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Abstract 

A 2D-horizontal sediment transport energetics model is developed in this work 
for the evaluation of the wave-induced sediment transport. The time dependent energy 
equation is incorporated into a nonlinear dispersive wave model in order to simulate 
breaking wave propagation in the surf zone. Total immersed weight transport is 
related, through an energetics approach, to the total dissipated fluid power. Both the 
dissipation due to bed friction and, inside the surf zone, due to the wave breaking are 
considered. The methodology is applied to predict the longshore transport rate and to 
simulate the coastline evolution in beach nourishment scenario assuming a trapezoidal 
beachfill. 

Introduction 

Long-shore and cross-shore sediment transport due to wave action play an 
important role in various engineering problems. One of the most important problems is 
the wave and the wave-induced sediment transport effects on coastal environment in 
terms of the bed morphology changes. 

There exist two main approaches for the estimation of the sediment transport rate 
inside and outside surf zone: the deterministic and the energetics. The deterministic 
models are based on the description of both the wave induced mean flow and the 
concentration of suspended sediment, usually using quasi 3D models and linear wave 
theory (deVried and Stive 1987, Katopodi and Ribberink 1992, Briad and Kamphuis 
1993). The energetics approach is based on the idea that the sediment transport is 
related to the rate of energy dissipation of the flow (Bailard 1981, Roelvink and Stive 
1989). In the present work the second approach is adopted. 
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A 2DH non-linear breaking wave model is developed based on the numerical 
solution of the time dependent wave energy equation which is incorporated into a 
Boussinesq model. The main advantages of the use of the Boussinesq type of equations 
are outlined below: 

• A unified model, without the assumption of progressive waves, is used for 
non- linear wave refraction, shoaling, diffraction, reflection (presence of 
structures), breaking, dissipation after breaking, run-up. 

• The equations are easily extended in deeper waters 
• The propagation of irregular waves is modelled including LFW and non- 

linear wave-wave interactions. 
• Breaking wave induced current are automatically incorporated. Thus there 

is no need for additional current and sediment transport model (i.e. coupling of 3 
models). 

• 3D effects (inclusion of a 'mean' undertow) are present. 
• The models can be extended for the simulation of sediment transport in 

swash zone. 

For the evaluation of the sediment transport rate (i.e. bed load and suspended 
load) the Bailard (1981) theory is used as in the ID version of the model (Karambas et 
al. 1995). Following the sediment transport calculations, the morphological changes of 
the sea bed are updated in the model according to the conservation equation of 
sediment mass. 

2DH non-linear wave breaking wave model 

Karambas (1996) incorporated the time dependent energy equation into a 
nonlinear wave model based on the Boussinesq equations in order to simulate breaking 
wave propagation in the surf zone. Extending the analysis in two dimensions the 
continuity and the momentum equations are written (Peregrine 1972, Madsen and 
Svendsen 1979): 
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in which £ is the surface elevation, d is the still water depth, h is the total depth, u 
and v are the horizontal velocity components in the x and y directions respectively, U 
and V are the depth integrated velocities, vt is the eddy viscosity coefficient and %x , 
Xby are the bottom shear stresses. 

The shear stresses are estimated from: 

f„, 
 -~uo\Uo+vo 

rby       fw /   2 .     2 -X = iLv0Vu0+v0 
P 2 (2) 

where Uo, v0 are the components of the bottom velocity (adopting the velocity 
distribution given by Peregrine, 1972) and fw a friction factor (Nairn and Southgate 
1993): 

fw=exp(5.2(r/a)02-6.0) (3) 

in which a is the orbital amplitude at the bed and r is the bottom roughness: 

r = 170>/82.5-0.05D50 (4) 

where 62.5 is the Shields parameter for fj5=exp(5.2 (2.5D50/ a)02 - 6.0). 

The equation of the conservation of the energy density E of the mean flow per 
unit horizontal area is written: 

f+^+^ = -D-u0rbx-Vby+UBT + VBT (5) 

2&= J-W+ jiuv2dz + g?Uh 

Efy= JVdz+ Jiu2vdZ + g?Vh 
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in which D is the dissipation of the mean energy (equal to minus the production of 
turbulent energy) and BT are the Boussinesq dispersion terms of the momentum 
equations (1). 

