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Abstract 

A computationally efficient, analytical model to determine net sediment transport rates in 
oscillatory flow is presented. The model is based on (approximate) analytical solutions to the 
IDV momentum and advection-diffusion equations and on the subsequent analytical integration 
of the sediment flux over time and depth. The model is validated against measurements of 
sediment concentrations and net transport rates performed in WL|DELFT HYDRAULICS' Large 
Oscillating Water Tunnel (LOWT). Further, comparisons are made with the predictions of 
numerical IDV models and sediment transport formulae. The model gives accurate estimates 
of the net transport rates for medium sand. For finer sand, although qualitatively correct, the 
model fails to predict the strong offshore sediment transport rates at higher velocities, mainly 
due to limitations of the diffusion approach for the upward transport of sediment. 

Introduction 

A variety of concepts is used in morphodynamic models to describe the wave-related 
transport, i.e. the transport related to the correlation between sediment concentration and long 
wave motions as well as to wave asymmetry and time lag effects between wave orbital 
velocity and concentration within the wave cycle. 

In quasi-steady models, instantaneous adaptation of the concentration to the time-varying 
near-bed velocity (or bed shear stress) is assumed such that the total load is directly related to 
some power of the instantaneous velocity. Assuming in addition that the velocity profile is 
reasonably uniform over the vertical, the vertically integrated flux can be schematised as the 
product of the velocity at some reference level and the total load, typically resulting in a 
formula in which the transport is proportional to some power of the instantaneous velocity, 
e.g. the Bagnold model (Bowen, 1980; Bailard, 1981). Although the neglect of phase-lag 
effects between velocity and concentration is potentially inaccurate, quasi-steady formulae 
are popular amongst morphodynamic modellers thanks to their simplicity and possibility to 
combine processes acting on different time-scales. 

Experiments of Ribberink and Chen (1993) and Janssen et al. (1996) demonstrate that in 
asymmetric oscillatory sheet flow conditions, the net transport rates for fine sand decrease for 
increasing oscillatory velocities and ultimately even reverse. In contrast with the Bailard 
formula, the semi-unsteady formulation according to Dibajnia and Watanabe (1992) 
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qualitatively reproduces these unsteady effects (Janssen et al., 1996). The latter formulation 
combines an essentially quasi-steady approach with a schematised time lag effect. It was 
found that for coarse sand the results obtained with both formulae are almost identical. 

A more general modelling approach requires the intra-wave-period modelling of the 
velocity and concentration fields using for instance 1DV models (e.g. Fredsoe et al., 1985; 
Davies et al., 1997). The direct use of such a detailed intra-wave transport model in a 
morphodynamic model is time-consuming from a computational point of view, especially 
when used to study the effects of irregularity of the waves and wave groups. This 
disadvantage is partly removed by making an initial effort of tabulating the results of the 
intra-wave model for a specific situation, after which the morphodynamic model is run at 
relatively low costs (Rakha et al., 1997). An alternative way to reduce the computational 
costs is to apply (semi-) analytical methods to account for the intra-wave effects on the net 
transport rates while still capturing the essential features of the unsteady transport, i.e. the 
strong vertical gradients in the near-bottom time-varying flow and concentration including 
the non-instantaneous response of the sediment. 

The purpose of this work is to present an analytical model based on the equations 
underlying the 1DV unsteady models. By finding (approximate) analytical solutions for the 
oscillatory velocity u(z,t) and the oscillatory concentration c(z,t) in the near-bed wave 

boundary layer and analytically integrating over time and depth, the net transport rate 

Iwave =!~h~j' j^ucdzdt as a function of the depth is obtained. A similar approach has been 

taken by Nielsen (1988), who however assumes a depth-invariant oscillatory velocity, therewith 
neglecting one of the essential features, viz. the strong vertical variation of the oscillatory 
velocity close to the bed. 

The oscillatory boundary layer structure is taken into account by using an (approximate) 
analytical solution to the wave boundary layer momentum equation using a time-invariant eddy 
viscosity approach. For the computation of the bed shear stress, the time-variation of the eddy 
viscosity is accounted for. The time- and depth-dependency of the concentration field is 
resolved by analytically solving the advection-diffusion equation using a time-invariant 
sediment diffusivity and a bottom boundary condition which is a function of the instantaneous 
bed shear stress. In this way we expect to account for the majority of the transport near the bed; 
the bed load transport is assumed to be small as compared to the suspended load contribution. 

