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Abstract Remotely-sensed images can provide synoptic or nearly synoptic data for 
large areas of the sea surface. Photographic and, more recently, radar measurement 
techniques can resolve the pattern of waves on the water surface and can provide a very 
dense sampling of kinematical variables of interest, ranging from a complete picture of 
the wave phase (in the case of single photographs) to horizontal velocity components 
at the water surface resulting from wind, tides, or waves (in the case of advanced 
radar techniques). When applied in the coastal zone, these images contain surface 
waves that are propagating over a complex bottom bathymetry and current field, and 
that are affected by a combination of shoaling, refraction, diffraction and nonlinear 
processes. This paper examines two methods to determine bathymetry from surface 
elevation information. The first is to examine the ability of linear dispersion relation- 
ship models to determine bathymetry, in cases with refraction and diffraction, and the 
second, based on lagged correlation method (and several images), is more generally 
useful for application. 

Introduction 

Remote sensing of the ocean surface can provide a great deal of information about 
the sea. Since World War II, it has been desirable to make use of images of the 
sea surface to deduce the bathymetry and nearshore current structure of a region 
of interest. The advantages of remote sensing systems for bathymetric and current 
surveys are that they can be more rapid than ground based methods, the cost per 
survey is lower, and it is less hazardous (in terms of exposure to the elements or 
hostile activity). 

There are a variety of possible remote sensing systems. Satellites now provide 
wind speed and wave heights by altimetry. Aircraft with radars: synthetic aperature 
radar (SAR) and interferrometric SAR (INSAR) provide the ability to measure waves 
and currents. Some bathymetric data is being gleaned from the modulation of cur- 
rents by the bottom from SAR data now, such as the ARGOSS BAS system in the 
Netherlands. LIDAR, using lasers from helicopters, such as the U.S. Army Corps of 
Engineers' SHOALS system (Lillycrop, Parson, and Irish, 1996), can provide bathy- 
metric information at a rate of 5 km2 per hour, with accuracies of ±3 m horizontally 
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and ±15 cm vertically in water depths of 40 m or less-provided that the water is 
reasonably clear. Turbidity affects the depths to which this methodology can be used. 

An image of the water surface will contain information about the wave length of 
the surface waves, L(x, y), which may vary with position, denoted by the horizontal 
coordinates x and y. Methods based on simple approaches (such as using the linear 
wave dispersion relationship to estimate local water depth from local estimates of 
wave length and period) provide an initial indication of the variation of depth in 
intermediate water depths, where nonlinearity is weak and currents typically are not 
the leading order factor in determining wave properties. The usual linear wave theory 
dispersion relationship is a2 = gkt&nhkh, where the wave angular frequency a = 
2ir/T, where T is the wave period and the wave number k is 27r/L. The wave period, 
assumed to be constant over the image, is determined from assuming a deep water 
wave length in a portion of the image or some other means. 

Rearranging the dispersion relationship, 

Ms-vH^tMh-V/,) 

Gleaning the wave length, L(x, y), from an image, however, is not without error. 
There may be errors in the measurement technique and there may also be errors in 
how the wave period is determined. 

Taking the derivative of the above equation and then dividing by h(x, y), we have 
the relative error in depth as a function of the relative error in the wave angular 
frequency and the wave number. 

(dh\     „ (smh2kh\ (<kr\      /       sinh2fc/i\ (dk\       .,, ,, (d<r\        .,,, Idk\ 

(1) 
which defines two functions, f(kh) and g(kh), which determine the relative contribu- 
tions of the percentage errors in angular frequency and wave number to the percentage 
error in the depth. These error terms are equal to two in shallow water, meaning that 
any errors in wave length determination are multiplied by this factor of two. What is 
worse is that these terms grow exponentially with kh. (Errors in wave length lead to 
the same size errors in wave number, as dk/k = —dL/L.) Figure 1 shows how f(kh) 
and g(kh) grow with depth. Clearly, the relative depth becomes far more sensitive to 
error as the depth increases. 

