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Abstract 

Motivated by recent experimental results on wave, current and combined wave-current 
flows over an artificially rippled bed, the boundary resistance experienced by waves over 
two-dimensional bottom roughness elements is formulated in terms of a drag law. The 
resulting empirical relationship for the drag coefficient suggests a flow resistance that is 
similar in nature to one obtained from a constant, pseudo-laminar eddy viscosity model 
for the wave boundary layer flow. Analysis of available experimental data on energy 
dissipation for oscillatory flow over movable rippled beds leads to a constant eddy 
viscosity model for wave boundary layers above naturally rippled beds. The constant 
eddy viscosity model is modified to include a near-bottom linear transition to make it 
zero at the bed. This hybrid eddy viscosity model is shown to capture the essential 
features of wave boundary layer flows for the full range of bottom roughnesses 
encountered, i.e. from sand grains to ripples. Application of the hybrid model requires 
knowledge of the equivalent bottom roughness for which empirical expressions are 
derived. The implication of the results, obtained here for waves, for combined wave- 
current boundary layer flows suggests modifications of the Grant-Madsen model that 
greatly improve this model's ability to predict observed current velocity profiles over 
rippled bottoms in the presence of waves. 

Introduction 

In recent papers Mathisen and Madsen (1996a and b, hereafter referred to as MM) 
reported results from laboratory experiments on currents and waves, separately as well as 
combined, over a bottom covered by fixed equally spaced 1.5-cm-high triangular two 
dimensional roughness elements. The major result of their study was that waves and 
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currents perpendicular to the axes of their artificial ripples experience the same 
equivalent bottom roughness, i.e., the equivalent bottom roughness, kN, was shown to be 
a function of the bottom roughness characteristics only and independent of the flow. 
Besides being limited to the particular flow conditions of their experiments, i.e. wave, 
current and combined co-directional wave-current flows perpendicular to fixed two- 
dimensional roughness elements, their conclusion of kn's single-valuedness is limited to 
analyses of these flows based on a modified version of the Grant-Madsen model (Grant 
and Madsen, 1979 and 1986; hereafter referred to as GM) since this model was used by 
MM in their analysis of experimental data. 

To make this latter limitation more explicit, and also to introduce concepts and notation 
to be used in subsequent sections, MM obtained experimental values for the average rate 
of energy dissipation per unit bottom area, D, from measurements of wave attenuation 
and expressed D in terms of turbulent wave bottom boundary layer theory, 

1 ,      1 D = ^Pfncos(pubm=-pfeubm (1) 

in which p denotes the fluid density; f„ is the wave friction factor defined by 

~ = <=\f^L (2) 

where T&m is the maximum bottom shear stress; and (p is the phase lead of the bottom 
shear stress relative to the periodic near-bottom wave orbital velocity 

ub=ubm cos cot (3) 

Thus, from their experiments MM obtained values for the energy dissipation factor, 
fe=fwcoscp, which, in turn, may be related to the relative bottom roughness, UbJ{kN(o), 
through the use of a theoretical model for turbulent wave boundary layer flows over a 
rough bottom. In taking this last step, which leads to the determination of the equivalent 
bottom roughness, k/f, MM found it necessary to modify the GM model in order to obtain 
the Jk/v -values that were in agreement with the values obtained from analysis of measured 
current velocity profiles over the same bottom roughness configuration. This modified 
version of the original GM-model has been presented by Madsen (1994) and consists of 
the determination of the wave friction factor, /„,, and the phase lead, <p, by evaluating the 
bottom shear stress at z = Zo = &w /30, where z is the vertical distance above the 
theoretical bed level, instead of in the limit z—> 0. 