Although in principle the model can be applied for an arbitrary input series of the 
oscillatory near-bed velocity, the validation of the model as presented in this paper focuses on 
second order Stokes conditions in the absence of a mean current. Measurements in WL|DELFT 
HYDRAULICS' Large Oscillating Water Tunnel (LOWT) by Ribberink and Al-Salem (1994) and 
Ribberink and Chen (1993) are used for model validation. In addition, comparisons are made 
with IDV numerical models and the transport formulae of Bailard (1981) and Dibajnia and 
Watanabe(1992). 

Oscillatory boundary layer model 

Equation of motion and boundary conditions 

After Reynolds-averaging, the wave boundary layer approximation to the momentum 
equation, for a rough, fully turbulent wave boundary layer flow, reads: 

du-uM _dud _    d{u'w') 

dt     ~~dT~~     dz     ' ( } 

in which u = u(z,t) is the Reynolds-averaged horizontal velocity, u„ = u„(t) the free stream 

velocity outside the boundary layer and ud =u-u„ the deficit velocity. Note that only a 



COASTAL ENGINEERING 1998 2575 

purely oscillatory motion  is considered  in this paper.  Further,   —(lu'w') = Tzx/p   is the 

Reynolds shear stress representing the vertical flux of fluid momentum. Here p is the fluid 

density,  u'  and w'  are the instantaneous velocity fluctuations in horizontal and vertical 
direction respectively, and the brackets denote averaging over the turbulence time-scale. 

The turbulence fluxes are modelled according to the Boussinesq hypothesis as: 

du 

Hz' 
(KV) = V(I/—, (2) 

where v, f is the eddy viscosity or turbulence eddy diffusivity of fluid momentum which we 

assume is not influenced by the presence of suspended sediment. 
The wave boundary layer equation (1) is solved subject to the no-slip boundary condition 

and the boundary condition of the wave velocity approaching the quasi-constant (d/dz ~ 0) 

velocity prescribed by e.g. an irrotational theory at the edge of the wave boundary layer: 

K u = 0 at z = zn = —-; 0    30 (3) 
u —> «„ for       z —> oo, 

where z0 is the effective position of the bottom depending on the equivalent Nikuradse sand 

grain roughness kn and where °° implies a distance far from the bed compared to the 
boundary layer thickness, but close to the bed compared to the water depth. 

Eddy viscosity model 

Using the Prandtl mixing-length hypothesis and assuming that in the immediate vicinity 
of the bed the mixing length / is proportional to the distance above the bottom, 1 = KZ , yields 
for the bed shear stress: 

b(t) = uJp(kzf I 
Using the Boussinesq hypothesis and realising that xb (?) = p|w, (t) u. (t) gives for the eddy 

viscosity close to the bed vtJI = K\U,\Z . Trowbridge and Madsen (1984) demonstrated that the 

solution to the wave boundary layer equation (1) depends only slightly on time variation in 
the eddy viscosity and is more sensitive to a proper treatment of the vertical distribution; the 
third harmonic of the velocity, present in the velocity field due the time-varying nature of the 
eddy viscosity, was found to be only a few percent of the first harmonic. In order to avoid the 
complex mathematics involved when using a time-varying eddy viscosity, the eddy viscosity 
close to the bed can be simplified by replacing \u,\ by a characteristic constant u, char. 

On the contrary, the third harmonic of the bed shear stress was found to be 20-25% of the 
first harmonic. The lack of higher harmonics in the predictions of a linear model with time- 
invariant eddy viscosity may significantly underestimate the asymmetry of the bed shear 
stress and therewith the asymmetry in sediment concentrations and transport. For that reason, 
in the determination of the bed shear stress a time-variant eddy viscosity will be used as will 
be addressed later. 

