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LARGE-WAVE SIMULATION OF TURBULENT FLOW INDUCED BY WAVE 

PROPAGATION AND BREAKING OVER CONSTANT SLOPE BED 

Gerasimos A. Kolokythas1, Aggelos S. Dimakopoulos2 and Athanassios A. Dimas1 

In the present study, the three-dimensional, incompressible, turbulent, free-surface flow, developing by the 

propagation of nonlinear breaking waves over a rigid bed of constant slope, is numerically simulated. The main 

objective is to investigate the process of spilling wave breaking and the characteristics of the developing undertow 

current employing the large-wave simulation (LWS) method. According to LWS methodology, large velocity and free-

surface scales are fully resolved, and subgrid scales are treated by an eddy viscosity model, similar to large-eddy 

simulation (LES) methodology. The simulations are based on the numerical solution of the unsteady, three-

dimensional, Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and the 

appropriate bottom, inflow and outflow boundary conditions. The case of incoming second-order Stokes waves, 

normal to the shore, with wavelength to inflow depth ratio λ/dΙ  6.6, wave steepness H/λ  0.025, bed slope tanβ = 

1/35 and Reynolds number (based on inflow water depth) Red = 250,000 is investigated. The predictions of the LWS 

model for the incipient wave breaking parameters - breaking depth and height - are in very good agreement with 

published experimental measurements. Profiles of the time-averaged horizontal velocity in the surf zone are also in 

good agreement with the corresponding measured ones, verifying the ability of the model to capture adequately the 

undertow current. 

Keywords: numerical simulation, Navier-Stokes equations, turbulent flow, spilling breaking, surf zone, undertow 

current 

INTRODUCTION  

Wave breaking, one of the major near-shore processes, is responsible for the development of wave-

generated currents that result into the initiation and development of sediment transport. Therefore, the 

investigation of wave breaking, as a phenomenon interconnected with a series of significant coastal 

processes, is of great interest. Wave breaking takes place when wave height and steepness become very 

large as the water depth becomes shallower. For the case of spilling breaking, a vortex structure, usually 

called "surface roller", is formed under the collapsing wavefront just after breaking.  

As mentioned above, closely related to wave breaking is the generation of wave-induced currents, 

i.e., the longshore current, which is developed only when the direction of the breaking wave is oblique 

to the shoreline, and the cross-shore current, which is known as the undertow current. Both of them are 

developing in the surf zone, i.e., the coastal area where wave energy dissipation occurs after breaking. 

The undertow current owes its existence to the mean shear stress field, developing in the surf zone, in 

order to balance the pressure gradient and the momentum fluxes due to the wave set-up and the wave 

height dissipation. Close to the bottom, the current is offshore directed, while near the free surface is 

oriented towards the shore, ensuring that the total cross-shore water flux is zero. 

The wave propagation and breaking in the coastal zone has been investigated by several researchers 

for many years, by use of numerical and physical models. As for the numerical simulation of spilling 

wave breaking, there are two broad categories of models based on the treatment of the surface roller: 

those that incorporate empirical models, often called surface roller (SR) models, and those that simulate 

the surface roller as part of the turbulent flow, induced by the wave propagation, utilizing one of the 

turbulence modeling methods, i.e., the Reynolds-Averaged Navier-Stokes (RANS) equations and the 

large-eddy simulation (LES) method. 

The SR model, in which incipient breaking is defined by empirical criteria, may be coupled with 

Boussinesq (Briganti et al. 2004; Madsen et al. 1997; Schäffer et al. 1993; Veeramony and Svedsen 

2000) or Euler (Dimas and Dimakopoulos 2009) equations giving very good results for the normal to 

the shore wave breaking, but it cannot be easily extended to the case of oblique to the shore wave 

breaking. RANS models, where all turbulent scales are treated by a closure model, have been applied 

for the case of two-dimensional turbulent flow during spilling breaking (Bradford 2000; Lin and Liu 

1998; Torres-Freyermuth et al. 2007). LES models, where only the large scales of turbulence are 

resolved while the small ones are modeled, have been used for two-dimensional (Hieu et al. 2004; Zhao 

et al. 2004) and three-dimensional (Christensen and Deigaard 2001; Christensen 2006) flows. LES 

method requires more computational resources than RANS, but generally achieves better results for the 
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dynamics of spilling breakers. Both methods require the use of a scheme for capturing the free-surface 

elevation, such as the Volume of Fluid (VOF) method and the Marker and Cell (MAC) method.  

