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ANALYSIS OF WAVE INTERACTION WITH SUBMERGED ADJACENT  
PORO-ELASTIC BREAKWATERS 

Yuan-Jyh Lan 1 , Tai-Wen Hsu 1 and Ching-Yu Chen 1 

In this study, the problem of wave interaction with two closely submerged adjacent porous elastic breakwaters is 
investigated theoretically. The porous elastic breakwaters are assumed to be homogeneous, isotropic and elastic. Lan 
and Lee’s (2010) analytical solution is extended to the problem subject to proper boundary conditions. Using general 
solutions for each region and the matching boundary conditions, a set of simultaneous equations is thus developed and 
solved numerically. The present analytic solutions compare favorably with simplified cases of the poro-elastic 
submerged breakwater. Changes of the width of two adjacent breakwaters, the permeable coefficient effect on wave 
profile, and the effect of materials and configurations of breakwaters on wave variation are the focus of the present 
paper. The results show that a large amount of energy dissipates when the adjacent structures both have the same soft 
material and dimension of width with higher permeability. Different materials and shapes of structures could 
significantly influence the reflection coefficient. 
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INTRODUCTION 
The increase of ecological and near-natural coastal engineering escalates requirements on 

structures and construction methods, and no longer constitutes the simple purpose of protection. Not 
only do the performing methods need to accommodate nature, but also various structural materials 
should be used from local environments. It is difficult to achieve both minimal impact on the 
environment and enough strength for practical protection. Most structures are usually constructed by 
rigid materials and attached to outer layers using ecological engineering methods in order to make 
them more similar to the natural environment. The outer layers of structures are usually composed of 
permeable and flexible material. This kind of structure can be regarded as composite structures, 
consisting of two or more different interaction mechanisms with wave motion. Due to the flexibility of 
soft materials, the deformation induced by water waves disturbs the flow field in the vicinity of the 
structure when compared with their impermeable reflective concrete counterparts (Lan et al., 2011). To 
understand wave transformation by two closely adjacent submerged breakwaters, the additional 
flexible effect of submerged adjacent permeable breakwaters on wave scattering and energy dissipation 
are investigated theoretically in this paper. 

The study of wave interaction with poro-elastic structures is difficult because of the complexity of 
dynamic mechanisms in the poro-elastic medium and its surface. Relevant investigations have included 
flexible and permeable plates or breakwaters (Wang and Ren, 1993; Yip et al., 2002) and poro-elastic 
seabeds with infinite widths (Huang and Song, 1993; Chen et al., 1997; Tseng et al., 2008). The 
formulation of these studies has been simplified in that the particular structural size and unlimited 
width of seabed could maintain no change along the horizontal direction or thin poro-elastic plates 
would reduce the complexity of the flexible and permeable mechanisms. For the case of finite size 
breakwaters, Lan and Lee (2010) proposed an improved Biot’s theory for evaluation of high permeable 
resistance introduced by Sollitt and Cross (1972). They analyzed the reflection, transmission and 
energy dissipation of monochromatic waves traveling over a single rectangular submerged poro-elastic 
structure. According to Lan and Lee (2010), Lan et al. (2011) obtained an analytical solution for wave 
scattering by a series of poro-elastic submerged structures, and accordingly, laboratory experiments 
were performed for this study. 

In this paper, an analytical solution which is extended from Lan and Lee’s theory was obtained for 
wave scattering by two closely adjacent poro-elastic submerged breakwaters. A limited approach is 
employed and the solution is in terms of orthogonal eigenfunctions. Influence parameters are analyzed 
to account for the reflection and transmission coefficients, while calculations from the analytical 
solution are compared with previous results. Key features of wave transformation affected by various 
adjacent breakwater widths, permeability coefficients, materials and configurations of breakwaters are 
also discussed. 
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PROBLEM FORMULATION 
Two rectangular shapes of submerged poro-elastic breakwaters with the same height h  are fixed 

closely adjacent on an impermeable seabed, and are subject to incident waves. Each of the poro-elastic 
breakwaters is assumed to be homogeneous, saturated and hydraulically isotropic. The schematic 
diagram is illustrated in Figure 1, where d  is the water depth, and IIb  (upstream side) and IVb  