Based on the above considerations, for the determination of analytical solutions to 
Equation (1), the viscosity close to the bed is often taken to increase linearly away from the 
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bed. Grant and Madsen (1979) used v, f = rcu,ma%z over the entire wave boundary layer 

thickness where K = 0.4 is the von Karman's constant and u, max is the maximum bed friction 

velocity which is related to the maximum bed shear stress T4max via «.„,„„ =J'cbma%/P • A 

two layer model was used by Brevik (1981) who combined the Grant and Madsen model 
close to the bed with a constant eddy viscosity in the outer layer. The two-layer concept is 
adopted here since it provides the best compromise between accuracy and simplicity; the 
constant eddy viscosity in the outer layer is not only more realistic than a linearly increasing 
eddy viscosity but results in simple analytical solutions as well, whereas close to the bed the 
linearly increasing eddy viscosity is essential for a good representation of velocity and shear 
stress. The following two-layer model is used: 

V,,f = ^.char* Z0<Z<8, 

vuf=K";^5 s<z< 

in which the transition level S between the two profiles is modelled as: 

o = m—!—, (6) 
CO 

where co is the wave cyclic frequency and u, char is a characteristic time-invariant shear 

velocity representing the time-variant turbulence level in the flow. The choices for the 
characteristic shear velocity and the coefficient m are discussed later. Note that 8 directly 
determines the magnitude of the eddy viscosity in the relatively large outer layer. 

Oscillatory velocity solution 

Analytical solutions to (1) using the above specified two-layer eddy viscosity profile (5) 
are in terms of simple exponential functions of z in the outer layer where a height-invariant 
viscosity is assumed. In the lower layer however, the linearly varying viscosity results in an 
analytical solution in terms of Kelvin function of zeroth order (e.g. Grant and Madsen, 1979; 
Brevik, 1981), which are not only time-consuming from a computational point of view but 
complicate the depth-integration of the sediment fluxes. For small values of ZCO/KU, Qla, and 

z0co/Ku.ehm or equivalently close to the bottom and for large values of a„jkb, asymptotic 

expressions for the zeroth order Kelvin functions may be used to simplify the velocity profile. 
These assumptions result in a logarithmic velocity profile and a depth-invariant shear stress 
and were seen to be valid up to z = YWKU, char/<0 . Here we use the equivalent assumption that 

the shear stress is constant to obtain the velocity profile in the lower layer. 
Inserting Equation (2) in (1), using the constant stress assumption in the lower layer and 

the viscosity profile defined by (5), results in the following set of equations: 

d du    n . . 

dz dz (y) 

du-u -d2« „ 
-^--^KU.^8— 8<z, 

In addition to the two boundary conditions (3), we require the velocity and the velocity 
gradient to be continuous at the transition level 8 between lower and outer layer. 

Solving the momentum equations (7) proceeds assuming a harmonic time-dependent 
wave motion specified by its near-bottom velocity: 
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u„{t) = "f,U„/«>"• +c.c, (8) 

where <u„ = 2n/T„ is the angular frequency, Tn the harmonic period, N the number of 

components under consideration, and i = V-l . Note that the coefficients U„ „ are complex 

which means that phase differences may exist between the various harmonics in the near- 
bottom velocity and that c.c. denotes the complex conjugates to the terms in the series since 
the resulting quantities must be real-valued. 

The complete solution for the velocity profile in the wave boundary layer as a function of 
time becomes in the lower layer (z0 < z < 8 ): 

«(*,/) = -£ futfy-' +c.C.= ln^"f 
In— "=' 

2t/„ 

^0  n=l 2i„A + ^-(i-/) 
(9) 

and in the outer layer (z < 8 ): 

n=l 
U„,„+{U„(8)-U^}e iioj   , e  " +c.c (10) 

where: 

8 = 
2KU,ch„8 

(11) 