Recently, Dimakopoulos and Dimas (2011), in order to investigate the turbulent flow induced close 

to the free surface by the oblique wave breaking over a constant slope bed, employed the Large-Wave 

Simulation (LWS) method coupled with their inviscid flow solver (Dimas and Dimakopoulos 2009). 

Their model was validated by comparison of their numerical results to corresponding experimental 

measurements presented in Ting and Kirby (1994; 1996), which was also used for the calibration of the 

LWS model. 

The novelty of the present study is the coupling of the LWS methodology (Dimas and Fialkowski 

2000) with a numerical solver of a three-dimensional viscous flow, in order to calculate the wave-

induced currents in the surf zone, the generation of which is substantially affected by the presence of the 

bed shear stress. Specifically, numerical simulations of the three-dimensional, free-surface flow, 

induced by the propagation of nonlinear breaking waves, normal to the shoreline, over a constant slope, 

rigid bed, are presented. The LWS methodology is based on the decomposition of the flow variable 

scales (velocity, pressure and free-surface elevation), to resolved (large) and subgrid (small) scales. One 

of the main objectives of this work, is to overcome some of the limitations of the aforementioned 

studies, mainly arising by the use of inviscid (Euler) and depth-averaged (Boussinesq) models. For 

example, inviscid models are not able to capture correctly the profile of the undertow current, since they 

ignore viscous effects close to the bed, while Boussinesq models are incapable of calculating flow 

variable profiles over the depth. In the following sections, the flow equations, the main features of the 

LWS methodology, the numerical method, the simulation results and the main conclusions, are 

presented. 

FLOW EQUATIONS  

The three-dimensional, incompressible free-surface flow, for a fluid of constant viscosity, is 

governed by the continuity  
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and the Navier-Stokes equations 
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where i, j = 1,2,3, t is time, x1, x2 are the horizontal coordinates, x3 is the vertical coordinate, positive in 

the direction opposite to gravity, u1, u2 and u3 are the corresponding velocity components, p is the 

dynamic pressure and Red is the Reynolds number. Equations (1) and (2) are expressed in 

dimensionless form with respect to the inflow depth dI, the gravity acceleration g and the water density 

π, therefore Red = (gdI)
1/2

dI/ν, where v is the kinematic water viscosity. 

For viscous flow, the kinematic and the normal stress dynamic boundary conditions at the free 

surface are, respectively,  
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where η is the free-surface elevation, Fr is the Froude number, which under the present dimensionless 

formulation is equal to one, while in Eq. (4) the atmospheric pressure is considered equal to zero. The 

shear stress dynamic boundary condition at the free surface, is expressed for each of the horizontal 

coordinates x1 and x2  
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respectively. In addition, the no-slip and non-penetration boundary conditions at the bottom are 
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respectively, where d is the bottom depth measured from the still free-surface level. 

Given that the free surface is time-dependent, the Cartesian coordinates are transformed, in order 

for the computational domain to become time-independent, according to the expressions 
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where -1 ≤ s3 ≤ 1. In the transformed domain, s3 = 1 corresponds to the free surface and s3 = -1 to the 

bottom. By application of Eq. (9), the continuity and Navier-Stokes equations (1) and (2) are 

transformed, respectively, 

 3

3 3

2
0k k

k

k

u u u
r

s d s s

   
   

    
 (10)  

 
 
 

3

3

3 3 3

22 2

2 2

3

1 2

4 11

Re

i i i i i

k k k

k

ki i

i i

d k k

u s u u u u
u u r u

t d t s s d s s

ru u
R V

s s sd



 



      
     

        

  
   
   
 

 (11)  

where k= 1,2, hereafter, and 
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LWS methodology 

As aforementioned, the large-wave simulation (LWS) method is based on the application of a 

volume filter to the velocity components and pressure, as in LES, and an exclusive surface filtering 

operation for the free-surface elevation. Therefore, each flow variable, f, is decomposed into resolved, 

f , (large) and subgrid, f
 
', (small) scales, in a manner illustrated in Fig. 1 for the decomposition of the 

free-surface elevation, η.  

