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A conceptual analysis of the coupling between bars and infragravity waves is performed combining laboratory experiments and 

numerical modeling. Experiments are carried out in a wave flume with a barred profile. The Boussinesq fully-nonlinear model 

SERR1D is validated with the laboratory data and a sensitivity analysis is performed next to study the influence on the 

infragravity wave dynamics of bar amplitude and location, and swash zone slope. A novel technique of incident and reflected 

motions separation that conserves temporal characteristics is applied. We observe that changing bar characteristics induces 

substantial variations in trapped energy. Interestingly, a modification of swash zone slope has a large influence on the reflected 

component, controlling amplitude and phase time-lag, and consequently on the resonant pattern. Variations of trapped 

infragravity energy induced by changes of swash zone slope reach 25 %. These changes in infragravity pattern consequently 

affect short-wave dynamics by modifying the breakpoint location and the breaking intensity. Our conceptual investigation 

suggests the existence of a morphological feedback through the action of evolving morphology on infragravity structures which 

modulates the action of short-waves on the morphology itself.  

Keywords: Longwave dynamics, Sandbar, Swash, Nearshore, Laboratory experiment, Non-linear Boussinesq wave 
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INTRODUCTION 

Nearshore sandbars are ubiquitous alongshore wave-exposed natural beaches (Winjberg and 

Kroon, 2002). Their presence affects the hydrodynamics, for instance, driving wind-induced surface-

gravity waves to break, a process that can be associated to energy dissipation and transfer to the 

infragravity frequency band. Infragravity may be predominant close to the shoreline due to short-waves 

saturation and this has been observed to be even enhanced by the presence of a submerged bar which 

limits short-wave amplitude (Ruessink, 1998; Senechal et al., 2002). The close correspondence between 

the length scales of infragravity waves and morphological features has suggested a strong coupling 

(Symonds & Bowen 1984; O’Hare & Huntley 1994; Aagaard and Bryan, 2003). However, the 

interaction between nearshore sandbars and infragravity motion remains unclear. Observations 

indicated negligible to small effects of bound infragravity waves on morphology (e.g. Ruessink et al., 

1998) though last findings suggest that infragravity may have an effect on short-wave dynamics 

(Michallet et al., 2007). On the contrary, it is not clear what role plays the morphology on infragravity 

dynamics. 

Onshore propagating long waves (either free or released bound waves) may reflect at the shore and 

interact with incident waves, leading to resonance. Using laboratory data, Baldock et al. (2004) showed 

that the presence of a bar induces an infragravity wave frequency selection associated to standing 

trapped wave modes. A modal analysis indicated that the resonance produced by the offshore migration 

of the breakpoint over the bar is consistent with a seiching between the bar and the shore. However, the 

influence of the bar amplitude and its location on trapped energy has not been investigated extensively. 

Similarly, the swash zone slope may also be of importance by means of frequency selection and the 

time-lag it adds to the reflected wave (Baldock and Holmes, 1999). These morphological parameters, 

by controlling infragravity structure, are suspected to provide a strong feedback between infragravity 

fluid motion and the evolution of morphological features.  

To date, one of the limiting factors in studying morphological-infragravity interactions was the lack 

of appropriate dataset and numerical models. The observations made during the ECORS2008 

experiment at Truc Vert beach, in presence of a well developed subtidal bar, meso-macro tidal 

environment, and energetic wave conditions, revealed the presence of energy peaks in the infragravity 

band. But studying the role of morphology on this infragravity component is a difficult task from scarce 

existing measurements and uncontrolled wave conditions. In this paper, we overcome these issues by 

using dense measurements acquired in a wave flume in a scaled experiment in Froude similarity with 

the conditions encountered during the ECORS2008 experiment (Figure 1, Sénéchal et al., 2011). Two 

different tide levels are used in order to highlight the influence of the water depth over the bar crest on 
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short wave and infragravity behavior. A novel signal processing technique based on the Radon 

transform (Deans, 1983) is used to separate incident and reflected waves. The method is shown to 

capture  the temporal characteristics of the signal (frequency and phases). A Boussinesq-based 1D wave 

model is compared to the experimental data and used to explore the influence that the bar amplitude 

and location, and swash zone slope has on the infragravity dynamics. We discuss on possible 

mechanisms for morphology feedback. By combining laboratory experiments, numerical modeling and 

novel signal processing techniques, we aim at providing new insights on the mechanisms of interaction 

between a barred-beach morphology and infragravity waves. 