Comparison of velocity predictions of analytical and numerical model 

The velocity predictions were compared with the results of the IDV NEREUS wave 
boundary layer model (Klopman, see Ribberink and Al-Salem, 1995) in which a mixing 
length approach (see previous section) is used to derive a time-varying eddy viscosity. For the 
coefficient m and the characteristic shear velocity u, char in Equation (11) we used m = X and 
M« char = "* mean based on representation of the mean bed shear stress. For a purely sinusoidal 

shear velocity, we would have   u, mean = l/v2 u, max. Generally, the characteristic shear 

velocity u. char is chosen to represent the maximum bed shear stress (u. ,) in order 

to avoid underestimation of the eddy viscosity during the high-velocity portion of the wave 
cycle when most of the turbulence is generated (Grant and Madsen, 1979). For the 
predictions of the maximum velocity profile however, we found that u, ^ = u, mean gave the 

best results in the analytical model. The coefficient m can be expected to be in the range of 
Xo t° X • The value of X corresponds to Kajiura's (1964) transition level to the outer layer, 

whereas the value of X corresponds to the optimal level as found by Brevik (1981) which is 

half the boundary thickness as defined by Jonsson and Carlsen (1976). The latter value of 
m = X is adopted here as the standard value for m and has been applied in all computations 
shown in this paper. Somewhat better velocity predictions can be obtained using a smaller 
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value for m. Note that the assumption of constant shear stress can formally not be expected 
to be valid up above z = X0Ku,char/a). 

A second order Stokes condition is used in the comparison corresponding to the 

conditions of LOWT test Cl (see Table 1). We determine w,max =A//M,/2M, using Swart's 

(1974) explicit approximation for the wave friction factor to Jonsson's implicit, semi- 
empirical formula. The influence of the use of w,, the amplitude of the first harmonic, rather 

than the root-mean-square velocity was negligible and more appropriate in the wave tunnel 
situation used in the net transport model validation. 

Figure 1 shows the velocity at different phases with zero phase corresponding to the 
maximum 'onshore' velocity as well as the amplitudes of the two harmonic components and 
the root-mean-square velocity. It can be seen that the predictions of the velocity amplitudes 
by the analytical model are somewhat smaller than the NEREUS predictions. The velocity 
predictions with the analytical model are quite reasonable, especially when considering the 
use of this velocity profile for sediment transport predictions. 

0        0.2       0.4       0.6       0.8 1 
u     (m/s) 

rms 

Figure 1 Velocity predictions at different phases and velocity amplitudes (NEREUS dashed 
lines; analytical model drawn lines). Conditions correspond to test Cl (see Table 1) 

Bed shear stress 

The bed shear stress resulting from the time-invariant eddy viscosity model is given by: 

TW =lim   P•Vhar23-] = P^char-^5X(«SKV +C.C, M(\ oz) mA »=1 
(12) 
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from which it can be seen that a linear model with a time-invariant eddy viscosity is 
obviously not able to predict any higher harmonics in the shear stress field. By choosing 
u. char = u, max in a time-invariant model, the maximum bed shear stress can be predicted quite 

accurately. Trowbridge and Madsen (1984) suggested that a simple way to reproduce in a 
theoretical model the potentially important third harmonic of the bed shear stress while 
ignoring the small third harmonic of the velocity would be to compute the velocity field by 
using a time-invariant eddy viscosity and then compute the bed shear stress by combining the 
velocity prediction with a time-varying eddy viscosity proportional to a shear velocity based 
on the instantaneous bed shear stress predicted by the time-invariant model. 

This concept is adopted by using the bed shear stress definition (4) which corresponds to 
a time-variant eddy viscosity model: 

du 
Tft,2 =

|im PwOp^r = H ?(**)' z->0\ dz 
ln- 

•\u(8,t)\u(8,t), (13) 

in which the velocity field is obtained using the time-invariant eddy viscosity model (see 
Equation (9)). 

Comparison of shear stress predictions of analytical and numerical model 

Figure 2 shows the bed shear stress for both the time-variant and time-invariant eddy 
viscosity model using <5 = % x&. mean/ffi> as well as 8 = }{KU, max/ff> in comparison with the 

bed shear stress as computed by NEREUS. 
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Figure 2 Comparison of bed shear stress for 8 = Y^Ktu mcw / (o (left) and 8 = %Ku,m!lx/a> 

(right) for NEREUS (dashed), time-invariant model (dashed-dot) and time-variant model 
(drawn) 



2580 COASTAL ENGINEERING 1998 

From Figure 2, it can be seen that for the predictions of the linear model with the time- 
invariant eddy viscosity, the maximum shear velocity must be used to adequately predict the 
shear stress amplitude. This could be expected since the shear stress in the linear model is 
directly proportional to the characteristic shear velocity u, char, whereas the velocity gradient 

is less sensitive to the value of u, char. The predictions using the time-variant model, which 

are governed by the velocity gradient, are relatively insensitive to u, char. The most important 

feature in the predictions of the time-invariant model, is the presence of third and higher 
harmonics such that the asymmetry of the bed shear stress is in better accordance with 
NEREUS than the relatively symmetrical bed shear stress as predicted using the time- 
invariant model. This was found to be extremely important to predict the asymmetry in the 
sediment concentration at the bed. 