However, when the modified GM-model is used to predict the structure of the wave 
orbital velocity profile within the wave boundary layer this is found to be in poor 
agreement with measurements. In particular, the GM-model's prediction of the wave 
boundary layer thickness 

SW=A^=- (4) 
a 
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in which X"is von Karman's constant (=0.4) and A is a scaling factor given the value of 1 
to 2 by GM, is found to be too small by a factor of 2 to 3 when compared with 
measurements. This disturbing observation has profound implications for the GM- 
model's ability to predict the velocity profile of currents in the presence of waves, since 
z=8„ is the location where the eddy viscosity is assumed to change from being scaled by 
the wave-current shear velocity, u,m, to being scaled by the generally much smaller 
current shear velocity, uK. Thus, in order to obtain a reasonable agreement between 
predicted and observed current velocity profiles in the presence of waves, MM found it 
necessary to introduce an artificially "enhanced" wave boundary layer thickness. This 
apparent inability of the GM-model to predict the velocity structure as well as the 
thickness of the wave boundary layer for flows over a rippled bottom motivated the 
present study. 

Drag Law Formulation and its Implications 

In an attempt to break with the conventional treatment of wave boundary layer flows 
based on an eddy viscosity formulation, we express the flow resistance experienced by an 
oscillatory flow over a bottom covered by two-dimensional ripples in terms of the drag 
force exerted on the flow by the individual roughness elements. Formally, we may write 
this drag force per unit length 

FD=^PCDn\ub\ub (5) 

in which 77 is the height of the ripple, ui, is the wave orbital velocity given by (3), and CD 

is a drag coefficient. Assuming this drag force to dominate the flow resistance, i.e. 
neglecting the contribution of skin friction shear stress acting directly on the bottom 
between roughness elements (ripple crests), the rate of energy dissipation associated with 
this drag force is given by FD Ub. Since this represents the rate of energy dissipation per 
roughness element, we obtain the time average rate of energy dissipation per unit area 

X       3n H D X bm 

where "overbar" denotes time-averaging and X the ripple spacing (length). In passing it is 
noted that the neglect of a potential inertia force has no effect on the calculated average 
energy dissipation rate since this force would be proportional to dub /dt and hence time- 
average to zero. 

Comparison of the expressions obtained from conventional boundary layer theory, (1), 
and drag law formulation, (6), shows that 

cD=Y^h)f. (7) 

Thus, the experiments on wave attenuation performed by MM, which provide values of fe 

for given X (10 or 20 cm) and r\ (1.5 cm), may be used directly in (7) to obtain 
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experimental values for the drag coefficient, Co, for waves over the artificially rippled 
bed. In analogy with drag coefficients for circular cylinders, e.g. Sarpkaya and Isaacson 
(1981), one would expect the drag coefficient to be a function of a Reynolds number, Re, 
and a Keulegan-Carpenter number, KC, Recognizing that the roughness elements in the 
experiments performed by MM were 90° angle iron bars placed on the glass bottom of a 
flume, i.e. effectively corresponding to half cylinders, the equivalent "diameters" of their 
two-dimensional roughness elements is 2r\. Therefore, one would be seeking an empirical 
expression of the form 

C   =C Re = ^nUbm    jjv-. . 
2rj 

(8) 

where v is the kinematic viscosity of water and Ai, = u\,J(t) = UbmT/(2n) is the near-bottom 
wave orbital excursion amplitude. 

For the experiments performed by MM the range of Reynolds Numbers is (3 to 6).103, 
i.e. a range for which .Re-dependency is expected to be weak. As seen from the values of 
CD plotted against 77/A/, in Figure 1, the excellent correlation supports this anticipation 
and results in the empirical drag coefficient relationship given by 

C =r i = 9.oiL (9) 

VA„ 

Figure 1: Ratio of the ripple height over the bottom excursion amplitude, rj/At, as a function of the drag 
coefficient, CD. Experimental values (stars) and linear fitting (solid line). The coefficient of determination 
is r2 = 0.87. 
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The limitation of this relationship to the experimental range of r\/Ab values from which it 
is obtained should be kept in mind. Extension beyond this range leads to obvious errors, 
e.g. CD -»0 or °° as rj/Ab -#0 or °o. However, for the range covered by (9) the dependency 
of CD on 77/A4 is similar to the dependency on Keulegan-Carpenter number for circular 
cylinders and Re = 104 (Sarpkaya and Isaacson, 1981, Figure 3.15; Salles, 1997). 