METHODS 

Experimental set-up 

Wave experiments were conducted in the laboratory wave flume of the Instituto Nacional de 

Hidráulica (INH)  located  in  Peñaflor,  near  Santiago  of  Chile.  The  flume  is  70 m  long  and  has  

a  square  cross section  with  side  length  of  1.5 m.  It  has  concrete  bottom  and  side  walls  and  

was  prepared  with  an impermeable  smooth  concrete  plane  beach  of  1/80  slope  (x=0 m  at  the  

toe  of  the  slope,  positive shoreward, see Figure 1). The flume is equipped with a hydraulically driven 

piston-type wave paddle. Back reflection at the wave paddle is minimized by active absorption through 

DHI-AWACS system (Active  Wave Absorption Control System). A large number of experiments were 

run, using a single 27-minute wave signal time series derived from a JONSWAP type spectrum with a 

significant wave height Hmo=8 cm, a peak frequency fp=0.41 Hz. The still water depth at the wave 

maker was fixed at h0=52 cm. Measurements of the free surface displacements were performed all over  

its  length  at  high  spatial  resolution  (0.2 m to 1 m)  using  resistive  rods.  Keeping a fixed rod at a 

distance of 2 m from the wave-maker and performing redundant measurements at several other 

locations was considered to verify the repeatability of the experiments. 

   

 
Figure 1:  Sketch of the experimental wave tank at the Instituto Nacional de Hidráulica and wave gauge  
locations.  

 

Free surface measurements were acquired at 20 Hz, and a simple low-pass filter was used to 

separate orbital motions from turbulence in velocity time series. Two water levels were considered, one 

with 0.14 m depth over the bar and one with 0.2 m. These two levels stand for the mid and high tide 

levels encountered at Truc Vert beach. The mid level is expected to induce a moderate wave-breaking 

over the bar whereas the high level should limit breaking producing only sporadic events over the bar. 

Numerical modeling 

Numerical computations are conducted using the phase resolving fully non-linear 4th-order finite 

volume Boussinesq model SERR1D (Cienfuegos et al., 2010a). This model includes a parameterization 

for the wave-breaking energy dissipation. 

The model has been previously validated with laboratory data obtained at the INH wave flume for 

very non-linear conditions on a gently sloping beach (Cienfuegos et al., 2010b). The model showed 

good performances in representing both short-wave dynamic and energy transfer to infragravity band. 

Nevertheless, some discrepancies with data were observed in the swash zone, where the numerical 

model seems to underestimate the amount of reflected energy wave..  

Incident and reflected waves separation through Randon Transform 

Long-wave resonance analysis requires the separation of incident and reflected wave components. 

Usual methods (Guza et al., 1984; van Dongeren et al., 2007) rely on measurements of both surface 

elevation and currents to compute the energy propagating shoreward and seaward directions. The latter 
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does not allow describing wave transformation and interaction with reflected in the temporal domain. A 

very good alternative is to use a method based on the Radon transform (Deans, 1983) which preserves 

the temporal characteristics of the incident and reflected wave signals. See Almar et al. (In prep.) for a 

complete description and validation. 

The signal processing has two steps. An angular projection ( , ɵ) of a 2D field (x,y) is first 

performed by the Radon transform (Eq. 1), followed by a back-projection for selected ranges of angles 

(Eq. 2) : 

 

  (1) 

  (2) 

Interestingly, in the case of a 2D field which is a wave spatio-temporal data, the Radon-estimated 

angles with values ranging between [0°; 90°] and [90°;180°] can be converted into a celerity 

corresponding to positive and negative propagating waves, respectively. 

RESULTS AND DISCUSSION 

The numerical simulations are first compared with laboratory data. Next, the model is used to 

determine the influence of morphological parameters (bar amplitude, location and swash zone slope) on 

the infragravity dynamics. A low-pass filter is applied to extract infragravity waves (frequency < 3/5 

peak frequency) from surface elevation time series. Incident and reflected components are separated 

using the Radon-derived processing described in the previous section.  

High- and low-frequency band data-model comparison 

For model validation, we run SERR1D using the free surface time series measured 2m from the 

wave-paddle using an absorbing-generating boundary conditions. In the Figure 2 we present measured 

and numerically computed significant wave height profiles along the flume for the two water levels. For 

the high water level case, the short-wave height peaks over the bar (x= 12 m), but there is little 

dissipation by breaking over it. The model reproduces this behavior but slightly underestimates the 

shoaling over the bar. In the same figure, significant long-wave height is also depicted. Long-wave 

height steadily increases until reaching the shore where they strongly dissipate. The model results are in 

good agreement thus showing that the energy transfer from high to low-frequency is well reproduced. In 

the lower panel of Figure 2, results for the low water level case are presented. It is seen that short-wave 

amplitude decreases substantially over the bar, indicating breaking occurrence. For the long-wave 

heights, a different behavior is observed, since its maximum occurs over the bar. The model succeeds in 

capturing both short- and long-wave heights for the low water level case. This validation gives 

confidence to the model’s ability in representing infragravity dynamics for a complex barred-beach case 

and thus allows for using it in further physical interpretations. 
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Figure 2: Profiles of high (black) and low-band (red) height for (a) the high and (b) low water levels. 