Sediment concentration model 

Advection-diffusion equation 

Conservation of mass is applied to the sediment and the resulting equation is Reynolds 
averaged. Assuming that the Reynolds averaged vertical water velocity is negligible 
compared to the fall velocity of the sediment, using the boundary layer approximation and 
introducing the mass balance for the fluid, yields: 

dc dc    dlc'w') 

»+W-*+*=0' 04) 

in which c denotes the turbulence averaged concentration,   ws  the particle fall velocity 

(assumed constant) and -{c'w') the turbulence upward sediment flux, where the brackets 

denote averaging over the turbulence time-scale. In order to model the turbulence sediment 
flux, we make the assumption of upward transport due to turbulence diffusion as for the fluid, 
see Equation (2): 

dc 
-{c'w') = pv,s— (15) 

in which vls is the turbulence diffusivity of sediment mass. 

The solution to Equation (14) requires two boundary conditions in z. At the water 
surface the vertical flux is zero which due to the limited extent of the wave boundary layer is 
normally equivalent to c -» 0 for z —> °° . The second boundary condition is related to the 
bed concentration of the suspended sediment taken at a specified level above the mean bed 
level. Here we use the reference concentration of Zyserman and Fredsoe (1994) which has 
the advantage of an upper cut-off for the sediment concentration at large values of the bed 
shear stress. The sediment concentration is prescribed at a reference level za = 2D50: 

c(za,t) = cb(t), (16) 

Besides, we apply the above boundary condition as a pick-up type boundary condition in 
which it is the upward diffusive flux from the bed -v, s dc/dz and therefore the concentration 

gradient rather than the concentration itself which is prescribed: 
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(fL-wLr") 
Diffusivity model 

The diffusivity of sediment mass is in principle assumed to follow the same distribution 
as the diffusivity of fluid momentum, Equations (5). The exact solution in case of a linearly 
varying diffusivity in the lower layer is in terms of higher order Kelvin functions (Smith, 
1977) which are time-consuming to compute and not easily approximated. Therefore, a 
representative constant diffusivity in the lower layer is used which is determined by requiring 
the mean concentration at z = S to be equal to the mean concentration when using the 
linearly varying diffusivity. We now have: 

v,,s = v,,s,i = P•*,*J z0<z<8 
„ - (18) 

V,,s=V ,^=101.^5 S<Z 

in which f) follows from the above requirement. 

In addition, we allow the settling velocity to be different in the two layers. In the lower 
layer we have ws = ws, which is taken as the settling velocity corresponding to the D50 of 

the bed material. In the outer layer, the settling velocity w, = w, 2  can be expected to be 

smaller, corresponding to 0.7£>50 -0.9D50 . 

Solution 

Solving the advection-diffusion equation (14) proceeds assuming a harmonic time- 
dependent wave motion specified and using complex variables. The general solution in case 
of a constant diffusivity reads: 

c(z,t) =   X  Cmexp 
V, 

with 

1        1 v, s 
"». = n+J7 + "B».-£f> (20) 

and M > N is the number of harmonic components in the bed concentration. The complex 
coefficients     Cm     are     determined     by     the     bed     boundary     condition.     With 

cb(z,t)=   £Cs/"*"',we find Cm=Cbm and Cm=Cbm/am for the concentration-type and 
m=-M 

gradient-type boundary condition, respectively. At the transition of the lower and outer layer, 
the concentration is required to be continuous. 