(downstream side) are structural widths, respectively. A two-dimensional Cartesian coordinate system 
is used with the original point located at the interface between the impermeable seabed surface and the 
center of the upstream breakwater, while the x -axis is pointed to the right, and the z -axis is pointed 
upward. Incident waves propagate in the negative x  direction. The wave profile I  and velocity 

potential function I  can be expressed, respectively, as 
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where Re  is the real part of a complex variable, IA  the wave amplitude, 0k  the wavenumber, 

T 2  the angular frequency, T  the wave period, t  the time, g  gravitational acceleration, and 

1i  is the complex unit. 
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Figure 1. Sketch of the boundary value problem on waves passing submerged adjacent poro-elastic 
breakwaters. 

 
Unlike composite breakwaters, submerged poro-elastic breakwaters are placed very in close 

proximity to each other; consequently, it is difficult to analyze the complicated physical properties of 
the two closely adjacent boundaries. Two assumptions are made on the two closely positioned 
breakwaters in order to derive analytical solutions. The assumptions are as follows: (1) A thin fluid 
layer with a tiny width of x2  exists in two closely adjacent breakwaters; and (2) Movements of the 
two poro-elastic breakwaters do not interfere with each other. 

To solve this problem, the study domain is divided into five fluid regions and two breakwater 
regions as shown in Figure 1, in which region (III) is the thin fluid domain between the two closely 
adjacent poro-elastic breakwaters. As x  approaches zero, the breakwaters shown in Figure 1 could 
tend to the submerged adjacent poro-elastic conditions. 

Governing equations for poro-elastic breakwaters 
The poro-elastic submerged breakwaters at regions (II)-2 and (IV)-2 are assumed to be 

homogeneous, isotropic and saturated with poro-elastic features. In this situation, the conservation of 
mass for the wave field is satisfied based on Verruijt’s equation (1969): 
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where P  is the pore pressure, 'n  is the porosity of the poro-elastic medium,   is the compressibility 

of the pore fluid, Q


 is the fluid velocity relative to the elastic solid, jid


 *  is the elastic solid 

displacement, and   and   are components of displacement in the x - and z -directions, respectively. 

Physically, equation (3) describes the change in pore pressure which is related to the dilation rates of 
the pore fluid and the elastic solid skeleton. The conservation of momentum follows Biot’s theory 
(1956) written in the following form: 
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where ),( zx   is the gradient operator, f  the linear friction factor, s  the density of elastic 

solid structure, w  the density of fluid, S  the virtual mass coefficient, and *  is the effective stress 

tensor of the poro-elastic media. It is noted that the linear friction factor f  is determined by the 

influence parameters of the kinematic viscosity of the fluid  , the intrinsic permeability pk , the 

turbulent drag coefficient fC  and the porosity 'n . In equations (4) and (5), Sollitt and Cross’s theory 

(1972) and Lorentz’s hypothesis have been applied to deal with the turbulent resistance force and 
linearize the governing equations, respectively. For further details, please refer to Lan and Lee (2010). 

On the other hand, the relationship between the effective stresses and strains in the poro-elastic 
medium is governed by Hooke’s law: 
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where x' , z' , xz'  and xz'  are the effective stresses of the poro-elastic medium, respectively, 

)]1(2[  EG  is the shear modulus,   is Poisson’s ratio, and E  is Young’s modulus. 

Equations (3)-(6) can be decoupled into three partial differential equations (PDEs) in  ,   and 

P  as follows (Lan et al. 2011): 
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The coefficients 1 , 2  and 3  are, respectively, given by 
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where ws nn  ')'1(   is the mean density of the poro-elastic medium. Therefore, the physical 

properties of the poro-elastic breakwaters in regions (II)-2 and (IV)-2 are denoted by the subscript ‘II’ 

and ‘IV’, respectively. We notice that equation (5) is used to obtain Q


 after  ,   and P  are solved. 

Governing equations for water waves 
The fluid domain is divided into regions (I), (II)-1, (III), (IV)-1, and (V). The velocity potentials 

satisfy the Laplace equation given by 

 5,4,3,2,1,02  jj  (12) 

in which RI 1  is the velocity potential at region (I) and R  is the reflected velocity potential. 

The velocity vector related to the potential function is determined by jjwq )(


. 