Circles are data and lines are model results. 

 

The resonant infragravity pattern 

The total infragravity pattern, as shown in Figure 2, results from the interaction of shoreward and 

outward propagating long-waves. The Figures 3.a and 3.b show the spatio-temporal pattern for high and 

low water level cases, respectively. This pattern is complex for the two cases and differences can be 

seen. The influence of the bar is clearly visible in for the low water case (Figure 3.b), where incident 

and reflected waves interact positively at the bar location (x=12 m). Conversely, there is no clear 

evidence of the bar impact for the high water level case (Figure 3.a). Interestingly, this can be linked 

with the observed long-wave height peak at the bar location in 2.b which is not substantial in 2.a. To go 

in further details and to better understand this behavior, the components are isolated through the Radon-

based analyze. Resulting incident and reflected components are shown in Figures 3.c, 3.e and 3.d, 3.f, 

respectively for the high and low water levels. Incident waves are rather similar whereas reflected 

waves are contrasted. Offshore from the bar location, reflected wave amplitude decreases with distance 

to the shore, as they do for a monotonous beach. However for the low water level, before the bar, they 

shoal as they propagate offshore.  

These observations show that a change in the water level affects short-waves which later influences 

long-waves dynamics. The incident and reflected long-wave thus may interact differently: positively or 

negatively. Identifying the factors that influence the resonance pattern is essential to understand 

infragravity dynamics. In the following section we explore the role of supposed key beach shape 

characteristics (bar location, amplitude and upper beach slope) on infragravity resonance.  
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Figure 3: Low-frequency surface elevation (in cm) spatio-temporal from resistive rods for (left panels) 

high water and (right panels) low water levels; respectively the (up) total, incident (mid) and reflected field 
(low). 

 

Numerical analysis of morphological influence on infragravity dynamics 

The influence of changing bar amplitude, location, and upper beach slope on infragravity 

resonance is now studied. The resonant condition is characterized by the correlation between incident 

and reflected components. For the simulations, JONSWAP wave conditions are statistically identical to 

the ones investigated in the experimental set-up. The bathymetric profile is obtained by superimposing a 

Gaussian-shape bar with a fixed width and variable amplitude (Ab) and location (xb) to a monotonous 

beach. The upper beach slope slswash is left as a variable. 

 

In Figure 4.a are shown three bathymetric profiles with Ab = 0, 0.12 and 0.2 m. The resulting short-

waves and incident and reflected long-waves height are shown in Figure 4.b and 4.d, respectively. It can 

be seen that short-wave breaking over the bar intensifies with Ab, together with an increase of long 

waves height peak over the bar. As a consequence, and as shown in Figure 4.e, with a stronger control 

of infragravity pattern played by the bar, the correlation between incident and reflected waves is higher 

when depth over the bar is lower. In other words, the resonance increases with Ab. In Figure 4.f is 

represented an estimation of the resonant energy computed from the total infragravity band. Following 

the increasing resonance, the trapped energy increases with Ab. Relative change of trapped energy is 

weak, ranging from 0 to 4 % of the maximum for the Ab =0.2 m case. But bar not only can vary in 

amplitude, it may migrate in the cross-shore affecting both short and long-wave dynamics. In the next 

paragraph we investigate the effect of xb in the infragravity resonance. 
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Figure 4: Infragravity resonance sensitivity to bar amplitude. (a) bathymetric profiles, (b) significant 

wave heights, (c) incident (blue) and reflected (red) infragravity amplitudes and their (d) correlation value for 
varying amplitude (or wave-height-to-depth ratio), (f) total trapped resonant energy.   

 

In Figure 5.a are shown the bathymetric profiles with bar location varying from xb = 7, 12 to 20 m. 