Wave-related sediment transport model 

Writing the previously found expressions for oscillatory velocity and concentration as 

"(z>0=If,,»(z)e""'+cc.     and     c (z, t) = ]T C,cm (z)eim-' + cc.,     integration     of    the 
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instantaneous flux <p(z,0 = uc over time and depth yields for the net wave-related sediment 

transport: 

1,a„ =—^ 'I ]<p(z,t)tedt =f (V(z))dz= j{s^(z)f Ci.„(z) + «:.}dz (22) 

In the outer layer with a constant diffusivity of fluid momentum and sediment mass, the 
solutions C„„(z) and fc„(z) are in terms of exponential functions such that the integration 

of the time-averaged flux (®(z)) over depth is easily carried out analytically. The linearly 

increasing diffusivity close to the bed yields a  logarithmic profile for   f„„(z)   which 

complicates the analytical integration of (<p(z)) . Therefore a polynomial approximation valid 

for small values of z is used to approximate the integral. 
Herewith we have arrived at a computationally efficient method to account for the wave- 

related suspended sediment transport taking into account the strong vertical variations in the 
near-bottom time-varying flow and concentration including the non-instantaneous response of 
the sediment. With the present time-domain formulation of the bed boundary condition for 
the sediment, the determination of the net transport rate requires a transformation from 
frequency to time-domain and vice versa. Compared to using a numerical finite difference 
scheme however, we have at least a two orders of magnitude reduction in the computational 
effort. 

Comparison with LOWT experiments and results of various models 

Description of LOWT experiments 

The data used for model validation were obtained by Ribberink and Al-Salem (1994) for 
dune sand with D5a=2\0jj.m and by Ribberink and Chen (1993) for finer sand with a 

Di0 =130jJ.m . The experiments were carried out in the Large Oscillating Water Tunnel. The 

experiments used here were performed above a plane sand bed for regular asymmetric (2nd 
order Stokes) waves in the absence of a mean current. The set of experiments covered a range 
of wave periods, flow velocity and asymmetry (see Table 1). For Cl and D13 (bold in Table 
1) detailed time-dependent measurements were performed. For all tests net transport rates 
were derived using a mass-conservation technique. Time-averaged concentration were 
measured using a suction system, whereas time-dependent concentrations were measured 
using a conductivity concentration meter (CCM) in the sheet flow layer and an optical 
concentration meter (OPCON) in the suspension layer. 

The comparison with the experiments was carried out on sediment concentration and 
time-averaged sediment fluxes for the tests Cl and D13 and on net transport rates for all tests 
in the respective series. For all tests, the model was run using the standard settings of 
8 = 0.25KM, mean/ffi> and kn = 3£>90 and with a fall velocity in the outer layer corresponding to 

a grain diameter of 0.75£>50 based on grain-size data collected during the experiments. Both 

the concentration-type and pick-up type concentration boundary conditions were used. Only 
for D13, a significant difference could be observed in the results of the two boundary 
conditions. 

Series B andC (D50 = 2\0/im) 

In Figure 3, the prediction of the analytical model is compared with the time-varying 
sediment concentrations at four heights above the original bed level and with the time- 
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T£ls) «« (m/s) <u3> m3/s3 Tp(s) u» (m/s) <u3> m3/s3 

B7 6.5 0.5 0.102 Dll 6.5 0.56 0.096 
B8 6.5 0.7 0.256 D12 6.5 0.91 0.537 
B9 6.5 0.92 0.562 D13 6.5 0.73 0.220 
BIO 9.1 0.54 0.104 D14 6.5 0.45 0.044 
Bll 9.1 0.70 0.220 
B12 9.1 0.97 0.574 
B13 6.5 0.70 0.114 
B14 9.1 0.71 0.094 
B15 5.0 0.51 0.103 
B16 12.0 0.56 0.101 
Cl 6.5 0.59 0.124 

Table 1 Test conditions for B- and C-series (Ribberink and Al-Salem, 1994) and D-series 
(Ribberink and Chen, 1993). 

LDA at 25 cm LDA at 25 cm mean concentration 

1 

f  0 
-1 

600 

;.400 
0 

' 200 

0 
l 

400 

0 

/N : 

/      V 

. .A .      i 

/        i\/ 
0 

0 
I 

300 

>200 

• 100 

o 

J     \j ^^^ 
2   2 mm4 

"A'I J hs/^~^ 

 /'"""•"(  

if   \y^ vdr -- 

0.5 

\ 

\    O 
\ a 
\ o; 
?0: 

>J< 

P 

X 

*\ 
4>... 

