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Outlier detection is one of the classical problem in the regression analysis.  For this purpose the Cook's distance 
was proposed as the amount of changing the predictions by removing the candidate outlier in comparison with 
the total variation of the residuals against the fitting plane.  This distance is considered to be so useful that it is  
rearranged and discribed in the two terms of the leverage of covariates and the contingent discrepancy.  Hence 
the outlier detection can be displayed as a diagram with these two terms.  Extremes generally accompanies 
outliers.  Unfortunately the Cook's distance wouldn't be applicable to the outlier among the extremes.  It is one 
of the reason that the extreme value distribution doesn't belong to the exponential family. Thus we should find 
the alternative way.  The degree of experience, proposed originally for evaluating the limitation of extrapolation, 
will play an important role of detecting the outliers, because it is decomposed into two parts of the leverage of 
covariates and the contingent discrepancy in the average sense.  Not only the mathematical derivations are shown 
but also a practical judgement for the removal of outliers is demonstrated in a diagram of leverage and residual 
of extremes.
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Introduction
     Sea extremes (annual maximum sea levels, significant wave heights over a certain threshold, 
etc) will be modelled with a temporal trend, and they may be also governed by the climate factors, 
e.g. Southern Oscillation Index (SOI). The fitting becomes better in general when any explanatory 
variable is added in the regression model. The sensitivity for the residuals should be examined to 
avoid the over-fitting. The outliers detection for extreme values can be firstly discussed by the degree 
of experience, which is extended by adding the leverage term to those proposed in the previous study 
shown in Kitano et al. (2008, 2009, 2010, 2011).  It will conduct to the robustness of estimation. 
     We have an essential problems in the statistical analysis to evaluate the return levels of sea 
extremes for the design of coastal structures, which is due to the poverty of the available data.  It 
should be called the small sample size problems, and they bring some practical questions to us in the 
following two points of view: 1) Limiation of extrapolation, and 2) Sensitivity against outliers.
     The point 1) is a problem arised when the resultant statistical model is applied, while the point 
2) is one arised when an examining statistical model is fitted.  As seen in Kitano et al. (2008), the 
degree of experience is proposed for the limitation of the quantile extrapolation.  It is a simplest 
extrapolation, in which the return levels are obtained by extending the fitted quantile line against the 
data set regarding as beeing extracted from an identical population.  Kitano et al. (2010) modified the 
concept of the degree of experience to be applied to a non-stationary models (with a temporal trend), 
and demonstrated the limitation of the temporal extrapolation as well as the return levels with the 
confidence intervals for the sea level of Venice.  On the basis of the uncertainty accumpanied with a 
trend, Kitano et al. (2010)  pointed out that the uncertainty increases against the passage of time even 
for the stationary model, and it is named the diffractive effect.  
     In these studies, the degree of experience is used as the post-analysis after the target model is 
fitted to the observed data, as mentioned before.  As the pre-analysis, during a model is tested to be 
fitted, we sometime face to an influencial data, which pulls the model near oneself, and we bothered 
if the data should be removal or not.  This is known as the sensitivity analysis in the regression 
analysis, where the response variates conditionally with the covariates.  The set of covariates has 
not always concentrated but it has also some periphery parts, where the data is so poor to lead 
to a kind of small sample size problem.  It is optimistic that sea extremes are always considered 
to be extracting the identical population.  In some cases sea extremes will be covariated with the 
climate index, for example, SOI, AOI, and the average sea surface temperature, etc.  Therefore, the 
sensitivity against outlier should be discussed for sea extremes.
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Figure 1    Outlier in the regression analysis

A Treatment of Outlier in Regression Analysis
Here we reconfirm the treatment of outlier in the general regression analysis as the common 
knowledge.  We here consider a statistical model as the following:

			   　　E(y|x) = β0 + β1x1 + · · · + βp−1xp−1		  (1)

where we take multi-covariates xi (the number of covariates is p− 1, and including an intercept, the 
number of the parameters is p ) in general sense, and we can reduce it to a single covariate easily at 
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Figure 2    Outlier sensitivity diagram by means of the Cook's distance in regression analysis

any stage of the following procedure.  As mentioned before, Cook (1977) introduced an index for 
outiler by the amout of difference between the estimation ŷ by all data and the one ŷ(i) by the data 
removing the target data (xi, yi) compared with the amount of the residual variation e = y − ŷ, 
which is named Cook's distance difined by

			   　　　
CDi =

�
ŷ(i) − ŷ

�� �
ŷ(i) − ŷ

�
/p

e�e/(n − p) 			   (2)

It should be noted that the residual errors depend on the covariates' values.  Therefore, we use the 
standarized residual defined as the followings:

				     
ri =

ei√
1− hii

� �
e�e

n− p 			   (3)