A Pseudo-Laminar Eddy Viscosity Model 

When the empirical drag coefficient relationship, (9), is introduced in the drag law 
expression for the rate of energy dissipation, (6), and Ubm = AbCO is utilized one obtains 

2 CDo^-\coul (10) 
f n „2 

\3n        A. 

This form of the average dissipation rate, in particular, its proportionality to the square of 
the wave orbital velocity, resembles the expression obtained from a laminar or constant 
eddy viscosity model of oscillatory boundary layers, e.g. Jonsson (1966) 

D = pfiV2v>Wm (ID 

in which vc denotes the value of the constant viscosity. 

Equating (10) and (11) leads to a functional relationship for an equivalent constant, 
pseudo-laminar eddy viscosity 

H_ = ]80Jl 
37r^"J    A2r~       X2T 

CD0 IJT-L-SISO-^- (12) 

where CB„ = 9.0, obtained from MM's experiments, was introduced. With a constant 
eddy viscosity, the classical solution of Stokes gives the wave orbital velocity profile as 
the real part of the complex expression (i2 = -1) 

^(l-e^W'Ky- (13) 

with 

S = pvja (14) 

denoting the boundary layer scale. 

The wave boundary layer thickness, 8^,, is obtained by requiring the orbital velocity to 
approach the free stream velocity to within a small, but finite, fraction, e, of the free 
stream velocity. Defining S„ in this manner and making use of (13) and (14) results in 
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Figure 2 demonstrates that the pseudo-laminar wave orbital velocity profile obtained 
from (13) and (14) with vc given by (12) is in excellent agreement with the measurements 
obtained in MM's experiment "a". This agreement includes the prediction of the wave 
boundary layer thickness, the scale of which is obtained from (14) with Vc given by (12) 
(5= 7.6 rf/X = 1.7 cm). From (15) it follows that 4 is of the order of 5.1 to 7.8 cm for 
the X = 10 cm spacing of the individual roughness elements, in agreement with MM's 
"enhanced" wave boundary layer thickness of 6.0 cm. 
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Figure 2: Velocity amplitude profiles obtained from 1) the pseudo-laminar model (solid line), 2) the hybrid 
model (dash-dotted line), 3) the GM-modified model (dashed line), and 4) MM's experiment "a" 
measurements above the trough of the ripples (pluses). 

Thus, the pseudo-laminar model is capable of not only predicting the observed wave 
attenuation - an ability that is, of course, assured since vc was derived to produce exactly 
this result - but also the detailed velocity structure within and the thickness of the wave 
boundary layer. 

Mathisen and Madsen (1996a and b) chose the geometry of their artificial ripples, r] = 1.5 
cm and X = 10 cm, in accordance with observed ripple geometry for similar wave 
conditions to those in their experiments. Differences between the detailed geometry of 
natural and MM's artificial ripples may, however, prevent the success of the pseudo- 
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laminar model to be transferred to naturally rippled beds. Guided by our results from 
analysis of MM's data, equating the expressions for the rate of energy dissipation given 
by (1) and (11), with vc depending on ripple geometry as suggested by (12), we obtain 

v  =v   ^— = ~Tf2i (16) 

Following the suggestion of (16) we plot experimental values of ripple geometry and 
energy dissipation for experiments with waves over naturally rippled beds in Figure 3, 
from which we obtain a best fit value of the constant va, = 95 in (16), with a standard 
deviation of 53. Not surprisingly, the eddy viscosity for naturally rippled beds is not as 
well defined as the one obtained for the artificial ripples. Nevertheless, the result that vco 

is smaller for natural ripples than for artificial ripples is statistically significant and does 
make physical sense since one would expect the more rounded crests of the natural 
ripples to result in a smaller rate of energy dissipation and hence a smaller eddy viscosity. 

80 

o &       X^    %   °o 8o o 

0.6 0.8 1 1.2 
T\4/(\2T) 

Figure 3:   Eddy viscosity v'c = (&/3jt)2vc  as a function of rf /(X2T). Both quantities are in (cm2.s~'). 

