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In this paper, a new Boussinesq water wave theory is derived which can simulate highly dispersive nonlinear waves,
their depth-varying velocities, and wave-induced currents, from very deep, but still finite, depths through the surf zone
to the shoreline.. Boussinesq scaling is employed. We removed the irrotationality assumption by using polynomial
basis functions for velocity profile which are inserted into basic equations of motion. Keep terms up to the desired
pproximation level and solve the coupled weighted residual system together with vertically integrated mass equation.
The computational cost is similar to normal Boussinesq theories although there are more unknown varibles to be solved
than that in normal Boussinesq models. Because we can reduce the number of the coupled equations by multiplying
some coefficients and subtracting from each other which means the matix to be solved is in similar size as normal
Boussinesq models. The models show rapid convergence to exact solutions for linear dispersion, shoaling, and orbital
velocities; however, properties may be simultaneously and substantially improved for a given order of approximation
using asymptotic rearrangements. This improvement is accomplished using the large numbers of degrees of freedom
inherent in the definitions of the polynomial basis functions either to match additional terms in a Taylor series, or
to minimize errors over a range. Future work will be focused on rotational performance in 2D model by including
viscosity,breaking and turbulence.
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INTRODUCTION
Boussinesq-type theories for water waves started from 1960s by Peregrine and have progressed signif-

icantly over the past two decades when people started using various methods of asymptotic rearrangment.
Researchers have made great efforts to extend the accuracy of linear and nonlinear characteristics to deeper
water, moving from the mildly nonlinear, mildly dispersive depth averaged formulation of Peregrine (1967)
to the enhanced dispersion and shoaling found in Madsen et al. (1991), Madsen and Sorenson (1992) and
the redefinition of the velocity variables in Nwogu (1993), both of which increased accuracy significantly.
Further work increased nonlinearity from the mildly nonlinear equations that existed previously to so-called
"fully nonlinear" equations with considerably more accurate nonlinear properties (Wei et al., 1995; Madsen
and Schaffer, 1998; Kennedy et al., 2001). Formal expansions to higher order increased the accuracy of all
properties (Madsen and Schaffer, 1998; Gobbi and Kirby, 1999; Gobbi et al., 2000) but at the cost of much
more complex equations. Extensions to include wave breaking and shorelines have made these into true
surf zone models able to represent waves and wave-induced currents including wave setup, rip currents,
and longshore currents (e.g. Schaffer and Madsen, 1993; Sorensen et al., 1998; Chen et al.,2000; Kennedy
et al., 2000a,b; Lynett et al., 2002; Nwogu and Demirbilek, 2010; Bonneton et al., 2011a). However,
even though many aspects of Boussinesq theory have progressed significantly, some aspects have reached
apparent limits:

1. Higher order equations are extremely complex, so much so that their adoption has been hindered.
2. Most Boussinesq equations feature partial irrotationality assumptions which are entirely violated in

the surf zone. This means that velocity profiles over the water column will be significantly in error.
3. The most straightforward Taylor series expansions for velocity have a limited radius of covergence,

and will diverge strongly in moderate water depths (Kennedy et al., 2002;Madsen and Agnon, 2003).
For these situations, higher order systems could give worse results than lower order systems. Partial

solutions have been found: convergent formulations of very high order have been derived and tested (Mad-
sen and Agnon, 2003; Lynett and Liu, 2004; Schaffer, 2009). However, no high-order Boussinesq-type
systems exist that are able to simulate accurately highly nonlinear waves, their depth-varying velocities,
and wave-induced currents, from very deep, but still finite, depths through the surf zone to the shoreline.
Smoothed Particle Hydrodynamics (SPH) and Volume of Fluid (VOF) Navier-Stokes methods can simulate
these situations with good accuracy, but have computational costs so large that modeling a 20 wavelength
by 20 wavelength coastal region is effectively beyond their capabilities. Here, we derive and test systems
of equations for nonlinear water wave transformation. Boussinesq scaling is employed, but without the par-
tial irrotationality assumption of most systems so that rotational surf zone fows may be modeled naturally.