As consequence, we transformed the Cook's distance into the form with the statistical variation and 
the leverage:

				  
CDi =

r 2
i

p

��
1

hii
− 1

�

			   (4)

where  is the leverage of the target covariate  hii, and the detail definition will be shown later for the 
multicovariate case.  According to the range of leverage is 

				           
1

n
≤ hii < 1			   (5)

it is found that the Cook's distance becomes larger in the case that the statistical variation is larger, or 
the case that the leverage is large and close to 1, or both cases.  An index is not only defined but also 
transformed in the interpretable expression in the point of view of knowing clearly how to work.
    Fig. 2 is shown the contourlines of the Cook's distance against the normalized residuals and the 
leverage, and the data named as 1 is clear to be an outlier whose leverage is very high though the 
residual is not so large.  Therefore, we judge that it should be removable as an outlier due to high-
leverage.  The diagram as shown in Fig. 2 is very useful and indispensable for the outlier judgement.  
But it was invented for the ordinal regression analysis, it isn't easily applicable to the extremes.  We 
should make another invention for extremes, and we can think that also for this purpose the degree of 
experience proposed by Kitano et al.(2008) will works comprehensively in the place of Eq.(2).
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Degree of experience including covariates
As the effective size number of the sample in the contribution to estimate the extrapolating level, 
by considering the Fisher's information against the occurrence rate and more interpreting it the 
shape parameter's value of a natural conjugate gamma distribution in the point of view of Bayesian 
inference, Kitano et al. (2008) proposed the degree of experience K given by

					   
1

K
= V (log λ)				   (6)

where the occurence rate is defined as

			   λ(y) = exp

�
− 1

ξ
log

�
1 + ξ

y − µ

σ

��
			   (7)

in terms of the location, scale and shape parameters θ = {µ, σ, ξ} of the generalized extreme value 
distribution (GEV).  Especially in case of Gumbel type ξ = 0, Eq.(7) becomes the following simple 
function.

			   λ(y) = exp

�
− y − µ

σ

�
for ξ = 0			   (8)

Since the deviation of  log λ becomes, like the derivative, 

					     δ log λ =
δλ

λ
				    (9)

the degree of experience can be transformed into the following amount:

				    　　　
1

K
=

V (λ)

{E(λ)}2
				   (10)

This is corresponding with the properties of the natural conjugate gamma distribution for a Poisson 
distribution including the occurrence rate of Eq.(7).  The gamma distribution with the parameters of 
a shape parameter K and an effective time length of observation L, described by

				    　　f(λ) =
(Lλ)K

λΓ(K)
e−Lλ			   (11)

are shown in Fig.3, and they are concentrated around the mean occurence

				    　　　　E(λ) =
K

L
				    (12)

and it is governed by values of  the shape parameter K.  The variance is 

					      V (λ) =
K

L2
				    (13)
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Figure 3   Degree of experience governing the concentration of the density of occurence rate
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Thus, by combining Eq.(12) and (13), we obtain the same relation as Eq.(10).  
       In order to evaluate it in practice for our obtaining sample, we use the following form

				    　　 1

K
=

∇�λ I−1 ∇λ

λ2
			   (14)

where I  is the observed information matrix. The inverse of I  is used in behalf of the variance-
covariance matrix V (θ) for the estimation errors of parameters.  For the theoretical purpose, as a 
substitute for the observed information matrix, we employ the Fisher's expected information matrix, 
which is symmetrically expressed as 

	        I = NA−1






p Γ(2+ξ)−p
ξ

p
ξ − q

1−2Γ(2+ξ)+p
ξ2

1
ξ

�
Γ(2+ξ)−p

ξ + q − r
�

π2

6 + 1
ξ

�
p
ξ − 2q

�
+ r2





A−1	 (15)

in case of a GEV distribution (Prescott and Walden, 1980) applied to the annual maximum value 
distribution without any covariation, which is named the stationary model.  For abbreviation, we use

    p = (1 + ξ)2 Γ(1 + 2ξ),   q = Γ(2 + ξ)

�
1 + ψ(1 + ξ) +

1

ξ

�
,   r = 1 + ψ(1) +

1

ξ
       (16)

and a diagonal matrix for adjusting the scale:

				    　　　A =




σ 0 0

σ 0
ξ



			   (17)

For the gradient of the occurence against the GEV parameters, we have

	
∇�λ

λ
=

1

λ

�
∂

∂µ
,

∂

∂σ
,

∂

∂ξ

�
λ =

�
λξ,

1− λξ

ξ
, log

1

λ
− 1− λξ

ξ

�
A−1	 (18)