 

 
 
Figure 1. Decomposition of free-surface elevation for the case of a spilling breaker. 

 

The filtering operation is applied on Eqs. (10) and (11), resulting into the continuity and Navier-

Stokes equations for the resolved scales of the flow, which, respectively, are 
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where 

 3 3 3 3

3 3 3

1 12ik i i ik

i

k k

s s d
T

s d s d s d s s

   

  

      
    

       
 (17)  

includes the subgrid scale (SGS) terms, i.e., the eddy SGS stresses and the wave SGS stresses, which, 

respectively, are 
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The eddy SGS stresses appear both in the LES and the LWS method, while the wave SGS stresses 

appear exclusively in the LWS method. 

The transformation, given by Eq. (9), and the filtering procedure are also applied successively to 

the boundary conditions (3) - (8) at the free surface (s3 = 1) and the bottom (s3 = -1), resulting into the 

transformed boundary conditions for the resolved scales. 

It must be noted that the filtering procedure takes into to account some simplifying assumptions, 

which are specified analytically in Dimakopoulos and Dimas (2011). In addition to this, the SGS terms 

that result from the filtering of the viscous terms of Eq. (11), are considered to be negligible compared 

to the rest of the terms of the same equation. 

In the present study, the eddy and wave SGS stresses, appearing in Eq. (16), are computed by use 

of Smagorinsky eddy-viscosity models (Rogallo and Moin 1984). Specifically, the model for the eddy 

SGS stresses is  

wave propagation direction 
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where C = 0.1 is the model parameter, set according to the usual practice in LES method, Δ = 

(Δ1Δ2Δ3)
1/3

 is the smallest resolved scale based on the grid size, Sij is the strain-rate tensor of resolved 

scales  
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and  
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ij ijS S S  is its magnitude. The model for the wave SGS stresses, based on the one presented 

in Dimas and Fialkowski (2000), is given as 
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η
 is the model parameter and Sij

η
 is a modified strain-rate tensor of resolved scales  
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where δij is the Kronecker delta. 

NUMERICAL METHOD  

The flow simulations are based on the numerical solution of the transformed Navier-Stokes 

equations, which is achieved by use of a fractional time-step scheme for the temporal discretization, and 

a hybrid scheme for the spatial discretization. The hybrid scheme includes central finite differences, on 

a uniform grid with size Δs1, for the discretization along the streamwise direction s1, a pseudo-spectral 

approximation method with Fourier modes along the spanwise direction s2, and a pseudo-spectral 

approximation method with Chebyshev polynomials along the vertical direction s3. 

The transformed Navier-Stokes equations (16) can be written in the form 
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where 
3i i i k kv u r u   is the transformed velocity field, iA  includes all nonlinear terms, T

j  is the 

transformed gradient operator,  0.5 j jp v v    is the transformed pressure head and T
j  is the 

transformed Laplacian operator.  

The time-splitting scheme for the temporal discretization, in which each time-step consists of three 

stages, achieves the calculation of the velocity field at the next time step successively, by adding the 

corresponding corrections of each of the three stages to the field of the previous time-step. Moreover, 

the dynamic pressure field is obtained in the second stage of each time step, while the free-surface 

elevation is calculated from the kinematic boundary condition at the end of each time step. 

At the first stage of each time-step, the nonlinear term, iA , the SGS term, iT , and the viscous term, 

iV , of the transformed equations of motion (24) are treated explicitly by an Euler scheme. At the 

second stage, an implicit Euler scheme is used for the treatment of the pressure head term, 
T
j  , of 

Eq.(24), which results into a generalized Poisson’s equation for   by satisfying the transformed 

continuity equation as well. The transformed dynamic (normal stress) free-surface condition and non-

penetration bottom condition are imposed at this stage. At the third stage, the remaining viscous terms, 
T
j iv , of Eq. 24, are treated by an Euler implicit scheme satisfying the transformed dynamic (tangential 

stress) free-surface and bottom conditions. 