We choose to keep the depth-over-the-bar constant in order to conserve the short-wave breaking 

dynamic (intensity, type) over the bar. Resulting short- and both incident and reflected long-waves 

amplitudes are shown in Figure 5.b and 5.d respectively. It can be seen that short-wave pattern is highly 

influenced by xb, since the breakpoint location is modified. Long-wave pattern is also significantly 

changed. The peak over the bar for the incident component roughly follows the location xb, but 

reflected long-wave height profiles appears to be very different. In Figure 5.e we show the correlation 

between incident and reflected components as a function of the bar location, xb. Resonance varies from 

negative to positive, depending on xb. It worth noting that a negative value means that reflected waves 

interact with incident ones in a destructive way (decrease amplitude) whereas long-wave amplitude is 

amplified if resonance is constructive. Interestingly, positive resonance is encountered for the "real" 

location (xb =12 m, which scales with the Truc Vert beach profile) of the bar. The resonant trapped 

energy shown in Figure 5.f follows the same behavior with an energy maximum for a bar located at xb 

=12 m, when the resonance is maximum. Relative change of trapped energy is larger than for bar 

amplitude variation, ranging from 0 to 8 % of the maximum for the bar located at xb =12 m. We have 

seen so far that resonance is influenced by various bar parameters, we will study now what is the role of 

the upper beach profile. 
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Figure 5: Infragravity resonance sensitivity to bar location. (a) bathymetric profiles, (b) significant wave 

heights, (c) incident (blue) and reflected (red) infragravity amplitudes and their (d) correlation value over the 
bar for varying bar location, (e) total trapped resonant energy.   

 

In Figure 6.a are shown monotonous bathymetric profiles with swash zone slope of slswash = 

0.01,0.05 and 0.1. Resulting short-waves and long-waves (incident and reflected components) 

amplitudes are shown in Figure 6.b and 6.d respectively. Short-wave pattern is highly controlled by the  

slswash, which influences the breakpoint location, whereas incident long-wave is only weakly affected. 

On the contrary, reflected long-waves are dramatically affected, having amplitude values that increase 

with slswash. In Figure 6.e is shown the resonant infragravity pattern for varying slswash. The amplitude of 

the resonant structure increases with slswash while node and antinodes migrate offshore. The observed 

migration of resonant structures may be attributed to a change of slswash which modifies the phase time-

lag of the reflected component. The decrease in amplitude is directly linked to the larger swash 

dissipation for flatter slopes and resulting weaker reflection. For instance, considering the very flat 

slswash = 0.01 case, only incident wave signature is present from a non substantial reflection. The 

resonant trapped energy shown in Figure 6.f follows the same tendency with an energy increasing when 

slswash steepen. Contrary to the relatively small effect of Ab and xb, the relative change of trapped energy 

associated to a change in slswash, is large, ranging from 0 to 25 % of maximum slswash = 0.1 case. 

 

d e 
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Figure 6: Infragravity resonance sensitivity to swash zone slope. (a) bathymetric profiles, (b) significant 

wave heights, (c) incident (blue) and reflected (red) infragravity amplitudes. (d) Infragravity resonant pattern 
for varying swash zone slope and related (e) total trapped resonant energy. 

 

This sensitivity analysis points out that infragravity resonance is strongly influenced by 

morphology, and in particular, we have seen the key role played by Ab, xb and slswash. Now, if a mobile 

bed is considered, a changing short-wave conditions may affect morphology which later influences 

infragravity dynamics. Infragravity has a feedback on short-waves dynamics, by modulating short wave 

characteristics (e.g. breaking) which at the end may influence morphologic evolution. It may thus exist 

a morphological feedback through infragravity that could accelerate or reduce morphological evolution. 

For instance, a growing bar under constant short-waves will enhance infragravity resonance which 

increase short-wave breaking and accelerate bar growth if the bar grows at a positive resonance 

location. This hypothesis resulting from our analysis should be further verified and quantified through 

additional studies. 

CONCLUSION 

Our combined experimental and numerical investigation of short-waves propagating over a barred 

beach profile shows the strong influence of morphology on infragravity behavior and resonance. The 

bar amplitude and location play a key role in infragravity resonance intensity and spatial structure. By 

using a novel technique for incident and reflected waves separation based on Radon-transform, we 

show that correlation at the breakpoint intensifies with bar amplitude and varies in sign with bar 

location. We observed that changing bar characteristics might induce substantial variations in trapped 

energy in the order of 5-10 %. Interestingly, a modification of swash zone slope has a large influence on 

reflected long-waves, controlling the amplitude and the phase time-lag, and consequently the resonant 

pattern. Variations of trapped infragravity energy induced by changes in the upper beach slope reach 25 

%. These changes in the infragravity pattern affect short-wave dynamics by modifying the breakpoint 

d e 
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location and the breaking intensity. The investigation made in this paper suggests the existence of a 

morphological feedback through the action of evolving morphology on infragravity motions, which 

modulates the action of short-waves on the morphology itself.  
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