Straightforwardly we can apply the manner above to the annual maximum value distribution with 
several covariates, the time and climate index that we are targeting on, which is named the non-
stationary model.  In this model, the covariates x� ( = {x1, x2, · · · xm}) are linked to the GEV 
parameters in general form:

		       µ = x� βµ = µ0 + β(1)
µ x1 + β(2)

µ x2 + · · ·+ β(m)
µ xm		  (19a)

		  log σ = x� βlog σ = log σ0 + β
(1)
log σx1 + β

(2)
log σx2 + · · ·+ β

(m)
log σxm	 (19b)

		       ξ = x� βξ = ξ0 + β
(1)
ξ x1 + β

(2)
ξ x2 + · · ·+ β

(m)
ξ xm		  (19c)

The fisher information matrix becomes 

			         I =

�
I0 1�

NX− ⊗ I1
X �

−1N ⊗ I �
1 X �

−X− ⊗ I2

�
			   (20)

where ⊗ stands for the Kronecker product, and X− is a matrix for sample covariates of m 
components over N  years

			          X− =





x1,1 x1,2 · · · x1,m

...
... · · ·

...
xi,1 xi,2 · · · xi,m

xN,1 xN,2 · · · xN,m



		  (21a)

For manipulation we use the matrices that consist of ones as				        		

		          		  　　
1�
N =

�
1 · · · 1
� �� �

N

�
			  (21b)
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and 1(.) is taken for extracting the subset I1 = I0 1(.) and I2 = 1�
(.) I0 1(.) from the Fisher's 

information matrix I0 as one of the followings: 

 1(µ) =




1
0
0



 , 1(log σ) =




0
1
0



 , 1(ξ) =




0
0
1



 , 1(µ,log σ,ξ) =




1 0 0
0 1 0
0 0 1



 ,     (22a)

	 　　1(µ,log σ) =




1 0
0 1
0 0



 , 1(µ,ξ) =




1 0
0 0
0 1



 , 1(log σ,ξ) =




0 0
1 0
0 1



	 (22b)

       The degree of experience for non-stationary model with several covariates seem to be too much 
complicated to obtain any simple relation.  Some algebraic formulae about the Kronecker product 
and the Schur complement helps us to obtain the decomposed form:

				  
1

K
=

1

K0
+

N

M

MD2(x)

N − 1
			   (23)

where the degree of experience for non-stationary model K is separated from that for the stationary 
model K0 and a modulus for the components of the GEV parameters linked to the covariates:

                              1

K0
=

∇�λ I−1
0 ∇λ

λ2
,   	 1

M
=

∇�
(.) λ I−1

2 ∇(.)λ

λ2
	 (24)

It is denoted that ∇(.) = 1�
(.)∇ for the subset of the information matrix, and in addition it should be 

noted carefully that MD2(x) means the Mahalanobis squared distance (see, for example, Weisberg, 
1987) and it can be related to the leverage as 

				    　　hii =
1

N
+

MD2(xi)

N − 1
			   (25)

It is noted that the Mahalanobis squared distance can be evaluated for any other values of covariates 
than the observed ones in the advantage to the leverages which are originally difined as the diagonal 
components of the following matrix 

			   H = X (X �
X)

−1
X

�; X = {1N ,X−}		  (26)

     As seen in Eq.(23) and (25), the degree of experience for the non-stationary model plays the 
same role as the Cook's distance, by taking into consideration that the degree of experience for 
the stationary model shows the pure statistical variation for extremes which corresponds with the 
residuals in ordinary regression analysis.  For the high leverage, the degree of experience for the non-
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Illustrated demonstration by an example Fremantle sea levels
Flemantle port is located in west part of Australia, and it is used as an example covariated with the 
SOI in the text book by Coles (2001).  Here we employ the data to demonstrate the diagram for 
detecting the infl uenced outlier.  The timeseries of the sea levels over 79 years are shown in Fig. 
4(a), where the red points are the largest three levels in the record and most of the blue points are 
mediocrity in the timeseries but they are outside of twice times as larger as the standard deviation 
against the SOI variations in Fig.4(b).  There are drawn three tendency (regression) lines against 
SOI, which are different from the specifi ed years.  In the splited time intervals the scatted plots are 
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Figure 5   Splited scatter plots for sea levels with covariated SOI by splited time intervals