According to the hybrid scheme for the spatial discretization, each flow variable f  (velocities and 

pressure) is approximated by the following expression 
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where mnf  is the Chebyshev-Fourier transformation of f , M is the number of Fourier modes, L2 = M ∙ 

Δ2, is the length of the computational domain in s2, and Tn is the Chebyshev polynomial of order n, and 

N is the highest order of the Chebyshev polynomias. The transformations between physical and spectral 

space are performed by a Fast Fourier Transform algorithm (Press et al., 1992). 

Application of Eq. (25) for the discretization of Eq. (24), leads to the formation of a system of 

algebraic equations, with the general form  A f b       
  , for each of the transformed flow variables. 

The aforementioned system may be divided into M independent subsystems (  m m mA f b       
  , one 

for each Fourier mode), which can be solved in parallel, due to the decoupling of the Fourier modes. 

Each subsystem is solved at each time-step, using an iterative generalized Gauss-Seidel method. The 

matrix of coefficients  mA is band diagonal, and is decomposed once at the beginning of the 

computation by using the LU-decomposition method. 

In the present work, the propagation, transformation and spilling breaking of incoming second-

order Stokes waves over a constant slope bed is simulated. As shown in the sketch of the computational 

domain (Fig. 2), a flat bed region of length LI and constant depth dI, which ensures the development of the 

incoming waves, is followed by the inclined region of the bed. Then, a flat region of length LE and constant 

depth dE << dI (the formulation allows the outflow depth dE to be small but nonzero) is considered in order 

to simulate the swash zone of a coastal area, where the waves are completely damped. For this reason, two 

overlapping zones are placed in the outflow region: a wave absorption zone of length LA ≈ LE, which 

ensures that waves are not reflected by the outflow boundary (Dimas and Dimakopoulos, 2009), and a 

velocity attenuation (slowdown) zone of length LD,. For the numerical solution of Eq. (24), a reduced 

value of Red is used within the slowdown zone, which corresponds to an increased value of the 

kinematic viscosity. 

 

x3

x2

x1

dI

LI

LE

dE

Inflow region

Inclined bed

Absorption – slowdone

zones

 
 
Figure 2. Sketch of the computational flow domain. 

 

RESULTS  

The validation of the inviscid version of LWS methodology, coupled with the Euler equations, was 

performed by Dimakopoulos and Dimas (2011), and one of the main results of their work, was the 

calibration of the parameter C
η
, used in the model for the wave SGS stresses. The chosen value, C

η
 = 

0.4, resulted from the comparison of their numerical results to corresponding experimental 

measurements, presented in Ting and Kirby (1994; 1996), for the case of spilling wave breakers, 

propagating normal to the shoreline over a beach of constant slope tanβ = 1/35.  

In the present study, the accuracy and efficiency of the viscous version of LWS methodology, 

coupled with the Navier-Stokes equations, is investigated, performing numerical simulation for the 

normal to the shoreline propagation, transformation and spilling breaking of incoming second-order 
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Stokes waves over a bed of constant slope tanβ = 1/35. Our numerical results are, also, compared to the 

experimental measurements conducted by Ting and Kirby (1994), while the suggested value of C
η
 = 0.4 

(Dimakopoulos and Dimas 2011) is adopted. It must be noted that all of the numerical results presented 

in this study are spanwise averaged. 

The experimental flow parameters (Ting and Kirby 1994) for the case of spilling breaking are 

summarized in the following: wave inflow depth, dI = 0.4 m, wave height and period, HI = 0.125 m and 

Τ = 2 s, respectively, which correspond to wave height and wavelength at deep water, Hο = 0.127 m and 

λο = 6.245 m, respectively. In our case, the wave parameters at deep water are identical to those of Ting 

and Kirby (1994), but a larger inflow depth dI = 0.7 m is considered, since the Stokes wave theory is 

utilized for the incoming waves, which are of height HI = 0.118 m. The parameters of the incoming 

waves are rendered dimensionless by dI, and g, and the resulting values are HI = 0.168, Τ = 7.487 and λ = 

6.605. The Irribaren number is ξο = tanβ(λο/Ηο)
1/2

 = 0.2, which corresponds to a spilling breaker of 

medium strength, while a value of Red = 250,000, is considered. In the slowdown zone, a value of Red 

divided by 100, is utilized. The total length of the computational domain is L = 60, the flat inflow region 

has length LI = 15, while the swash zone is of length, LE = 11.05, and depth, dE = 0.03. The wave 

absorption zone and the slowdown zone have lengths LΑ = 11 and LD = 2, respectively. The numerical 

parameters are: Δ1 = 0.04, N = 128, M = 32, Δ2 = 0.02 and Δt = 10
-4

.  