10" 
c (g/1) 

Figure 3 Comparison of measured (drawn) and computed (dashed) sediment concentrations 
forCl 

averaged sediment concentration profile. At the lower levels the predictions are in good 
agreement regarding amplitude and phase. With distance from the bed especially the phase 
between the model and data increases. Further, the data show a single-peaked concentration, 
whereas a second peak is still present in the model predictions. The time-averaged 
concentration profile is reasonably well predicted. Qualitatively, these features are in 
agreement with model predictions discussed in a MAST2 G8-M intercomparison study 
comparing four numerical 1DV models with LOWT data (Davies et al.,1997). In Figure 4 
(upper left plot), the predicted time-averaged flux profiles are compared with the data and the 
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predictions of the Danish STP model based on an eddy viscosity approach (Fredsoe et al., 
1985) and a turbulent kinetic energy model (Davies, 1995). The results of the latter two 
models were taken from the aforementioned paper and were obtained without any fine-tuning 
of the respective models. Note that for the lower five points measured values for the 
concentration were combined with estimated values of the velocity, since no velocity 
measurements were available here. All models and the data show an 'onshore' transport in 
the near-bed layer and an 'offshore' transport in the outer suspension layer. All models give 
comparable results and significantly overestimate the height of zero flux and is a direct result 
of the underestimation of the phase differences between velocity and concentration in the 
models which are all based on a diffusion approach for the upward transport of sediment. 
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Figure 4 Comparison of measured and computed time-averaged fluxes (upper left plot, STP: 

dashed, t.k.e.: dashed-dot; analytical: drawn) and comparison of measured and computed net 
transport rates for various models for the B- and C-series. 

The net sediment transport is dominated by the flux in the near-bed layer such that the 
mismatch between model and data further from the bed can be expected to be relatively 
unimportant for the net transport predictions. This can be seen in Figure 4, which compares 
the net transport predictions of the analytical model with the data. Besides, the performance 
of the Bailard (1981) and Dibajnia and Watanabe (1992) is shown. The latter model results 
are taken from Janssen et al. (1996). In this figure, perfect agreement corresponds with the 
45° line. Also shown are the lines indicating a factor 1.5 and 2 around the line of perfect 
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agreement. It can be seen that the predictions of the analytical model, the Bailard model and 
the Dibajnia and Watanabe model are within a factor 2 from the data for 100%, 90 % and 100 
% of the tests considered, respectively. Within the band of factor 1.5 we have 100%, 60% and 
50% respectively. Also compared to the predictions in Davies et al. (1997), the analytical 
model gives favourable results. 

Series D(D50=\30/lm) 

A comparison of the predicted and measured time-varying and time-averaged sediment 
concentrations, not shown here for brevity, showed many of the features as reported above 
for test Cl. An important difference is the relatively large concentration in the outer layer, 
such that the predictions in the outer layer are more important to the net sediment transport 
rate predictions than for the coarser sand. 

400 
Net transport rates series D 

7 

In Figure 5, these 
net transport rate 
predictions are 
compared with the 
data, together with 
the predictions of 
the Bailard and the 
Dibajnia and 
Watanabe model 
(from Janssen et al., 
1996). The data 
show a decreasing 
and eventually 
reversing transport 
rate for increasing 
root-mean-square 
velocities. Due to 
its assumption of 
quasi-steadiness, 
the Bailard model 
cannot follow this 
trend. Both the 
analytical      model 

and the Dibajnia and Watanabe model qualitatively follow the observed behaviour, although 
neither of them predicts the right order of magnitude of the transport rates. The Dibajnia and 
Watanabe model gives somewhat better results. 

-200 

Figure 5 Comparison of measured and computed net transport rates 
for various models for the D-series 

Conclusions 

The sediment fluxes and net transport rates predicted by the analytical model are comparable to 
results of numerical IDV models. However, a considerable reduction of computational effort is 
obtained. The model gives accurate estimates of the net transport rates for medium sand. For 
finer sand, although qualitatively correct, the model fails to predict the strong offshore 
sediment transport rates at higher velocities, mainly due to the diffusion approach. 
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