stationary model decreases but the direction of increment is opposite as the Cook's distance increases 
for high leverage.  It should be remaked that the degree of experience can be decomposed into the 
two parts: just statistical deviation and the leverage due to the covariates' deviation.  The former 
deviation is happened probably so it shouldn't be removable outlier, while the latter deviation is the 
fault of rare condition against the covariates and it should be removed as an infl uential outlier.
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drawn in Fig.5, which would tell us the correlation be suspicious, and the influenced outlier may pull 
the tendency lines against the covariate SOI.  We clear the doubt by means of the outlier sensitivity 
diagram for extremes.
    Fig. 6(a) shows the matrix of the paird scatter plots, those numbers indicates the values of the 
product moment correlation in the upper triangle and those of the Kendall's rank correlation in the 
lower triangle, and the Fremantle sea level has a temporal trend and covariated with SOI though 
their covariations are weak because the p-values are taken enough small to be significant as shown 
in the same positions of each triangle in Fig. 6(b).  It is also found that both covariates has almost no 
correlation, which would make the problem so easier to approach in our thought.
      As shown in Fig. 7, we examined five models by fixing the value of coefficients to zero in the 
following links to the covariates:
			     	       µ = µ0 + β1x1 + β2x2 + β3x1x2		  (27a)

				    log σ = log σ0 + α1x1 				    (27b)

				          ξ = ξ0					     (27c)

According to the rule of thumb of AIC, we choose M4, whose value of coefficients are listed as
         α1 = β3 = 0;     µ̂0 = 1.47, β̂1 = 0.1037, β̂2 = 0.0511,   σ̂0 = 0.124, ξ̂0 = −0.15        (28)

      The degree of experience comes to the largest value 72, which corresponds to the actual sample 
size, at the relatively low level around 1.4 m, as seen in Fig. 8.  The values of degree of experience 
are spreading even for the same sea level, because of taking the covariation due to both of SOI and 
time into consideration.  Fig. 8 shows the degree of experience for the data in the two manner.  One is 
maked by the open circle, which is the degree of experience obediently evaluated by Eq.(14) with the 
observed information matrix given by the sample. Another is marked by gray color, which is a kind 
of approximation evaluated by Eq.(23).  Those by Eq.(14) agree well with those by Eq.(23).  Thus, 
those decomposed two terms in Eq.(23) can be regarded to be derived from the obedient evaluation 
by Eq.(14).  
      Hence in Fig. 9, we have the contingent discrepancy K0 and the (inversed) leverage against the 
sea level, respectively.  Several ones of the blue points, which are out of twice times the standard 
deviation of SOI as mentioned in Fig. 4.(b), take high leverage value, the inverse of which and are 
less than 12.0 in Fig. 9 as well as one of the red points.  The critical value for the inverse of leverage 
is proposed as N/2p (see Gross, 2003, for example), which gets 72/2/3 = 12.0 in this case.  These 
are candidates of influencial outlier.
      By putting toghether the contingent discrepancy K0 and the (inversed) leverage against the sea 
level, we have a diagram of the outlier sensivity Fig. 10, where the contour lines of the theoretical 
(approximated) values in the degree of experience in the horizontal axis of the reciproal number of 

Figure 7   Model selection
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Figure 9   Two components in degree of experience
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Figure 10   Outlier sensitivity diagram for extreme value analysis

leverages and the vertical axis of the degree of experience by no covariance model K0.  	
      In principle, the outliers, whose value of degree of freedom less than 2, are inconclusive. It 
means that those are acceptable as is, and those are included for the extreme analysis, but the results 
for those should not be concerned (e.g.  the extremely largest value estimated for the return period 
of the record maximum should not surprised, because the result for those outliers are inconclusive.  
It is not correct nor wrong.)  However, we have an exception:  the outliers of high leverage (the 
reciprocal number is less than 2) should be removal.  It is because the conditions of the covariate SOI 
and time are restricted.  Fortunately, we have no outlier to remove.  The red point, whose value less 
than 2 but low leverage, is just inconclusive.  Five blue points are found to be enough low leverage, 
though those SOI are deviated from the others as seen in Fig. 4(b) and 9.  The critical valus of degree 
of experience K = 2.0 is adopted also here after the proverbial reason, shown in Kitano et al. (2009), 
what happend twice will happen three times.

Conclusions
       A diagram drawn by the contours for the degree of experience with the two axes of the inversed 
leverage and the contingent discrepancy is proposed in this study.  It is based on the mathematical 
derivation of the decomposed form by the Fisher's information matrix.  It is possible to detect the 
influenced outlier that the degree of experience is smaller because of high leverage, while we cannot 
reject the candidate outlier whose degree of experience takes a small value though the leverage is 
not so high.  We should keep in suspence to judge the rejection because the outlier is just deviated 
occassionally.  It will become more difficult to detect the influenced outlier in the dataset of more 
higher dimension of covariates for the research on the climate change.  In such cases we hope that the 
detection method by the degree of experience in the diagram proposed here will be served usefully.
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