Boundary conditions 
The linearized free surface boundary condition reads as: 
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The bottom boundary conditions matches the non-slip condition: 
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The boundary conditions on the breakwater surface are given by 
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boundary conditions between any two closely adjoining regions are the continuity of both the pore 
pressure and normal flow flux, which are written as: 
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Formulation of the homogeneous boundary value problem 
The pressure and flow flux continuous boundary conditions between regions (II)-1 and (II)-2, and 

regions (IV)-1 and (IV)-2 are non-homogeneous. Based on the linear assumption, the physical 
properties in regions (II)-1 and (II)-2 and regions (IV)-1 and (IV)-2 are divided into two parts, i.e., 
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IVzQ , , and so on. Defining superscripts ‘a’ and ‘b’, the non-homogeneous boundary value problem 

can be modified by separating regions (II)-1 and (II)-2 to sub-regions (II)-1-a, (II)-1-b, (II)-2-a and 
(II)-2-b, respectively. Regions (II)-1-a and (II)-2-a satisfy the vertical homogeneous boundary 
conditions, while regions (II)-1-b and (II)-2-b fit the horizontal homogeneous boundary conditions. 
Following this procedure, the homogeneous boundary value problem of waves propagating over 
adjacent poro-elastic submerged structures is solved analytically. For further details refer to Lan and 
Lee (2010). 

METHOD OF SOLUTION 
To solve the boundary value problem mentioned above, we adopt calculus of the limit operator 
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 to whole derivations and solutions. The velocity potentials R , 3  and 5  satisfying the 

Laplace equations along with the free surface and bottom conditions can be obtained formally by an 
eigenfunction expansion as follows: 
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where 00 ik . The eigenvalues n  are determined by the dispersion relation as 2  
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Note that both the reflected velocity potential R  and the transmitted velocity potential 5  

include propagating ( 0n ) and evanescent ( 1n ) modes. Thus, the reflection and transmission 
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respectively. Energy dissipation is estimated using wave energy conservation and given by 
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The solutions of the system in regions (II)-2 and (IV)-2 are obtained by means of the method of 
separation of variables. The general solutions of the displacement components and pore pressure, 
satisfying the homogeneous matching boundary conditions, are given by 
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where 

 IVIIjnhna
jn ,,,2,1,0,ˆ )2(    (33) 

Similarly 

 

    
    
     

2,1,,,
2

)1(ˆsin

ˆ

)2(

)2(6)2(5

)2(4)2(3

0
)2(2)2(1)2(

)2(3)2(3

)2(2)2(2

)2(1)2(1
















































 IVIIje
b

x

eAeA

eAeA

eAeA

tijb
jn

hzb
jn

hzb
jn

hzb
jn

hzb
jn

n

hzb
jn

hzb
jn

b
jn

b
j

b
jn

b
jn

b
jn

b
jn

b
jn

b
jn













 (34) 

 

    
    

    

2,1,,,
2

)1(ˆcos

ˆ

)2(

)2(2)2(1
)2(3

2

)2(

)2(4)2(3)2(2

)2(2)2(1)2(1
0

)2(1)2(1

)2(2)2(2

)2(1)2(1











































































 IVIIje
b

x

eAeA

eAeA

eAeA

tijb
jn

hzb
jn

hzb
jnb

jn

b
jn

hzb
jn

hzb
jn

b
jn

hzb
jn

hzb
jn

b
jn

n

b
j

b
jn

b
jn

b
jn

b
jn

b
jn

b
jn


















 (35) 

 
    

    
2,1,,,

2
)1(cos

1
'

)2(

)2(4)2(3

)2(2)2(1)2(1

0

2

)2(2)2(2

)2(1)2(1























































 IVIIje
b

x

eAeA

eAeA

n

ifS
P

tijb
jn

hzb
jn

hzb
jn

hzb
jn

hzb
jn

b
jn

n j

jj
w

b
j

b
jn

b
jn

b
jn

b
jn











 (36) 
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The quantities )( InD , )1(
)( IIInD , )2(

)( IIInD , )(VnD , a
jnA )1(0  , a

jnB )1(0  , b
jnD )1(0  , a

jnA )2(1  ~ a
jnA )2(6   and 

b
jnA )2(1  ~ b

jnA )2(6   ( IVIIj , ) are 34 unknowns to be determined by approximations of power series. It 

is noted that equations (23)~(27), (30)~(32) and (34)~(36) form a linear system of 34 equations. These 
unknowns can be obtained using the remaining matching boundary conditions together with the 

orthogonal eigenvalues n , a
jn )1(  , b

jn )1(  , a
jn )2(ˆ   and b

jn )2(ˆ   ( IVIIj , ). 