1Department of Civil, Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall , Notre
Dame, Indiana, 46556, United States

2Department of Aerospace Engineering and Engineering Mechanics, the University of Texas at Austin, 210 East 24th Street,
W.R. Woolrich Laboratories, 1 University Station, C0600 Austin, Texas 78712-0235 USA



2 COASTAL ENGINEERING 2012

The systems may be extended to arbitrary order and show excellent convergence towards exact solutions
for dispersion, shoaling, and orbital velocities. The end results show a resemblance to both Boussinesq
and Green-Naghdi systems, and may be recast into different forms that are useful for introducing weakly or
moderately nonhydrostatic properties into hydrostatic ocean models. Most of the asymptotic rearrangement
techniques used for Boussinesq models may also be employed here

SCALING
Boussinesq-shallow water scaling for non-dimensional variables is:

(x, y) = k0(x∗, y∗) z = h−1
0 z∗ t = k0(gh0)

1
2 t∗ h = h−1

0 h∗ η = (h0)−1η∗ (1)

P = (ρ∗g0h0)−1P∗ g = g−1
0 g∗ u = (g0h)−1/2u∗ w = (k0h0)−1(g0h)−1/2w∗ (2)

The dimensionless continuity equation and kinematic boundary conditions are:

∇ · u +
∂w
∂z

= 0 (3)

w = −u · ∇h at z = −h(q = 0) (4)

w =
∂η

∂t
+ u · ∇η at z = η(q = 1) (5)

where ∇ =

(
∂

∂x
,
∂

∂y

)
, u = (u, v) (6)

Integrating (3) from bottom to surface and applying kinematic boundary conditions give a mass equation in
conservation form,

∂η

∂t
+ ∇ ·

∫ η

−h
udz = 0 (7)

Euler’s 2-D equations of motion for an inviscid fluid in dimensionless form are,

∂u
∂t

+ u · ∇u + w
∂u
∂z

+ ∇P = µ∇ · τij +
1
µ

∂

∂z
τi3 (8)

µ2 ∂w
∂t

+ µ2u · ∇w + µ2w
∂w
∂z

+
∂P
∂z

+ g = µ∇ · τ3j + µ
∂

∂z
τ33 (9)

i = 1, 2; j = 1, 2. where µ = k0h0 is a measure of dispersion. Boussinesq equations attempt to go to as
high a µ value as possible to increase the range of application. Integrate(9) from z to η , the pressure will
be,(P(η) = 0)

P(z) = µ2
∫ η

z

∂w
∂t

dz + µ2
∫ η

z
u · ∇wdz + µ2

∫ η

z
w
∂w
∂z

dz − µ
∫ η

z

(
∇ · τ3j +

∂

∂z
τ33

)
dz + g(η − z) (10)

The pressure profile is similar to most Boussinesq theory and results in mixed space-time derivatives
are like typical Boussinesq models. Then plug P(z) back into equation (8) with weighting function fm(q):∫ η

−h
fm

(
∂u
∂t

+ u · ∇u + w
∂u
∂z

+ ∇P − µ∇ · τij −
1
µ

∂

∂z
τi3

)
dz = 0, m = 0, 1, . . . ,N (11)

Assume:

u =

N∑
n=0

µβn un fn(q) τi j =

N∑
k=1

µγi j Ti jk fk(q) where, q =
z + h(x, y)

η(x, y, t) + h(x, y)
(12)

βn = n when n is even; βn = n + 1 when n is odd. The velocity profile is assumed as a summation of
N terms. Each term consists of a µ term, horizontal coefficients un and basis functions fn. The order of
µ stands for the approximation level. The un depend on x, y, t while the basis functions fn only depend
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on vertical coordinate q. We removed the irotationality assumption by solving more unknowns( un) and
seperating the vertical conponent out for each term so that it is easy to get ∂u/∂z.

w = −

N∑
n=0

µβn (∇ · un(η + h)gn + un · ∇h fn − un · ∇(η + h)rn) (13)

Plug u and w into ( 7), (10) and keep terms up to O(µN). The system looks like coupled equations system.

O(µ2),O(µ4) SYSTEMS
For O(µ2) system,

u = u0 + µ2u1 f1 + µ2u2 f2 + O(µ4) (14)

w = − (∇ · u0(η + h)q + u0 · ∇h) + O(µ4) (15)

Plug u and w into (7), (11) and keep terms up to O(µ2).