In Fig. 3, snapshots of the resolved free-surface elevation,  , at several time instants after 20 wave 

periods, are presented and compared to the experimental measurements of maximum (wave crest) and 

minimum (wave trough) values of the free surface elevation (Ting and Kirby 1994). The numerical 

model predicts accurately the breaking depth db = 0.28, which corresponds to the position x1 = 40.2, but 

underestimates the breaking height, as indicated by the deviation of about 9%, of the breaking free-

surface elevation, 0.176b , calculated by the LWS model, from the corresponding experimental one, 

0.196b . This prediction is still better than the one in Lin and Liu (1998), Bradford (2000) and 

Christensen (2006). At the outer surf zone (40 < x1 < 44), the numerical model underestimates the wave 

height dissipation, as opposed to the inner surf zone (x1 > 44), where the prediction of the model for the 

height dissipation is very good. Generally, the numerical results for the minimum free-surface elevation, 

are in a very good agreement with the trough envelope of the experimental data. In the outer coastal 

zone, the numerical results for wave shoaling agree adequately with the corresponding experimental 

data, however, LWS predicts a monotonic wave height increase during shoaling. In the surf zone, the 

numerical results predict very well the wave setup. 

 

 
 
Figure 3. Snapshots of the resolved free-surface elevation during shoaling and in the surf zone, over bed of 

constant slope (tanβ = 1/35). Symbols correspond to the experimental free-surface envelope presented in 

Ting and Kirby (1994). 

 

In Fig. 4, three typical snapshots of the spanwise vorticity distribution, ω2, in the surf zone, are 

presented at the time that incipient wave breaking occurs, and at time instants t = 0.5T and 0.8Τ after 

| 
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incipient breaking. Negative vorticity is generated at the breaking wavefront during incipient wave 

breaking (wave crest at x1 = 40.2), which corresponds to clockwise recirculation of the fluid. The 

strength of the surface roller increases, as the spilling breaker propagates towards the inner surf zone, 

until it reaches its full development (Fig. 4b), and subsequently, as indicated in Fig. 4c, vorticity is 

advected and diffused in the roller wake. The vorticity distribution close το the sloping bed, due to the 

bed shear stress, is also shown in Fig. 4, with its amplitude being considerably larger (up to 10 times) 

than the one developing in the surface roller. 

 

 
 

Figure 4. Vorticity field in the surf zone, at three time instants during wave period, T. Snapshot (a) 

corresponds to incipient breaking, (b) at time instant t = 0.5T and (c) at t = 0.8T after incipient breaking. 

Dashed contour lines correspond to negative vorticity, while solid lines to positive one. 

 

According to the LWS methodology, wave breaking and dissipation in the surf zone are coupled 

with the generation and combined action of the eddy and wave SGS stresses. The distribution of the 

wave stress 13
 , which is the most significant SGS stress in terms of its magnitude, in the surf zone at 

two time instants (at the time of incipient breaking and 0.5T later), is presented in Fig. 5. It is indicated 

that the development of the surface roller (see Fig. 4) is connected to the continuous increase of the 

magnitude of wave stress 13
  at the breaking wavefront, which takes place during a time interval Δt = 
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0.5Τ after the incipient breaking, corresponding to the region 1 ≥ d/db ≥ 0.78. For time greater than 0.5T 

after breaking, its strength attenuates gradually before it vanishes in the inner surf zone (x1 > 45). 

Similar behavior is also exhibited by the other SGS stresses on the x1-x3 plane, while stresses in the x2 

direction are an order of magnitude smaller. 