VERIFICATION 
Even though the two closely adjacent poro-elastic submerged breakwaters are placed near a 

composite breakwater, it is plausible to consider the adjacent breakwaters as a single structural system 
in near rigid and homogeneous conditions. To compare the accuracy of the analytical solution with 

previous studies, the adjacent breakwaters are set at the same widths, i.e. 2/bbb IVII  , b  is total 

structural width, and the material properties, i.e. ''' nnn IVII  ,   IVII , fIVfIIf CCC  )()( , 

aIVaIIa CCC  )()( , GGG IVII  , pIVpIIp kkk  )()( ,   IVII  and sIVsIIs   )()( . 

Two cases with shear modulus 24 N/m 105G  and 24 N/m 101G  are calculated, in which 

05.0dAI , 2db , 5.0dh , 4.0'n , 2.0fC , 015.0aC , 26 m 1028.2 pk , 333.0 , 

2650s
3mkg , 1000w

3mkg , sm1012.1 26 , and 101035.4  Nm2 . The results 

of wave reflection, RK , and transmission, TK , versus dk0  are presented in Figures 2 and 3. The 

analytic solution obtained by Lan and Lee (2010) is shown in the same figure for comparison. Figure 2 

shows the case of a harder poro-elastic breakwater ( 24 N/m 105G ) and the results of the present 

analytic solution agree fairly well. For the smaller shear modulus ( 24 N/m 101G ), shown in Figure 
3, in which the effect of the interface elasticity of two closely adjacent breakwaters on wave 
transformation is obvious, the transmission coefficient TK  decreases, while the reflection coefficient 

RK  increases as the number of reflected oscillation patterns increases. This implies that the phase lag 

of motions of the two poro-elastic breakwaters result in different wave transformations. 

RESULTS AND COMPARISONS 
In this section, the effects of the two closely adjacent poro-elastic submerged breakwaters on wave 

transformation including wave reflection, transmission and energy dissipation are intensively studied. 
This study focused on the investigation of changes of width of two adjacent breakwaters, the 
permeability of materials, and the shapes of breakwaters on wave transformation. The input conditions 
of poro-elastic structures and water waves used for the computations are: 5.10 dk , dAI 05.0 , 

2db , dh  5.0 , 1000w
3mkg , 61012.1  sm2 , 10

21 1035.4   Nm2 , 

2650)()(  IVsIIs   3mkg , IIn' 4.0' IVn , 333.0 IVII  , 2.0)()(  IVfIIf CC , and 

)()( IVaIIa CC  015.0 . It is noted that the shear modulus 24 N/m 101G  is selected to represent 

elastic structures, while the condition of 25 N/m 105G  approaches rigid materials. 
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Figure 2. Comparisons between the present theory and solutions of Lan and Lee (2010) ( 24 N/m 105G ). 
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Figure 3. Comparisons between the present theory and solutions of Lan and Lee (2010) ( 24 N/m 101G ). 

 

(a) Effect of breakwater widths with the same poro-elastic materials 
To investigate the influence of width of two closely adjacent breakwaters with the same poro-

elastic material (  101 4 IVII GG 2N/m ) on wave transformation, the total structural width is fixed 

as 2/ db , while three combinations of two closely adjacent breakwater widths, (1) 5.0/ dbII , 

dbIV /  5.1 , (2)  1/ dbII , 1/ dbIV , and (3) 5.1/ dbII , 5.0/ dbIV , are computed in the study. 