Close to shore, nonlinearity can become a dominating factor in determining wave 
properties. Further, since waves are rapidly evolving and do not correspond well to any 
particular permanent form solution, it is likely to be difficult to parameterise nonlinear 
effects in a useful form. (Grilli and Skourup (1998, this proceedings) have examined the 
depth inversion of nonlinear periodic waves using a fully nonlinear boundary element 
method.) 

This paper reports on bathymetry determination from "remotely sensed" (actually 
synthetically generated) images using two different methods. First, we determine the 
ability of the linear wave theory to determine the bathymetry from water surface ele- 
vations obtained by wave models over given bathymetry. Then we utilize a maximum 
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Figure 1: Plot of f(kh) and g{kh) versus kh. Upper line is g(kh). 

entropy method with a time series of synthetic images taken over a short period of 
time (comparable to a wave period). 

Hilbert Transform 

REF/DIF 1 is a forward scattering parabolic wave model (Kirby and Dalrymple, 
1983, 1984, 1992) that predicts refraction and diffraction. This model was run with a 
simple idealized geometry (the Berkhoff, Booij, and Radder (1982) basin test, denoted 
BBR, which includes oblique wave incidence on a 1:50 planar beach with an elliptical 
shoal), using the BBR wave conditions, and surface elevations were computed by the 
model on a 200 by 200 grid (each grid is 0.125m x 0.125 m). These surface elevations 
(which have been shown to agree with measurements extremely well) were then used 
as the "remotely sensed" data and analysed for bathymetry. 

To obtain the phase of the waves within the "image," a Hilbert transform was 
used along the 200 onshore grid lines. The Hilbert transform converts real time series 
into complex series from which the phase may be obtained. [In Matlab, this involves 
three steps: unwrap(phase(hilbert(data))). The unwrap command ensures that the 
phase increases monotonically, instead of staying in the range -7r to 7r]. The horizontal 
gradient of the phase over the image then provides the local wave numbers, from 
which the depths are determined using the linear theory dispersion relationship and 
the given wave period (T=l s). 

Figure 2 shows the results for the BBR data set. Note that the depth inversion 
(using a linear dispersion relationship in REF/DIF 1) gives quite good results except 
in the focussing/diffraction region behind the shoal, where very sharp ridges of unreal 
channels and bars occur. This is due to the fact that the wave length determination 
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is difficult where waves are short-crested and diffraction is strong. 

Figure 2:  Depth inversion of REF/DIF 1 output for BBR data set, showing the 
actual bathymetry (dashed lines) and the determined bathymetry (solid lines). 

Applying a 2-D Fourier smoothing algorithm to the determined depths removes 
the sharp changes in depth produced by the focussing, as shown in Figure 3. (Note 
that we do introduce boundary effects due to the assumed spatial periodicity required 
by the Fourier filtering.) However, in the middle of the figure, the shoal is clearly and 
accurately picked out by the depth-inversion algorithm. 

No remotely-sensed image will be as free of noise as model output. Variations in 
the field data will occur due to spectral sea effects, wind, capillary waves, specular 
reflections, etc. Therefore we introduced random noise to model output to determine 
the effect on the inversion algorithm. Figure 5 shows the bathymetry deduced by 
surface elevation data which have a 10% normally distributed random variation added. 
While the results are not as good as the no-noise case, the depths are reasonably well 
delineated. More noise results in seriously degraded bathymetry. 

Additional examinations of the method included determining the errors involved 
with increasing the random noise and using the incorrect wave period. Further these 
comparisons were carried out with data from the linear REF/DIF 1 run along with 
a nonlinear model computation (using a composite dispersion relationship that fits 
the deep water Stokes relationship to a shallow water form). The variation of error 
introduced by these noise and period effects are shown in Figures 7 and 8. 

While comparisons of linear and nonlinear versions of REF/DIF to the laboratory 
data show important differences, the bathymetry obtained from linear and nonlinear 
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Figure 3: 2-D smoothed depth inversion of REF/DIF 1 output for BBR data set, 
showing the actual bathymetry (dashed lines) and the smoothed bathymetry (solid 
lines). 

synthesized surface data using the linear dispersion relationship for both cases show 
no real differences over the shoal and that the shoal is accurately found, even in the 
presence of noise introduced into the surface wave image. This method is extremely 
sensitive to the wave period, however. 