The dissipation of the wave energy D is given by (Karambas, 1996): 

D = n(c-Uot)3 (7) 

in which c is the wave celerity, Uot =Ju2
0 + vl   is the bottom velocity in the direction of 

the wave propagation and £1 a constant, £1=0.03. 

The eddy viscosity coefficient vT is calculated from the solution of the turbulent 
kinetic energy equation (Nwogu, 1996): 

dk/dt + UVk= vt V
2 k+B D - Cd k3/2/1, (8) 

in which U=(U,V), k is the turbulent kinetic energy, Cd=0.08, and lt is the turbulent 
length scale, lt=0.15 d. 

In the ID case (Karambas, 1996) the constant £1 is equal to 0.015. In the present 
work a greater value (£2=0.03) is adopted. This value (according to Morfett, 1995) is 
claimed to give a good fit to measured longshore transport rate. To compensate the 
increase of the value of £1, the turbulent length scale lt is taken equal to lt =0.15 d, 
instead of lt =0.3 d which has been adopted in the ID case. 

The rate of production of turbulent kinetic energy is taken equal to the 
dissipation D of the wave energy (equation 7). The parameter B (Nwogu, 1996) is 
introduced to ensure that turbulence is produced only when horizontal velocity at the 
wave crest ust exceeds the celerity c. 

0 in the region where      ust<c 
B= 

1 in the region where      Ust>c 

where ust, is the velocity at the wave crest, ust =A/uf+vf, and us   and vs   are its 

components from Boussinesq theory (Peregrine, 1972). 

The eddy viscosity is given by: 

vx=k1/2lt (9) 

The two integrals in the equations (1) are estimated form (Karambas 1996): 
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fiv2dz = E-  fiu2dz-!g(;2 

Jo J o 7^ (10) 

The integrals in equations (1) and (6), containing the terms u3, v3, uv, u2v, uv2, 
are estimated numerically adopting the following horizontal velocity distribution in the 
turbulent region of a breaking wave (Karambas 1996): 

u(z)=Uo+u,j f(a) 

v(z)=v„+vd f(o) for £-§<z<; (11) 

where 8 is the depth of the turbulent region and 

Ud = us-Uo,    Vd = vs-v0,     f(a)=-Aa3+(l+A)(j2,  a=(d+z)/h,  A=1.4 

Using the definition of the mean velocity U and equation (11) the turbulent 
region depth 5 can be estimated from (Karambas, 1996): 

U-u„ 

ud     0.45 
(12) 

In the non-turbulent region, D=0, E=0.5hU2+0.5g£2 and the system reduces to 
the classical Boussinesq equations. 

An important result of the above model is the prediction of the nonlinear 
instantaneous bottom velocity which also includes the mean motion (mainly 
responsible for the sediment transport). 

Figure 1. Perspective view of the wave field for oblique wave incidence. Wave 
height H=lm, period T=6 sees and slope 1:30. 
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Numerical solution 

The system of equations (1) and (5) is simultaneously solved as in the 1-D model 
(Karambas, 1996) in the following way: 

1. Calculation of Un+1 , Vn+1 , C+1.(at time level (n+l)At) from the solution of the 
Boussinesq equations (1). 

2. Calculation of En+1 explicitly from the energy equation (5) using exactly the same 
Finite Differences approximations (both new time step (n+l)At and previous time 
step nAt values of the variables are employed). The integrals containing the terms 
u3, v3, u2v, uv2, are estimated numerically (equation 6). 

3. Calculation of the integral in the momentum Boussinesq equations (1) using 
equation (10). The integrals containing the terms uv are estimated numerically. 

4. Next time step: replacement in the non linear terms of the momentum Boussinesq 
equations (1) the values of the integrals of step 3. 

In this manner energy equation is numerically solved simultaneously with the 
Boussinesq equations and its effects are introduced explicitly in the momentum 
equation. The main advantage of the above procedure is that it can be easily 
introduced in the existing models without the need for changing their numerical 
scheme. 

Waves propagating out of the domain are artificially absorbed using sponge 
layer technique. The Orlanski open boundary condition is also applied, since it is more 
efficient for the absorption of the generated currents and long waves. 

