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1. Introduction The offshore wave energy flux was calculated by using the offshore wave data
(see, Fig. 1). In this analysis, we calculate the each frequency-band of offshore wave
energy flux was calculated as follows. Ef1: T>32.0s, Ef2: 16.0s > T > 25.6 s, Ef3: 10.7
s>T>14.2s, Ef4:8.0s>T7>9.8s, Ef5:43s>T>7.5s, Ef6: T > 4.1 s. Also, the total
energy flux was calculated by using Hs and Ts (Ef).

The correlation between longterm shoreline change and wave forcing has been the
subject of many research works. When considering the effects of wave period,
researchers often divide the spectrum into two parts, one characterized by the peak
period and a second for the low frequency motion less than approximately 30 s.
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