Experimental data from Carstens et al. (1969) (pluses), Lofquist (1986) (circles), Rosengaus (1987) and 
Mathisen (1989) (crosses). The linear fitting (solid line) has a coefficient of determination ? = 0.70. 

From a practical point of view, the difference between the values of vc for artificial and 
natural ripples may be less significant, when one considers the fact that the data plotted in 
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Figure 3 used observed ripple geometry. For application, one would have to use predicted 
values of t] and X in the empirical expression for vc, (16). Our current ability to predict 
geometry of wave generated ripples is unfortunately such that a potential factor of 2 
variability in v«,in (16) is overshadowed by the uncertainty associated with the prediction 
of rf/X2. 

Detailed velocity profile measurements are not available within the wave boundary layers 
over naturally rippled beds. The similarity of the expressions obtained for vc suggests, 
however, that one may expect the pseudo-laminar eddy viscosity model to afford 
reasonably accurate predictions of the velocity structure within the wave boundary layer 
over naturally rippled beds. 

A Hybrid Eddy Viscosity Model 

The constant eddy viscosity model presented in the preceding section can be considered 
valid only for the very large bottom roughness values corresponding to rippled beds. It 
will neither predict a phase lead of the bottom shear stress different from jtIA or a near- 
bottom logarithmic wave orbital velocity profile, both of which are experimentally 
observed features for wave boundary layer flows for smaller values of the relative 
roughness. These features are, however, predicted by simple wave boundary layer models 
that employ an eddy viscosity that, near the bottom, increases linearly with distance 
above the theoretical bottom, e.g. Hsu and Jan (1998). 

A hybrid eddy viscosity model that captures the observed features of wave boundary 
layer flows for small as well as large relative bottom roughness values is chosen as 

•.m(z + Zo).    0£z<z„ 

KW.mfcrc+Zo). Z>Zm 

in which zo = ^w/30 is the hydraulic bottom roughness, and u,m is defined by (2). In (17) 
the value of zm, the elevation above which the eddy viscosity is considered constant, is 
chosen as 

z   = 0.5-^- (18) 
CO 

For this choice of zm the constant value of the eddy viscosity given by (17) is roughly the 
same as the pseudo-laminar viscosity given by (12) for the experiments of MM. 
Furthermore, this value of zm coincides with value chosen by Madsen and 
Wikramanayake (1991) who showed this choice to lead to acceptable agreement between 
predicted and observed velocity structures within the wave boundary layer for relative 
roughness, k^ I Ab, smaller than O(10"'). 

Solving the linearized boundary layer equation with the eddy viscosity prescribed by (17) 
and evaluating the maximum bottom shear stress at z = 0 determines the relationship 
between wave friction factor and the relative bottom roughness. Approximating this 
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relationship in a manner analogous to that utilized by Madsen (1994) we obtain explicit 
expressions for the wave friction factor fw and the phase angle q> (in degrees) 

/„=exp{8.89(Aj/:wr
059-10.68} 

(p = 38-8.31og K d9) 
kN 

valid for the range 0.2 < Ai/kn < 102. For larger values of A//kN the formulas given by 
Madsen (1994) may be used. 

From the experimental value of fe = fw cos (p obtained by MM the equivalent bottom 
roughness, kn, is obtained from (19). The predicted wave orbital velocity profile obtained 
from the hybrid eddy viscosity model, given by (17) is shown in Figure 2, and is virtually 
indistinguishable from the velocity profile predicted by the pseudo-laminar model. 

The hybrid eddy viscosity model requires knowledge of the equivalent bottom roughness 
in order to be applied. Thus, to make the model applicable for the prediction of wave 
boundary layer flows over naturally rippled beds, an empirical relationship for kN is 
required. Such a relationship is obtained by assuming it to be of the form 

'•-UM, m 

and determine the best fit values of a and P by fitting the experimental data on rate of 
energy dissipation over naturally rippled beds using the experimentally measured ripple 
characteristics. This exercise results in values of a =12 and p =78, with both formulations 
providing a fit of equal goodness to the data used. 