The 'dry bed' boundary condition is used to simulate runup (Figure 1). Consider 
the one-dimensional case the condition is written: 

if(d+Q<0.00001 then       z=-d (13) 

The above conditions has been successfully used in long wave runup modelling 
(Karambas et al., 1991). 

The Finite Differences numerical scheme is described in Karambas et al. (1990). 

An energetics sediment transport formula 

The energetics approach is based on the Bagnold's original idea that the sediment 
transport load is proportional to the time averaging energy dissipation of the stream 
(Bailard 1981). 

In an energetics approach the submerged weight transport rates, ixt in the x 
direction and iyt in the y direction, are given by Bailard: 

^_r»ft.+j!aj„b+,.iLf»a.+.<d.»SL|fl,t 
tan$Kuot     tanpj w ^uot w 
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-+A_ 
tan#>vuot     tan^, w U0, w (14) 

where the angled brackets represent (numerical) time-averaging, w is the sediment fall 
velocity, q> is the angle of internal friction, 8b and ss are the bed and suspended load 
efficiency factors respectively, oot is the local rate of energy dissipation given by: 

co,=cob+Cd kb
3/2 /1, h (15) 

where kb is the turbulent kinetic energy at the bottom and a>b is the dissipation at the 
bottom: 

(0b=fw/2uot
3 (16) 

The above sediment transport formula has been derived directly form the 
primitive equations (equation 7 of Bailard 1981 paper) without the assumption that the 
only dissipation mechanism is the bed friction. This is the most important limitation of 
the Bailard theory and precludes the use of the original formula within the surf zone, 
where the dissipation of energy associated with the process of wave breaking is largely 
dominant. 

Since a Boussinesq model automatically includes the existence of the mean 
wave-induced current there is no need to separate the bottom velocities Uo(t) and v0(t) 
into a mean and a oscillatory part as in most of the previous works which adopt only 
period-mean approaches. This is another significant advantage of the present model 
since the approach is based on the original energetics formula without the above 
simplification. In addition there is no need for the decomposition of the moments by 
assuming that the bottom wave velocity is larger than the mean current velocity. This 
assumption (Roelvink and Stive, 1989) is not always valid, especially in complicated 
wave fields near coastal structures (behind a detached breakwater there is a strong 
mean current without significant wave motions).Finally the present model includes a 
quasi 3D structure of the motion (mean and oscillatory) predicting in this way the 
undertow effects on the cross-shore sediment transport rate. 

According to the original Bagnold estimations (from river data) the bed and 
suspended load efficiency factors 8b and es take the values eb=0.13 and es=0.01. 

Bailard (1981) first calibrated the energetics approach based on laboratory and 
field measurements. Least square estimates of Sb and 8S resulted in values 0.21 and 
0.025 respectively. However, the Bailard's value of es has to compensate for increased 
turbulence due to breaking in the surf zone. Since the breaking wave-induced 
dissipation has already been incorporated, the Bailard's value is not valid. Here the 
value 8S=0.01 is used, considering the following exponential, over the depth, decay of 
the turbulence kinetic energy k (according to Roelvink and Stive 1989): 

kb=k[(exp(o7H)-l]-1 (17) 
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in which H is the wave height. 

For typical values of the ratio d/H inside surf zone the dissipation of k (i.e the 
term Cd kb

3/2 / lt h) is finally multiplied by a factor 0.002, which is similar to the value 
proposed by Morfett (1995). 

Morphology module 

The morphological changes are calculated by solving the conservation of 
sediment transport equation: 

where Zb is the bed elevation above arbitrary datum and qx, qy are the volumetric 
sediment transport rate related to the immerged weight sediment transport through: 

(ps-p)gN 

in which N is the volume concentration of solids of the sediment (N= 0.6) and ps and p 
are the sediment and fluid densities. 

Applications 

In two previous work of the author (Karambas et al, 1995, and Karambas et al., 
1997) the ID version of the model has been successfully used to predict cross-shore 
sediment transport and bed evolution. In the present model the simulation of the runup 
leads also to the prediction of the sediment transport in swash zone. In this work two 
applications are presented: the prediction of the longshore transport rate and the 
simulation of the coastline evolution in a beach nourishment scenario. 

