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1 I t d ti1. Introduction1. Introduction
Th l ti b t l t h li h d f i h b thThe correlation between longterm shoreline change and wave forcing has been the
subject of many research works When considering the effects of wave periodsubject of many research works. When considering the effects of wave period,

h ft di id th t i t t t h t i d b th kresearchers often divide the spectrum into two parts, one characterized by the peak
period and a second for the low frequency motion less than approximately 30 speriod and a second for the low frequency motion less than approximately 30 s.

I thi l d th l ti b t h li h dIn this paper, we analyzed the relation between shoreline change and wave
energy flux by dividing the wave forcing into six energy bands. Furthermore, weenergy flux by dividing the wave forcing into six energy bands. Furthermore, we
consider the foreshore shape and relati e starting location of the shoreline positionconsider the foreshore shape and relative starting location of the shoreline position
in our analysis of the shoreline recession rate.in our analysis of the shoreline recession rate.

Figure 1 Location of Hazaki Oceanographical Research Station Picture1 Hazaki OceanographicalFigure 1. Location of Hazaki Oceanographical Research Station 
(HORS)

Picture1. Hazaki Oceanographical 
Research Station (HORS)(HORS). Research Station (HORS).

2 D t D i ti d M th d2. Data Description and Methodp
Beach profile data were obtained at Hasaki Oceanographical Research Stationp g p
(HORS Fig 1 Pic 1) which conducts field measurements of various phenomena in(HORS, Fig. 1, Pic. 1), which conducts field measurements of various phenomena in
the nearshore zone on the Hasaki coast of Japan. HORS has a 427 m long pier, whichp g p ,
is located perpendicularly to the shore The cross shore distance along the pier isis located perpendicularly to the shore. The cross‐shore distance along the pier is
defined relative to the reference point of HORS, and the seaward side is set as beingp , g
positive An ultrasonic weave gage (USW) sensor was mounted at a water depth ofpositive. An ultrasonic weave gage (USW) sensor was mounted at a water depth of
23.4 m offshore of the Port of Kashima (Fig. 1). In this study, the beach profile data( g ) y, p
and wave data from Jan 2001 to Dec 2005 were used During the investigationand wave data from Jan. 2001 to Dec. 2005 were used. During the investigation

d h d ff h f h h d dperiod, the averaged offshore significant wave height and period were 1.65 mp g g g p
(varied from 0 37 m to 6 49 m) and 8 51 s (varied from 4 88 s to 17 2 s) respectively(varied from 0.37 m to 6.49 m) and 8.51 s (varied from 4.88 s to 17.2 s), respectively.

The shoreline position was defined 40The shoreline position was defined
t th h l ti h that the cross‐shore location where the 30
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large beach erosion events occurred 2001 2002 2003 2004 2005 2006

Time [year]during the typhoon season, which is Time [year]g yp ,
from the end of August to September Figure 2. Fluctuation of shoreline position.from the end of August to September. Figure 2. Fluctuation of shoreline position.

During the rest of the year, the shorelineg y ,
retained its position or moved seawardretained its position or moved seaward. Forward movementBackward movement
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Figure 3. Histogram of shoreline change rate.
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The offshore wave energy flux was calculated by using the offshore wave dataThe offshore wave energy flux was calculated by using the offshore wave data
(see, Fig. 1). In this analysis, we calculate the each frequency‐band of offshore wave( , g ) y , q y
energy flux was calculated as follows Ef1: T > 32 0 s Ef2: 16 0 s > T > 25 6 s Ef3: 10 7energy flux was calculated as follows. Ef1: T > 32.0 s, Ef2: 16.0 s > T > 25.6 s, Ef3: 10.7
s > T > 14.2 s, Ef4: 8.0 s> T > 9.8 s, Ef5: 4.3 s > T > 7.5 s, Ef6: T > 4.1 s. Also, the total, , , ,
energy flux was calculated by using Hs and Ts (Ef)energy flux was calculated by using Hs and Ts (Ef).

3 Results and Discussions3. Results and Discussions
(a) Relationship between the shoreline position and frequency‐(a) Relationship between the shoreline position and frequency
banded wave energy flux:
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and foreshore shape affect shoreline Count of backward movement event

backward movement speed Figure 7. Backward speed and shorelinebackward movement speed. Figure 7. Backward speed and shoreline 
position of each backward movement eventsposition of each backward movement events

Table. 1. (a) Sahoreline speed of each backward movement events, (b) Shoreline position of the each event.( ) p f , ( ) p f

With berm shape: Ave. (SD) Without berm shape: Ave. (SD)

(a) Shoreline position x [m] 18 2 (10 6) 11 8 (9 35)(a) Shoreline position, x [m] 18.2 (10.6) 11.8 (9.35)

(b) Backward speed, [m/day] ‐3.3 (1.3) ‐2.1 (0.50)( ) p , [ / y] 3.3 (1.3) 2.1 (0.50)

4 C l i4. Conclusions
h i i t b t d f h li d d h li• shoreine erosion events can be separated from shoreline advance and shoreline

neutral events by using Ef (wave energy flux calculated using Hs and Ts), Ef1 and Ef3neutral events by using Ef (wave energy flux calculated using Hs and Ts), Ef1 and Ef3
(frequency banded wave energy flux the spectrum densities are high) The(frequency‐banded wave energy flux; the spectrum densities are high). The
predictive skills are over 85 %.predictive skills are over 85 %.
• For the estimation of the shoreline change rate we need to consider not only wave• For the estimation of the shoreline change rate, we need to consider not only wave
conditions but also shoreline position and foreshore shape (berm shape).conditions but also shoreline position and foreshore shape (berm shape).
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