The experimentally obtained values for/e are plotted against Ai/k^, with k.N - 12 T], in 
Figure 4. The relationship, fe(Ab/kn), obtained from (19) is shown for comparison, and 
represents the experimental data with a coefficient of variation of 28%. This accuracy of 
the hybrid eddy viscosity model is similar to that of the pseudo-laminar model. For the 
pseudo-laminar model we obtained a coefficient of variation for vc of 53/95 = 0.56 which 

is roughly twice the coefficient of variation for the prediction of fe since fe <*= A/vc for the 

pseudo-laminar model. Again, it is emphasized that the accuracy of 28% for the 
prediction of the energy dissipation factor when ku is obtained from (20) is likely to be an 
optimistic value when 77 is predicted rather than measured. Finally, it should be pointed 
out that the seemingly very large value of a = 12 is obtained as a result of using (19), 
which is the friction factor relationship obtained by evaluation of the bottom shear stress 
at z+zo = Zo- For a model that uses a near-bottom eddy viscosity proportional to z instead 
of (z+Zo) this corresponds to evaluation of the shear stress at z=Zo instead of in the limit 
z—>0. The original GM-model, if applied to the data shown in Figure 4 would therefore 
lead to different best fit constants in (20). In fact, for the GM-model with the shear stress 
evaluated in the limit z—>0, one obtains values of a = 4 and P = 25, i.e. roughly a factor 
of three lower than the best fit values obtained for the hybrid eddy viscosity model. 
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A,/k„ 

Figure 4: Measured and predicted energy dissipation factors, fe, as a function of relative roughness, Ai/kN. 
Theoretical values using (19) with kN= \2rj (solid line); data from Carstens et al. (1969) (pluses), Lofquist 
(1986) (circles), Rosengaus (1987) and Mafhisen (1989) (crosses). 

Modified Grant-Madsen Wave-Current Interaction Model 

If one is willing to sacrifice a little accuracy in the prediction of the velocity structure 
within the wave boundary layer for the sake of simplicity, one may adopt a linearly 
increasing eddy viscosity throughout the wave boundary layer. In this case the eddy 
viscosity reduces to the first expression given by (17) and the wave orbital velocity 
within the wave boundary layer is simply that predicted by Madsen (1994) with the origin 
of z taken a distance zo below his theoretical bed elevation. This effectively changes 
Madsen's (1994) eddy viscosity length scale from his "z" to the value z+Zo used in (17). 
Except for this change, all formulas obtained by Madsen (1994) are still valid. To achieve 
a measure of the accuracy one sacrifices if adopting this simplification, the predicted 
wave orbital velocity profile of this modified GM-model is show in Figure 2. Obviously, 
either the pseudo-laminar or the hybrid eddy viscosity models provide a better fit to the 
experimental data shown in Figure 2 than does the modified GM-model. However, the 
GM-model does provide a reasonably accurate (better than 10% error) representaion of 
observations for this large bottom roughness. 
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Given the modified GM-model's ability to represent the velocity structure within the 
wave boundary layer, it is extremely surprising that the model's prediction of the wave 
boundary layer thickness is as poor as it is for the experiments by MM involving artificial 
ripples. This inability of the modified GM-model was discussed in the Introduction, 
where it was mentioned that the GM-model estimated the wave boundary layer thickness 
from (4) with a scaling factor A between 1 and 2, which for MM's experiment "a" shown 
in Figure 2 gives cV = 2.5 cm - clearly a value much lower than the wave boundary layer 
thickness suggested by the data. 