η,t + ∇ ·

u0(η + h) + µ2
2∑

n=1

un(η + h)gn|q=1

 = 0 (16)

∫ η

−h
fm

(
∂u
∂t

+ u · ∇u + w
∂u
∂z

+ ∇P − µ∇ · τij −
1
µ

∂

∂z
τi3

)
dz, m = 0, 1, 2 (17)

Although the mass equation is explicit, the three coupled momentum equations would seem to need to be
solved simultaneously for u0,t, u1,t and u2,t, which would increase the computational cost. However, if it is
realized that mixed space-time derivatives only occur for u0 (i.e. u0,xxt and related terms), this may easily be
reduced to a form where u0,t and its mixed derivatives are the only unknowns. To do this, u1,t and u2,t must
be eliminated from one momentum equation, say m = 0. The basic form of the equation will not change,
but the integrals will. If we define g̃0 = (g0 − d0g1 − e0g2), where

d0 =
φ01φ22 − φ21φ02

φ11φ22 − φ12φ21

e0 =
φ11φ02 − φ01φ12

φ11φ22 − φ12φ21
(18)

replacement of g0 with g̃ and equivalently for all other integrals (e.g. ε0n is replaced with ε̃0n) will result
in a replacement equation for m = 0 that does not contain u1;t or u2;t terms. This will be in the standard
O(µ2) Boussinesq form and may be arranged into a tridiagonal matrix for 1D to solve for u0,t using methods
that are well known. Velocities u1,t and u2,t will in many numerical representations then be solvable purely
locally, which is straightforward.

O(µ4) system will look like the fully nonlinear O(µ2) system with additional higher order linear terms.
Due to the complexity, the higher order terms will be linearized which makes the system weakly O(µ4)
system but should give good nonlinear results.

The mass equation looks similar just extended to O(µ4)

η,t +

4∑
n=0

µβn∇ · (un(η + h))gn|
1
0 = 0 (19)

The momentum equations will be

0 =

4∑
n=3

µ4un,thφmn|
1
0 −

2∑
n=1

µ4[(un,xxth3 + 2un,xthxh2)(Gn|q=1gm|q=1 − Γmn|q=1)

− un,xth2hx(γmn|q=1 − θmn|q=1)
+ (un,xthxh2 + un,thxxh2 + un,th2

xh)(gn|q=1gm|q=1 − γmn|q=1)
− un,th2

xh(φmn|q=1 − Ψmn|q=1)
− (un,xthxh2 + un,thxxh2 + un,th2

xh)(Rn|q=1gm|q=1 − Θmn|q=1)
+ un,th2

xh(ρmn|q=1 − Fmn|q=1) + O(µ2) + O(µ0). (20)
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Similarly to the process for N = 2, it is possible in higher orders to reduce the number of weighted
momentum equations that must be solved simultaneously by eliminating uN−1,t and uN,t from weighted
momentum equations m = (0; N − 2) through partial Gaussian elimination using momentum equations
m = (N − 1; N). The remaining N − 1 equations may be solved for u0,t to uN−2,t, and the results may then be
used to solve for uN−1,t and uN,t using momentum equations m = (N − 1; N). Again, this is possible because
mixed space-time derivatives do not appear in the weighted momentum equations for n = [N − 1; N]. We
will not give details, but the process is very similar to that in (3.6), except that new coeffcients must be
found for each equation in m = (0; N − 2).

PROPERTIES AND ASYMPTOTIC REARRANGEMENT OPTIMIZATION
In order to understand the range of applicability for different orders of approximation, the magnitude

and behavior of the error, and to compare to previous work, it is useful to obtain theoretical representations
for linear dispersion and shoaling. These are found from the first two orders of a multiple scales expansion,
with the linear dispserion found at first order and the shoaling properties at second order.

The multiple scales expansion in space (assuming that the system is steady in time) then has fast and
slow spatial derivatives

un,t → un,t

un,xt → un,xt + εun,Xt

un,xxt → un,xxt + εun,xX1t + εun,X1 xt + O(ε2) (21)

with similar expressions for η.
Defining the water depth to be only slowly varying and thus have only slow X1 derivatives, the hori-

zontal derivative of the pressure equation, to O(εh,X1 ), is then

∂P
∂x

=

N−2∑
n=0

µβn+2
[
−un,xxth2(Gn(1) −Gn)

]
+ gη,x

+ε

N−2∑
n=0

µβn+2
[
−

(
un,xX1t + un,X1 xt

)
h2(Gn(1) −Gn)

]
+εhh,X1

N−2∑
n=0

µβn+2un,xt
[
−2(Gn(1) −Gn) + (Rn(1) − Rn) − gn(1) − gnq + 2gn

]
+εgη,X1 + O(µN+2) (22)

A multiple scales expansion for the mass equation gives

η,t +

N∑
n=0

gn(1)
[(

un,x + εun,X1

)
h + unh,X1

]
(23)

Now expand each component in a perturbation series: η = η(0) + εη(1), un = u(0)
n + εu(1)

n . Insert these
into (7) and (11) , and collect all terms into the various orders to get perturbation equations:

At O(1)

η(0)
,t +

N∑
n=0

gn(1)u(0)
n,x = 0

h

 N∑
n=0

gm(1)u(0)
n,t −

N−2∑
n=0

u(0)
n,xxth

2(gm(1)Gn(1) − Γmn(1)) + gm(1)
(
gη(0)

,x

) = 0, m = 0, 1, . . . ,N (24)

At O(ε),

η(1)
,t +

N∑
n=0

gn(1)u(1)
n,x = −a(1)

h

 N∑
n=0

gm(1)u(1)
n,t −

N−2∑
n=0

u(1)
n,xxth

2(gm(1)Gn(1) − Γmn(1)) + gm(1)
(
gη(1)

,x

) = −b(1)
m , m = 0, 1, . . . ,N (25)
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where

a(1) =

N∑
n=0

gn(1)
(
u(0)

n,X1
h + u(0)

n h,X1

)
(26)

b(1)
m = h

N−2∑
n=0

−(u(0)
n,X1 xt + u(0)

n,xX1t)h
2 (gm(1)Gn(1) − Γmn(1))

+h2h,X1

N−2∑
n=0

u(0)
n,xt

[
−2(gm(1)Gn(1) − Γmn(1))

+(gm(1)Rn(1) − Θmn(1)) − gm(1)gn(1) + 2γmn(1) − θmn(1)
]

+hgm(1)(gη(0)
,X1

), m = 0, 1, . . . ,N (27)

Taking each component (at any order)

η ≡ η̃eiψ

un ≡ ũneiψ (28)

where ψ,x ≡ k(X1), ψ,t ≡ −σ all necessary derivatives are then

η,t = −iση̃eiψ

η,xt = σkη̃iψ
e

η,X1t = −iση̃,X1 eiψ

un,t = −iσũneiψ

un,xt = σkũneiψ

un,X1t = −iσũn,X1 eiψ

un,xxt = iσk2ũneiψ

un,xX1t = σk,X1 ũneiψ + σkũn,X1 eiψ

un,X1 xt = σkũn,X1 eiψ (29)

At first order, the system is closed and the linear dispersion relations may be found by setting the
determinant of (24) to zero. They could be compared to exact linear dispersion

C2
Airy

gh
=

tanh(kh)
kh

. (30)

At second order, the system is still not closed because there are more unknowns than equations, and more
constraints must be developed. First, we specify η̃(2)

0 = 0, so that the wave height on the slope is the same
as on a flat bed. Next we relate k,X1 to h,X1 . If we write the dispersion relation as σ2/gk = Q(kh) then

k,X1 = −h,X1

k
h

khQ,kh

Q + khQ,kh
= h,X1 ktr (31)

(kh),X1 = h,X1 k
(
1 −

khQ,kh

Q + khQ,kh

)
= h,X1 [kh]tr (32)

where the derivative of Q is with respect to kh. This works for all dispersion relations, when the appropriate
expressions are used for Green-Naghdi or exact quantities.

Finally, we must relate ũ(0)
n,X1

to η̃(0)
,X1

. As shown in section ??, we may relate these quantities through the
dispersion matrix. All of these relationships will have the form

ũ(0)
n

ση̃(0) = Tn(kh) (33)
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This leads to

ũ(0)
n,X1

= η̃(0)
,X1
σTn + η̃(0)σTn,kh

[
kh,X1 + k,X1 h

]
= η̃(0)

,X1
σTn + η̃(0)σTn,kh [kh]tr (34)

which, once it is noted that η̃(0)
,X1

= η̃(0)
,h h,X1 , closes the system.

The revised equations are then

a(1) = h,X1

N∑
n=0

gn(1)
(
η̃(0)
,h hσTn + η̃(0) (σTn + hσTn,(kh) [kh]tr

))
(35)

b(1)
m = +hh,X1

N−2∑
n=0

−σ2kTnη̃
(0)
,h h2 (2gm(1)Gn(1) − 2Γmn(1))

+hh,X1

N−2∑
n=0

−σ2η̃(0) (ktrTn + 2kTn,(kh)[kh]tr
)

h2 (gm(1)Gn(1) − Γmn(1))

+hhX1

N−2∑
n=0

σ2khTnη̃
(0) [− (2gm(1)Gn(1) − 2Γmn(1))

+ (gm(1)Rn(1) − Θmn(1)) −gm(1)gn(1) − θmn(1) + 2γmn(1)
]

