differences between the range 
of estimated intervals reach 25%, 19% and 20%, for return periods of 100, 1000 and 10000 years, 
respectively. Median return level estimates are slightly higher for model (2e).  

The non-stationary model with parameters μ = μ0 + μw(t) + μ1cos(2πt), σ = exp(σ0 + σ1cos(2πt)), ξ = 
ξ0 for storm surge extremes and the one with parameters μ = μ0 + μw(t) + μ1cos(2πt), σ = exp(σ0 + 
βμw(t)), ξ = ξ0 for wave height extremes are graphically evaluated by means of the diagnostic plots for 
Z and W statistics, introduced earlier in the paper. Fig. 7(a, b) presents the diagnostic q-q (quantile-
quantile) plot for the W statistic for storm surge and wave height extremes, respectively. Similar plots 
are also constructed for the Ζ statistic, but are omitted here for the sake of brevity. From Fig. 7(b) there 
seems to be no reason to question the assumption of an exponential distribution with mean 1. From 
Fig. 7(a) it can be concluded that the selected model fits the extreme storm surge sample quite well, 
apart from the most extreme observation which is underestimated. However, still this model fits the 
extreme sample slightly better than the model with parameters μ=μ0+μ1cos(2πt)+μ2sin(2πt), 
σ=exp(σ0+σ1cos(2πt)+σ2sin(2πt)) and ξ=ξ0 (model 1(c)). 

In Tables 1 and 2 “aggregated” return level estimates are produced for both storm surge and wave 
height extremes, considering a representative year of the extreme data sample. But, as it was already 
mentioned within a non-stationary context it is better to think of the return level as a quantile of the 
distribution of the variable under study in the current year. Therefore “local” estimation of storm surge 
and wave height return levels for the selected models will also be performed using Eq. 13 to derive the 
maximum likelihood estimates and the delta method to estimate the associated 95% confidence 
intervals. Figures 8 and 9 present plots of instantaneous 95% confidence intervals for 100-years storm 
surge and wave height levels, respectively. Figure 8 compares models (1c) and (2d) of Table 1 for 
storm surge extremes, while Figure 9 compares models (1b) and (2e) of Table 2 for wave height 
extremes.  
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Figure 7. Quantile plots of W statistics based on the selected model that incorporates the reconstructed part 
of the wavelet transform in its parameters for: a) storm surge extremes, b) wave height extremes at station 
Swb. 
 

 
 
Figure 8. Estimated 95% confidence intervals for storm surge data at station Swb for model (1c) -blue lines- 
and model (2d) -purple lines- of Table 1. 
 

 
 

Figure 9. Estimated 95% confidence intervals for wave height data at station Swb for model (1b) -blue lines- 
and model (2e) -purple lines- of Table 2. 

 
From Figures 8 and 9 it can be noticed that the model which introduces the component μw(t), 

estimated using the wavelet analysis, in the location parameter of the non-stationary point process 
(purple lines) produces narrower confidence intervals for both storm surges and wave heights. For 
storm surges and for a return period of 100-years, the range of the 95% confidence interval is estimated 
narrower for the EV model which incorporates μw(t) up to 28%, while for wave heights this proportion 
reaches 30%. Thus, the selected model with the wavelet component reduces uncertainty in return level 
estimation compared to a simpler non-stationary model with harmonic functions estimated using the 
MLE procedure.  

CONCLUSIONS 
In the present work a non-stationary point-process model is combined with a signal processing 
technique, the wavelet transform, inquiring a possible reduction in uncertainty of extreme quantiles 
when prominent “periodicities” of the marine variables examined are included in the extremal analysis. 

(a) (b)



 COASTAL ENGINEERING 2012 
 
14 

The datasets used in the present work are storm surge and wave height observations in a selected 
location of the North Sea. The wavelet transform is first used to detect the significant “periodicities” of 
the signals by means of the wavelet global and scale-averaged power spectra and then it is utilized to 
reconstruct the part of the time series, represented by these statistically significant and prominent 
features. The reconstructed part of the series variability is incorporated in the location and/or in the 
scale parameter of the non-stationary point process model, together with selected harmonic functions 
and a time-varying threshold providing a uniform crossing rate within the year, formulating a number 
of candidate extreme value models. The quality of the fitted models is assessed by means of the AIC 
(Akaike Information Criterion), as well as by means of diagnostic quantile plots. The main conclusions 
of the research are summarized below: 
1. The wavelet spectra for the Morlet and the Mexican hat wavelets reveal an obvious “periodicity”, 

expressed with high wavelet power near the one-year band along a significant part of the storm 
surge and the wave time series. The one-year “periodicity” is evident from the global wavelet 
spectrum and seems to be statistically significant at a 5% significance level for both marine 
variables considered. 

2.  For the storm surge series statistically significant periodicities are revealed in higher periods 
possibly representing the inter-annual cycles of NAO.  

3.  The non-stationary model with parameters μ=μ0+μw(t)+μ1cos(2πt), σ=exp(σ0+σ1cos(2πt)) and ξ = 
ξ0 is judged to represent the variability of the storm surge data sufficiently well compared to other 
models. It accounts for the main “periodicities” of the signal in a more natural way, without 
estimating the contribution of each one of them separately using statistical techniques. 

4.  The non-stationary model with parameters μ=μ0+μw(t)+μ1cos(2πt), σ=exp(σ0+β μw(t)) and ξ = ξ0 is 
judged to represent the variability of the wave height extremes better than pure statistical 
periodical models. 

5.  The aforementioned models provide the narrowest range of 95% return level confidence intervals, 
representing a reduction in uncertainty in the estimation procedure.  

6.  For storm surges the 95% confidence intervals for “aggregated” return levels estimated using the 
non-stationary point process which includes μw(t) are narrower, compared to the ones estimated by 
the model which incorporates the same harmonics without the component from the inverse 
wavelet transform up to 27%, for return periods of 100 and 10000 years.  

7.  For wave heights uncertainty in “aggregated” return level estimates is reduced using the non-
stationary point process model that includes μw(t) up to 25%, for the return periods considered.  

8.  When a local estimation of return levels is performed, uncertainty reductions in extreme 
predictions reach 28% and 30%, for storm surges and wave heights, respectively, for a return 
period of 100 years. 

9.  Reducing uncertainty in wave height and storm surge return levels, using the proposed 
methodology, also reduces uncertainty in beach profile, flood extent and structural reliability 
estimation. 
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