Note that the first combination stands for the interface of two closely adjacent breakwaters closer to 
upstream, the second one is placed at the middle of the breakwater system, and the last one is 
positioned closer to downstream. Figure 4 shows the effect of two closely adjacent breakwater widths 

on RK , TK  and energy dissipation fE  for higher material permeability pk 61028.2  2m . As the 

two closely adjacent breakwater width changes, the oscillation patterns of the wave reflection 
coefficient varies significantly within the range of 0.46.0 0  dk . The lowest wave transmission 

coefficient TK  and the largest energy dissipation fE  respectively occur in 6.22.1 0  dk  and 

4.24.1 0  dk  for the second combination of  1/ dbII  and 1/ dbIV , respectively. For the first and 

third combination of two closely adjacent breakwater widths, the variation of TK  and fE  are quite 

similar. 
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Figure 4. Effect of adjacent breakwater widths with the same poro-elastic material on RK , TK , and fE  

( 26
)()( m 1028.2  IVpIIp kk ). 

 

(b) Effect of breakwater widths with different poro-elastic materials 
To examine the influence of different poro-elastic structures on wave reflection RK , transmission 

TK  and energy dissipation fE , an elastic material ( 24 N/m 101G ) and a quasi-rigid one 

( 25 N/m 105G ) with the same permeability are used in the calculation. The breakwater system 
having the width 2/ db  includes the rigid and elastic breakwaters by three combinations of two 
closely adjacent breakwater widths: (1) 5.0/ dbII , 5.1/ dbIV , (2)  1/ dbII , 1/ dbIV  and (3) 

dbII /  5.1 , 5.0/ dbIV , in which the subscript ‘II’ denotes the upstream breakwater. The variation 

in RK , TK  and fE  against dk0  for various combinations of two closely adjacent breakwater widths 

with the same structural width b  are demonstrated in Figures 5~8. Notably Figures 5 and 6 show the 
results for the rigid structure located upstream, while Figures 7 and 8 depict the downstream cases. 

For the case of a higher permeability ( 61028.2 pk 2m ), Figures 5 and 7 show that the shape of 

adjacent breakwater widths significantly affect the reflection coefficient RK , while it rarely influences 

the transmission coefficient TK  and energy dissipation fE  regardless of whether the breakwater 

system locates rigid breakwater upstream or not. The increase of width of elastic breakwater produces 
broader bandwidths of the transmission coefficient and energy dissipation. The reflection coefficient 
oscillates obviously for the rigid breakwater placed upstream, but a low reflection coefficient occurs 
around the region near 0.10 dk . In the case of the poro-elastic breakwater placed upstream, the 

oscillating phenomenon of the reflection coefficient is not significant. This is due to the fact that a 
higher permeability associated with elasticity could alter the reflected oscillation pattern. For a lower 

permeability ( 91028.2 pk 2m ), the results presented in Figures 6 and 8 show that the shape of two 

closely adjacent breakwater widths on wave reflection coefficient, wave transmission coefficient and 
energy dissipation is not noticeable. Furthermore, a larger width of poro-elastic breakwater increases 
the elastic effect on wave transformation and results in smaller values of TK  and higher RK  and fE  

in certain regions. Elastic structural width decreases could lead to peak values of TK  and fE  for a 
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higher dk 0 . The reflection coefficient oscillates more obviously when an increase in the elastic 

structural width with a lower permeability occurs. 
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Figure 5. Effect of adjacent breakwater widths with different poro-elastic materials on RK , TK , fE  

( 25 N/m 105IIG , 24 N/m 101IVG  ,and 26
)()( m 1028.2  IVpIIp kk ). 
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Figure 6. Effect of adjacent breakwater widths with different poro-elastic materials on RK , TK , fE  

( 25 N/m 105IIG , 24 N/m 101IVG  ,and 29
)()( m 1028.2  IVpIIp kk ). 
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Figure 7. Effect of adjacent breakwater widths with different poro-elastic materials on RK , TK , fE  

( 24 N/m 101IIG , 25 N/m 105IVG , and 26
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Figure 8. Effect of adjacent breakwater widths with different poro-elastic materials on RK , TK , fE  

( 24 N/m 101IIG , 25 N/m 105IVG  ,and 29
)()( m 1028.2  IVpIIp kk ). 
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(c) Effect of permeability with different poro-elastic materials 
The permeability effect of the two closely submerged adjacent breakwaters with different poro-

elastic materials on wave transformation is also studied.  Figures 9~11 show the variations in RK , TK , 

and fE  versus dk0  for varying permeability in the range of 91028.2 pk ~ 26 m1028.2  , where 

the elastic breakwater is placed upstream and various values of adjacent breakwater widths are used, 
including 5.0/ dbII  and 5.1/ dbIV  in Figure 9,  1/ dbII  and 1/ dbIV  in Figure 10, and 

5.1/ dbII  and 5.0/ dbIV  in Figure 11. 