In the computations of the longshore transport rate it is assumed that the 
shoreline and depth-contour lines are straight and parallel to each other, the incident 
waves are regular and uniform in the alongshore direction and that the sediment grain 
size is spatially uniform. The following four parameters are varied in the numerical 
experiments: breaking wave height Hb, incident angle 9b, beach slope tana and grain 
size D50. Wave period T is assumed constant, T=9 sees. For certain values of the three 
of the above parameters and different values of the fourth, the longshore transport rate 
Q, from the swash zone across the surf zone to deep water, is calculated by the cross- 
shore integration of qy(y): 

Q= |qy(y)dy (20) 
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where Ru is the location of the run-up point. 
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Figure 2. Comparison of longshore transport rate between Kamphuis formula and 
present model in different breaking wave heights Hb (T=9 sees, Dso=0.0003 m, 9b=0.3 
rad, slope=0.015). 

The Kamphuis longshore transport formula is used for comparison with the 
present model. The improved Kamphuis formula (Schoones and Theron, 1996) is 
written as follows: 

Q Kamphuis = 63433—-—(p/T)!^5 H2. (tana)075 (1 /D50)
0-25 (sin 20bf

6 

d-P)A 

(m /year) 

(21) 

where p is the porosity, L0 is the deep-water wavelength, Hb is the wave height, 6b is 
the incident angle, tana is the beach slope and D50 the grain size. 

Model predictions are plotted against Hb
2, (sin29b)06, tana075 and (I/D50)0'25 in 

Figures 2 to 5. The longshore transport rate Q which is predicted by the model is 
generally close to the values obtained by Kamphuis formula. In general a more strong 
dependence on breaking wave height, incident angle and grain size is predicted by the 
model. However, for the verification of the model, comparisons with experimental data 
and field measurements are required. 
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Figure 3. Comparison of longshore transport rate between Kamphuis formula 
(solid line) and present model (dashed line) in different wave directions 9b (Hb=1.0 m, 
T=9 sees, D5o=0.0003 m, slope=0.015). 

The model is also applied to simulate the coastline evolution in a beach 
nourishment scenario assuming normal wave incidence on a trapezoidal beachfill 
(Figure 6). In Figure 7 the predicted shoreline change after nondimensional time T=Q.S 
is compared with an analytical solution of the Pelnard-Considere equation (one-line 
model, Work and Rogers, 1997). The nondimensional time 7/is defined as: r=4(Gt)05 / 
l\ , where G is 'longshore diffusivity' parameter (Work and Rogers, 1997) and h is 
the longshore length (/i=20m in the present case). The depth at the toe of the beachfill 
is ht=l.5m, the slope 1:15, the incident wave height H=lm, the period T=6 sees and the 
fall velocity w=0.03 m/s. 

In an one-line model changes in shoreline position are assumed to be produced 
by spatial differences in the longshore sand transport rate. However present model is 
also able to simulate cross-shore transport (Karambas et al, 1995, Karambas et al., 
1997). Thus the predicted shoreline change is expected to include the effects of the 
cross-shore (offshore or onshore) transport, i.e. erosion or accretion. In Figure 7 the 
difference between the present model and the analytical solution is the shoreline 
displacement due to offshore transport. Under the applied conditions (H=lm, T=6 sees 
and w=0.03 m/s) the nondimensional fall speed N=H/(wT)=5.55, also known as the 
Dean number, is greater than the critical value Nc=3.2 and consequently the direction 
for the cross-shore sediment transport is expected to be offshore (erosion). 
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Figure 4. Comparison of longshore transport rate between Kamphuis formula 
(solid line) and present model (dashed line) in different slopes tana (Hb=1.0 m, T=9 
sees, D50=0.0003 m, 6b=0.3 rad). 

Conclusions 

The 2DH energy and the Boussinesq equations are simultaneously solved for the 
simulation of breaking wave propagation in the surf zone. Model results are used in an 
energetics sediment transport model based on the Bailard formula. 

The unified model is capable of predicting: 
• 2DH breaking wave propagation 
• Longshore transport rate from the swash zone to shoaling region 
• Coastline evolution in a beach including cross-shore sediment transport 

The comparison of longshore transport rates between present model and 
Kamphuis formula shows close agreement. 