As mentioned in the introduction, the development of the undertow current, resulting from wave 

breaking, is constrained by the fact that the period-averaged cross-shore water flux is zero. Fig. 6 

presents a typical period-averaged velocity field in the surf zone where it is indicated that the numerical 

model is able to capture the occurrence of the undertow current. The period-averaged velocity 

distribution indicates the presence of an onshore directed current, which is due to the mechanisms of the 

Eulerian drift and the surface roller, in the upper layer of the water depth, and an offshore directed 

current, i.e., the undertow current, near the bed, which balances the onshore flux. Very close to the bed, 

a steady current of weak strength, the so-called wave boundary layer streaming, exists offshore to the 

breaking region and part of the outer surf zone, and is directed towards the shoreline.  

 

 
 

Figure 5. Snapshots of the wave SGS stress, 
13 , that correspond to (a) and (b) of Fig. 4. Note that the first 

one includes two wave crests (at x1 ≈ 40 and 44.5), while contour lines are plotted at equal intervals from 0 

to 0.001 with a spacing of 0.0002. 

 

 
 
Figure 6. Period-averaged and spanwise-averaged velocity distribution in the surf zone. Breaking occurs at 

x1 ≈ 40.  

 

In Fig. 7, LWS-predicted profiles of the undertow current at four positions in the surf zone are 

compared to corresponding experimental measurements presented in figure 5 of Ting and Kirby (1994) 

for the case of spilling breaker. The period-averaged horizontal velocity, U1, is normalized with respect 
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to the breaking depth, db. Overall, the LWS prediction is deemed adequate, since the order of 

magnitude as well as the gradient of the numerical profiles, agree well with the experimental ones. A 

significant deviation related to the depth of the minimum of the velocity is observed between numerical 

and measured profiles, as is indicated in Figs. (c) and (d), which may be attributed to the large 

difference between our Red value and the one of the experiments, which is about 7 times larger. 

Finally, in Fig. 8, the evolution of the resolved free-surface elevation and the bed shear stress, τb, 

distribution at several time instants during a wave period, are presented. The amplitude of the bed stress 

variation is found to be substantially increased over the sloping bed, especially in the surf zone, 

becoming up to six times larger (at the region around x1 = 42.5) than the corresponding amplitude in the 

flat region (x1 < 15). The magnitude of τb decreases in the inner surf zone, following the wave height 

attenuation, while the decrease of the wavelength with decreasing water depth is indicated by the bold-

lined snapshot. The position of maximum bed stress does not coincide with the breaking position, where 

the maximum free surface elevation is located, presenting a phase difference of about 0.5T.  

 

 
 
Figure 7. Normalized period-averaged horizontal velocity profiles at four positions in the surf zone, 

compared to the corresponding experimental data (symbols) presented in figure 5 (c)-(e) of Ting and Kirby 

(1994).  
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Figure 8. Snapshots of the resolved free-surface elevation and the bed shear stress distribution. The bold 

lines correspond to the same time instant, while bed slope starts at x1 = 15. 

 

CONCLUSIONS  

A numerical model for the simulation of wave propagation and spilling breaking over a constant 

slope bed is presented. The model is formed by the coupling of the large-wave simulation (LWS) 

method with a numerical solver of the three-dimensional Navier-Stokes equations. According to the 

LWS methodology, the wave and eddy subgrid (SGS) stresses are modeled, by use of eddy-viscosity 

models, and then applied to the viscous flow solver, in order to capture wave breaking and wave energy 

dissipation in the surf zone. In general, the LWS model predictions related to the characteristics of 

incipient breaking (breaking depth - height) are very well. The validation of our results is based on the 

comparison with corresponding experimental measurements conducted by Ting and Kirby (1994). The 

development of the surface roller in the breaking wavefront is connected to the increase of the strength 

of the SGS stresses in the outer surf zone and their successive decrease at shallower depths close to the 

shore. The period-averaged velocity field in the surf zone predicts very well the qualitative 

characteristics of the undertow current generated along the cross-shore direction by the wave breaking, 

while the quantitative comparison to the corresponding experimental data (Ting and Kirby 1994) is 

good. Finally, it is found that the magnitude of the bed shear stress increases substantially in the surf 

zone becoming up to six times larger than the corresponding one in the inflow flat region. 
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