+hh,X1 gm(1)(gη̃(0)
,h ), m = 0, 1, . . . ,N (36)

All η̃(0)
,h terms are then moved from the RHS to the LHS (as they are unknowns) and a linear matrix is

then solved for η̃(0)
,h and ũ(1)

n , n = 0, 1, . . . ,N. When written in the form

η(0)
,X1

η(0) = γh
h,X1

h
(37)

they may be compared to the infinite order linear Airy solution

γh = −
2(kh) sinh 2(kh) + 2(kh)2(1 − cosh 2(kh))

(2(kh) + sinh 2(kh))2 (38)

Obviously we have a lot of choice of basis functions like monomials or polynomials. Here we use
Shifted Legendre Polynomial basis function which is orthognal with good properties but still can be im-
proved by asymptotic rearrangement.

Figure (1) shows linear dispersion and shoaling for orders of approximation O(µ2, µ4, µ6, µ8) using
Gauss-Legendgre basis functions fn ≡ Tn(q).

A clear increase in accuracy is seen for increasing level of approximation. At O(µ2), phase speeds have
several percent error by kh = 1.5, while O(µ4) remains good until at least kh = 6. By O(µ6), accuracy
extends to kh = 15, while the highest level of approximation, O(µ8), has accuracy extending past kh = 20.
Since the nominal deep water limit for water waves is kh = π, these higher levels of approximation are very
accurate.

For lower order solutions, analytical representations may be found for phase speeds. At O(µ2), the
phase speed using Gauss-Legendre basis functions is

C2

gh
=

1
1 + 1

3 (kh)2
(39)

which is the same as is found for Peregrine’s depth-averaged Boussinesq equations, and for Green-Naghdi
level I theory (Shields and Webster, 1986). At O(µ4) using Gauss-Legendre basis functions, dispersion
becomes

C2

gh
=

1 + 13
105 (kh)2 + 1

420 (kh)4

1 + 16
35 (kh)2 + 3

140 (kh)4 + 1
6300 (kh6)

(40)
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Figure 1: Shoaling and Dispersion for different approximation levels using Shifted Legendre Polynomial
basis functions

which is identical to Green-Naghdi theory III. At levels greater than O(µ4), dispersion becomes too complex
for closed form representations and values at each wavenumber must be solved numerically.

For lower order systems, it is possible to arrive at dispersion results for generalized basis functions. If
we define

f0 = 1
f1 = a + q

f2 = b + cq + q2 (41)

then the general dispserion relation for an O(µ2) system with any choice of (a, b, c) will be

C2

gh
=

1 +
(

1
6 + 1

2 (b − ac)
)

(kh)2

1 +
(

1
2 + 1

2 (b − ac)
)

(kh)2
(42)

Thus, although there appear to be three free coefficients, only one combination has any influence on dis-
persion at O(µ2). For the shifted Legendre polynomial basis functions (suitably normalized so that the
coefficient of the highest degree polynomial in each basis function is unity), we find b − ac = 1/3, while to
arrive at the Pade [2,2] approximant as seen in figure(2) (Madsen et al., 1991)

C2

gh
=

1 + 1
15 (kh)2

1 + 2
5 (kh)2

(43)

we set b − ac = −1/5. For the simple basis functions fn = qn, we find that b − ac = 0 which does not yield
accurate dispersion. If we define

f0 = 1
f1 = a + q

f2 = b + cq + q2

f3 = d + eq + f q2 + q3

f4 = g + hq + iq2 + jq3 + q4 (44)
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Then similarly, we can get the general dispersion relation for an O(µ4) system with any choice of
(a,b,c,d,e,f,g,h,i,j):

C2

gh
=

1 + A1kh2 + A2kh4 + A3kh6

1 + A4kh2 + A5kh4 + A6kh6 (45)

where,

A1 =
1
6
−

f j
12

+
i

12
+

e
6

(46)

A2 = −
f j
72

+
g
24
−

f h
72

+
1

120
+

ei
72
−

d j
24

+
i

72
+

e
36

(47)

A3 =
eg

144
−

dh
144

+
e j

576
+

ei
432
−

h
576

+
e

720
−

f h
432

(48)

A4 =
1

12
(2e + i − f j + 6) (49)

A5 =
1

72
(−3d j + 6e + 3i − 3 f j − f h + ei + 3 + 3g) (50)

A6 =
1

144
(eg − h + e j + ei + e − f h − dh) (51)

We find the general dispersion relation has nothing to do with the choice of (a,b,c). In order to arrive
at the Pade[6,6] approximate:

C2

gh
=

1 + 5
39 (kh)2 + 2

715 (kh)4 + 1
135135 (kh)6

1 + 6
13 (kh)2 + 10

429 (kh)4 + 4
19305 (kh)6

(52)

we can choose any group of (d,e,f,g,h,i,j) only if they satisfy :

f j − i − 2e =
6

13
(53)

f h − ei + 3(d j − g) = −
9

143
(54)

e(
i
3

+
j
4

+
1
5

+ g) − h(
f
3

+
1
4

+ d) =
16

15015
(55)

e(i + j + 1 + g) − h(d + f + 1) =
64

2145
(56)

For O(µ2), if we set b = ac − 1/5,in order to get pade[2,2] for dispersion relation,then analytical solution
for shoaling gradient will be:

γh = −1/4
(84 + 200a) kh8 + (490 + 1000a) kh6 + (3150 + 7500a) kh4 − 4125 kh2 + 5625(

75 + 10 kh2 + 2 kh4
)2 (57)

Its Taylor’s expansion will be:

γh = −1/4 + 1/4 kh2 +

(
−

17
90
− 1/3 a

)
kh4 + O(kh6) (58)

If we want it to get the Taylor’s expansion of the exact solution at O(kh4),

γh = −1/4 + 1/4 kh2 − 1/18 kh4 + O(kh6) (59)

a has to be -2/5. For better optimization, a = − 84
200 = − 21

50 .
We can do similar optimization simultaniously to both dispersion and shoaling for higher order system.

Figure (2) shows the simultaniously optimized results for both shoaling and dispersion at O(µ2) and
O(µ4).
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Figure 2: Dispersion and Shoaling optimization for O(µ2) and O(µ4)

For the shifted Legendre polynomial basis functions we used, the dispersion relation at O(µ4) will be

C2

gh
=

1 + 13
105 (kh)2 + 1

420 (kh)4

1 + 16
35 (kh)2 + 3

140 (kh)4 + 1
6300 (kh6)

(60)

The dispersion relation at O(µ6) will be

C2

gh
=

1 + 14
99 kh2 + 373

83160 kh4 + 1
22680 kh6 + 1

7983360 kh8

1 + 47
99 kh2 + 163

5544 kh4 + 16
31185 kh6 + 67

23950080 kh8 + 1
279417600 kh10

(61)

The analytical solutions for shoaling using Shifted Legendre basis functions will not be shown here
while they are plot in figure(1).

Second harmonic could be optimized simultaneously. Figure(3) shows the ratio of η2 to the Stokes
solution for O(µ2)andO(µ4) system using shifted legendre polynomials and optimized basis functions.
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Figure 3: Second harmonic optimization for O(µ2) and O(µ4)

DISCUSSION AND CONCLUSIONS
For extension into the surf zone and through to the shoreline, additional viscous/turbulent stresses need

to be specified corresponding to breaking wave dissipation and bottom stresses; these are under development
and will be detailed in a future publication. The present formulation has the great advantage that because
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it is derived without any irrotationality conditions, it will be able to make use of more standard turbulence
closures and thus needs to make fewer ad-hoc breaking assumptions than many other Boussinesq-type
breaking models.

The generalization of velocity basis functions combined with Boussinesq scaling allows for asymptotic
rearrangements similar in character to those of Nwogu (1993); Madsen and Schaffer (1998) and others,
and with similar improvements in accuracy. For linear properties of O(µ2) and higher, generalized analysis
using arbitrary basis functions becomes highly complex but the use of shifted Legendre polynomials, which
have excellent orthogonality properties, provides accuracy that is considerably higher than the formal level
of approximation for both linear dispersion and shoaling (O(µ2N−2)). This is particularly obvious when
compared with simple monomial basis functions.

Fully nonlinear systems up to O(µ2) are straightforward to derive and code by hand. Linear components
up to arbitrary order may also be explicitly written and coded without great difficulty, but the nonlinear
components become extremely complex. As such, O(µ2) may represent a practical limit to nonlinearity
for these types of systems. It is quite possible to develop codes that automatically sum and integrate the
nonlinearity without ever writing down the system on paper. However, related developments using many
of the same concepts as the present paper, including Boussinesq and rotational shallow water scalings
and asymptotic rearrangement, may prove to be better candidates for very high order representation of
nonlinearity. In any case, as mentioned in the introduction, the assumption of a single-valued free surface
η(x; y; t) will impose an upper limit on surf zone accuracy, particularly in regions of strong plungers.
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