Coastline evolution is also predicted well in comparison with an analytical 
solution of the one-line equation. 
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Figure 5. Comparison of longshore transport rate between Kamphuis formula 
(solid line) and present model (dashed line) in different median grain size D50 (Hb=1.0 
m, T=9 sees, 9b=0.3 rad, slope=0.015). 

1.00 
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Figure 6. Perspective view of the wave field for normal wave incidence on a 
trapezoidal beachfill. Wave height H=lm, period T=6 sees, depth at toe ht=1.5m and 
slope 1:15. 
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Figure 7. Shoreline change of a trapezoidal beachfill. Comparison between 
analytical solution (Work and Rogers, 1997) and numerical model. 

Acknowledgements 

The present work is part of the MAST3 SAFE research programme funded by the 
Commission of the European Communities, Directorate General for Science, Research 
and development, MAS3-CT95-0004. 

References 

Bailard J. A. 1981. An energetics total sediment transport model for a plane 
sloping beach. J. of Geophysical Research 86, No Cl 1: 10938-10954. 

Briad M-H. G. and J.W. Kamphuis 1993. Sediment transport in the surf zone: a 
quasi 3-D numerical model. Coastal Engineering 20:135-156. 

Hamm L. and M. Mory 1995. Hydrodynamic Measurements around a Detached 
Breakwater in a 3-D Wave Basin. SOGREAH and LEGI MAST G8 CM report. 

Karambas Th. V., Krestenitis Y. and Koutitas C, 1990. A numerical solution of 
Boussinesq equations in the inshore zone. Hydrosoft, Vol. 3, No 1: 34-37. 

Karambas Th. V., Krestenitis Y. and Koutitas C, 1991. Numerical model on 
tsunami propagation. The International Journal of the Tsunami Society, Vol. 9, No 1: 
63-71. 

Karambas, Th. V., Southgate H. N. and Koutitas C. 1995. A Boussinesq model 
for inshore zone sediment transport using an energetics approach. In Dally and Zeidler 
(eds), Coastal Dynamics '95, ASCE: 841-849. 



COASTAL ENGINEERING 1998 2953 

Karambas, Th. V. 1996. Nonlinear wave energy modelling in the surf zone. 
Nonlinear Processes in Geophysics 3: 127-134. 

Karambas, Th. V., P. Prinos and K. K. Kriezi. 1997. Modelling of hydrodynamic 
and morphological effects of submerged breakwaters on the nearshore region. In E. B. 
Thornton (ed), Coastal Dynamics '97, ASCE: 764-773. 

Katopodi, I. and J.S. Ribberink 1992. Quasi-3D modelling of suspended 
sediment transport by currents and waves. Coastal Engineering 18:83-110. 

Madsen, P. A. and LA. Svendsen 1979. On the form of the integrated 
conservation equations for waves in the surf zone. Inst. of Hydrodynamics and 
Hydraulic Eng., Technical Univ. of Denmark, series paper 48. 

Morfett J. C. 1995. Computational modelling of sediment transport by breaking 
waves. 2nd Int. Conference on Computer Modelling of Seas and Coastal Regions, 
Mexico, vol II, 241-248. 

Nairn R. B. and H. N. Southgate 1993. Deterministic profile modelling of the 
nearshore processes. Part 2. Sediment transport and beach profile development. 
Coastal Engineering 19:57-96. 

Nwogu, O. G., 1996. Numerical prediction of breaking waves and currents with a 
Boussinesq model. Proc. 25th Int. Conf on Coastal Engineering, ASCE: 4807-4820. 

Peregrine, D. H. 1972. Equations for water waves and approximation behind 
them. In R. E. Meyer (ed), Waves on Beaches, Academic press. 

Roelvink J. A. and M. J. F. Stive 1989, Bar-generating cross-shore flow 
mechanics on a beach. Journal of Geophysical Research 94, No C4: 4785-4800. 

Schoones J. S. and A. K. Theron. 1996. Improvement of the most accurate 
longshore transport formula. Proc. 25th Int. Conf. on Coastal Engineering, ASCE: 
3652-3665. 

de Vried H. J. and Stive M. J. F. 1987. Quasi-3D modelling of nearshore 
currents. Coastal Engineering 11: 565-601. 

Work P. A. and W. E. Rogers, 1997. Wave transformations for beach 
nourishment projects. Coastal Engineering 32: 1-18 . 