All tests here have been done with a single frequency incident wave. A spectral 
sea state is best treated by the next method, which requires a sequence of images in 
time to determine wave frequencies. 

Lag-Correlation Methods 

Sequential images of a water surface taken at reasonably short time intervals show 
waves of varying directions and wave numbers propagating through space at their 
characteristic phase speeds. This is the basis of the lag-correlation methods, where 
the sequential images are used to determine a relationship between wave number and 
frequency, and thus to estimate depth. For large spatial records where the wave 
number spectrum is constant over the image and sequential images are available, 
wave number spectra and the associated phase speeds may be easily determined using 
standard Fourier techniques. However, in coastal regions, wave lengths and directions 
may change significantly over several wave lengths, making direct methods like this 
impossible. In this case, different methods must be used to estimate the wave number 
spectrum and associated phase speeds. Note that here the spectrum is characterised 
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Figure 4: 2-D smoothed depth inversion of REF/DIF 1 output for BBR data 
set, along on/offshore transect 80, showing the actual bathymetry and the inferred 
bathymetry (wavey line). 

in terms of wave number rather than frequency, which is much more natural given 
the form of the data. The methods used here will make the assumption that the the 
wave field is approximately stationary over a window of about two peak wave lengths. 
Although this assumption becomes invalid near the shore, and in areas with strong 
changes in bottom topography, it remains reasonable for many situations. 

To aid analysis, the surface elevation data contained in the windows of interest is 
transformed into auto and cross correlation functions (e.g. Bendat and Piersol, 1986, 
Balakrishnan, 1995). Auto correlation functions of some window of data show the 
correlation of an image with itself at different spatial lags. If sequential images of 
the same window are compared, a cross-correlation function results. Autocorrelation 
functions contain information about the wave number spectrum to within a 180 de- 
gree directional ambiguity, while the addition of cross-correlation functions resolves 
this ambiguity and provides information about phase speed. Auto and cross corre- 
lation functions may also be easily constructed from a given wave number spectrum 
and dispersion relationship. For full and accurate records of auto and cross correla- 
tion functions, the wave number spectrum and dispersion relationship may be easily 
found, and the depth may be deduced from this. However, window sizes are assumed 
to be only about two peak wave lengths, and because of way they were constructed 
from data, correlation functions with high lags become unreliable. Therefore, since 
full records are unavailable, more approximate methods must be used to find the wave 
number spectrum and, more importantly, the dispersion relationship and therefore 
the depth. 

One Horizontal Dimension 

As a first test, the lag-correlation method was tested for one horizontal dimension. 
Spatial images of the water surface were generated using a fully nonlinear extended 
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Figure 5: 2-D Smoothed Depth inversion of REF/DIF 1 output for BBR data set, 
showing the actual bathymetry (dashed lines) and the smoothed bathymetry (solid 

Boussinesq model (Wei et al., 1995) over a bar-trough topography (Figure 9). The 
surface was then divided into overlapping windows with a length of about two peak 
wave lengths. Unbiased auto and cross correlations, which include a factor to correct 
for finite record length, were then computed in these windows. Ten sequential images 
were used to provide data; multiple auto and cross correlations were thus averaged to 
reduce error. However, there remained significant error for high spatial lags, and all 
correlations for lags greater than 2/3 of the window size were considered unreliable 
and discarded. 

The inverse problem was then solved on a window by window basis. In each 
window, the measured auto and cross correlations were assumed to come from a spec- 
trum that had either a JONSWAP or TMA type form (results were almost identical 
for both). The unit spectrum of this form was defined by a peak wave number, kp, and 
a peak enhancement factor, 7. In order to specify the dispersion relationship for cal- 
culating cross correlations, a depth h also needed to be specified. Initially, of course, 
none of these were known, although a reasonable estimate could be made for the peak 
wave number. Initial guesses were made for each which were then iterated until the 
squared error between the measured and estimated auto and cross correlations was at 
a minimum. The depth at this minimum was then assumed to be the inversion depth. 