For the case of a small width of elastic breakwater, Figure 9 shows that the wave reflection 
coefficient RK  diminishes while its oscillatory interval gradually increases with the increase of 

permeability. For nearly impermeable breakwaters ( 29 m1028.2 pk ), oscillations of the 

transmission TK  improve significantly and energy dissipation fE  increases with the increase of the 

relative wave number dk0 . For higher values of permeability ( 29 m1028.2 pk ), energy dissipation 

decreases significantly for low values of dk0  and the oscillation of TK  vanishes. 

For the case of a larger width of elastic breakwater, the elastic effect becomes noticeable. Figures 
10 and 11 show that in the range of 0.20 dk , the effects of the permeability on waves are similar to 

that shown in Figure 9. However, for permeability values less than 28 m1028.2  , it is interesting to 
note that resonance caused by the elastic breakwater occurs for 0.35.2 0  dk , and gradually vanishes 

as 28 m1028.2 pk . This reduction of resonance is caused by damping effects induced by the higher 

seepage velocity of the interaction mechanism between the waves and submerged poro-elastic 
breakwaters (Lan and Lee, 2010). 
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Figure 9. Effect of intrinsic permeability pk  with different poro-elastic materials ( 24 N/m 101IIG , 

25 N/m 105IVG ) and the first combination of adjacent breakwater widths (  , 5.0/ dbII  5.1/ dbIV ) on RK , 

TK , and fE . 
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Figure 10. Effect of intrinsic permeability pk  with different poro-elastic materials ( 24 N/m 101IIG , 

25 N/m 105IVG ) and the second combination of adjacent breakwater widths ( , 1/ dbII  1/ dbIV ) on RK , 

TK , and fE . 
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Figure 11. Effect of intrinsic permeability pk  with different poro-elastic materials ( 24 N/m 101IIG , 

25 N/m 105IVG ) and the third combination of adjacent breakwater widths ( , 5.1/ dbII  5.0/ dbIV ) on RK , 

TK , and fE . 
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CONCLUSION 
A theoretical formulation and an analytical solution for problem of waves propagating over two 

closely adjacent poro-elastic submerged breakwaters were presented in this paper. Two assumptions 
were made to simplify the intricate boundary conditions on the interface of adjacent poro-elastic 
breakwaters. To solve the linear hydrodynamic problem, an eigenfunction expansion associated with 
the approximation technique was employed. The results show that the analytical solution is applicable 
for a single submerged poro-elastic breakwater. In applying the analytical solution, wave 
transformation by two closely adjacent poro-elastic submerged breakwaters was intensively 
investigated. The parameters include the shapes of adjacent breakwaters with the same and different 
poro-elastic materials, and the effect of permeability with different poro-elastic materials. From the 
present study the following interesting findings are presented:  
1. For quasi-rigid materials with the same poro-elastic properties, the two closely adjacent poro-

elastic submerged breakwaters can be regarded as a single submerged poro-elastic structure with 
homogeneous and hydraulically isotropic properties. In the softer poro-elastic medium region 

( 510G 2mN ), the structural motion mechanism on the interface of adjacent breakwaters can 

produce a larger wave reflection and smaller transmission than a single breakwater. 
2. The largest energy dissipation occurs when the adjacent structures both have the same soft, highly 

permeable material and width properties. 
3. In the case of elastic and rigid materials with the same permeability, wave reflection depends on 

the shape of two closely adjacent breakwaters, while the influence on wave transmission and 
energy dissipation is not significant regardless of whether the rigid breakwater is located upstream 
or not. 

4. The resonance phenomena induced by structural vibration and wave oscillation can be found for 
the case of the softer and almost impermeable structure and escalates when increasing the width of 
the elastic breakwater. However, higher permeability produces significant wave damping and 
reduces the resonance on the condition of the waves and poro-elastic medium interaction. 
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