This inability of the GM-model to afford an accurate estimate of Sw and hence, for 
combined wave-current flows, the elevation at which the current profile exhibits a 
discontinuous slope in the presence of waves, is actually not an inability of the model but 
the result of an unfortunate oversight on the part of the model's authors. The estimate of 
the scaling factor A in (4) being of the order of 1 to 2 was originally derived by Grant and 
Madsen by considering the elevation above the bottom where the wave orbital velocity 
had reached the free stream velocity within a relative error of roughly 5%. This, of 
course, is a completely legitimate criterion to use for the definition of a wave boundary 
layer thickness. However, GM failed to recognize that their value of A, which they 
obtained for a relative roughness kf/1 Ab~ 0.01, should be considered a function of the 
relative roughness and not be treated as a generally valid constant. When one corrects this 
oversight by defining the wave boundary layer thickness as the value of z for which the 
velocity magnitude is within 5% of the free stream velocity, the resulting value of the 
scaling factor in (4) may be expressed as 

A = exp{2.96{Ab /kN )~°°71 -1.45} (21) 

For Ab AN = 100 this formula gives A = 2.0 in agreement with the original GM-value. 
However, for Aj MN = 0.35, which is representative of the relative roughness values in the 
MM experiments over artificially rippled beds, A = 5.7 is obtained from (21), i.e. an 
increase by a factor of roughly 2.8 over the value obtained if A = 2.0 is assumed 
independent of the relative roughness. 

Use of (21) in conjunction with (4) to obtain the wave boundary layer thickness and 
modifying the GM-model's prediction of current velocity profiles in the presence of 
waves accordingly completely removes the need for the artificially "enhanced" wave 
boundary layer thickness introduced by Mathisen and Madsen. The modified GM-model 
can be used directly to explain and analyze observations for combined co-directional 
wave-current flows over a rippled bed so long as it is corrected to account for the wave 
boundary layer scaling factor's dependency on relative roughness. 

Conclusions 

From a drag law formulation of the boundary resistance experienced by waves over an 
artificially rippled bottom, we were led to the establishment of a constant pseudo-laminar 
eddy viscosity formulation for wave boundary layer flows over rippled bottoms. For 
naturally rippled bottom, analysis of available experimental data suggests the adoption of 
a pseudo-laminar eddy viscosity given by 
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v =v   J— (22) 
c X2T 

in which vc„ = O(100), r\ and A are the ripple height and length, respectively, and T is the 
wave period. 

The pseudo-laminar model should be considered limited to the flow conditions 
corresponding to the existence of two dimensional wave-generated ripples covering the 
bottom. To establish a model that could be considered generally valid for the range of 
bottom roughness encountered by waves over a movable bottom, a hybrid eddy viscosity 
model was developed. For this model, given by (17), the constant eddy viscosity was 
reduced towards zero through a linear transition immediately above the bottom. The 
velocity structure within the wave boundary layer predicted by the hybrid eddy viscosity 
model was shown to be virtually identical to the predictions of the pseudo-laminar model 
for rippled beds. However, the hybrid model is, in contrast to the pseudo-laminar model, 
capable of predicting observed velocity features for small values of the bottom 
roughness. For wave boundary layer flows over naturally rippled bottoms , the bottom 
roughness, kN, needed to apply the hybrid eddy viscosity model was found, from 
laboratory experiments with simple periodic wave motions, to be related to the ripple 
height through 

kN = 1277 (23) 

Both the pseudo-laminar and the hybrid eddy viscosity models gave estimates of the 
wave boundary layer thickness that were in good agreement with observations for 
artificially rippled beds. An unfortunate oversight in the development and application of 
the Grant-Madsen model for combined wave-current flows over very rough bottoms was 
corrected by introducing a roughness-dependent scaling factor, A, given by (21). 
Following this correction, the artificially "enhanced" wave boundary layer thickness 
introduced by Mathisen and Madsen (1996b) to explain and analyze their experimental 
results for combined co-directional wave-current flows over artificially rippled bottoms, 
was found to be entirely unnecessary. Thus, the applicability of the corrected Grant- 
Madsen wave-current interaction model to the prediction of current profiles in the 
presence of waves over very rough, rippled, bottoms was established. For a rippled bed, it 
is emphasized, however, that application of the modified GM-model is limited to co- 
directional wave-current flows. The reason for this limitation is that the bottom roughness 
has been shown to be the same for waves and currents only for this type of combined 
flows over two-dimensional roughness elements. 
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