Figure 9 shows actual and estimated depths for an incident spectrum with peak 
Tv — 7s and height HRMS = 0.025m. The time lag between sequential images was 
2s.   Agreement is quite good, although small scale features cannot be reproduced. 
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Figure 6: 2-D smoothed depth inversion of REF/DIF 1 output for BBR data 
set, along transect 80, showing the actual bathymetry, the inferred bathymetry (no 
smooothing (very wavy line), and the smoothed bathymetry. 

Furthermore, some scatter is clearly visible. This is likely due to a finite record 
length, and the resulting error in the correlation functions. Errors are greatest for 
deeper depths because here, the dependence of phase speed on depth is small. Thus, 
small errors in estimating phase speed or wave number will be magnified. 

Figures 10-11 show inversions performed over the same topography as RMS wave 
heights increase. The time series of input waves to the Boussinesq model remained 
identical except for a multiplicative factor. Nonlinearities would, of course become 
evident as waves evolved. The main effect of this nonlinearity is to overestimate water 
depth wherever wave heights are large. This is because of amplitude dispersion, which 
increases with phase speed. Evidently, as shown by Grilli and Skourup (1998), using 
a nonlinear celerity would increase accuracy. 

Two Horizontal Dimensions 

For two horizontal dimensions the general problem remains the same: find a wave 
number spectrum and associated depth to best match the measured auto and cross 
correlation functions. However, it is more difficult to define a two dimensional wave 
number spectrum in terms of a few parameters - particularly if the spectrum has more 
than one dominant wave number or direction. 

Accordingly, a more general technique was used to estimate the wave number spec- 
trum in each window. The maximum entropy technique of Lim and Malik (1981) has 
been shown to be useful for finding the maximum entropy spectrum for two dimen- 
sional wave number problems from incomplete autocorrelation data. This technique 
uses two dimensional FFT's to transform between autocorrelation and wave number 
space, and again between wave number space and constraint space until a maximum 
entropy spectrum is reached that satisfies the measured constraints on the autocor- 
relation function. A variant of this method was used to compute the wave number 
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Figure 7: Relative errors introduced by uniform random noise for linear and nonlinear 
REF/DIF results. 

spectrum directly from the autocorrelation function. In some cases, the method may 
be slow to completely converge, but it was found that complete convergence was not 
necessary to accurately invert depths. As long as the peak of the wave number spec- 
trum was in the correct location, results continued to be accurate. 

Once the wave number spectrum had been computed, the depth in each window 
was iterated until the cross correlation function resulting from the maximum entropy 
spectrum best matched the measured function. A 180 degree ambiguity with respect 
to the wave number spectrum had to be specified, but this was a minor concern. 
Figure 12 shows estimated and actual depths for the Berkhoff, Booij and Radder 
(1982) experiment described earlier. Once again, agreement is quite good, although 
the depth at the top of the shoal is overestimated, due to nonlinearities and/or a finite 
window size. Figure 13 gives a one dimensional slice through the shoal, and clearly 
shows the overprediction of depth on top of the shoal. This is almost certainly because 
depth is asumed to be constant throughout the analysis windows, an assumption that 
is violated in the region of the shoal. 

Next, to test the effect of inaccuracies in the measurements, Gaussian noise with 
a standard deviation of 10 percent of the wave height was added to the data. Depths 
were then estimated as before. Figure 14 shows the computed and measured depths. 
These are virtually identical to those computed earlier. This insensitivity is because 
the maximum entropy technique transforms white noise in the data into a noise floor 
in the wave number spectrum. This noise has no strong correlation with depth and 
thus does not affect greatly estimates of depth. Figure 15 shows a slice through the 
shoal and again the results are almost identical to the no noise case. 
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Figure 8: Relative errors introduced by relative errors in angular frequency for linear 
and nonlinear REF/DIF results. 
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Figure 9: Estimated (x) and actual (-) depths over a bar-trough topography, HUMS = 
0.025 m 
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Figure 10:   Estimated (x) and actual (-) depths over a bar-trough topography, 
HRMS=1m 

Figure 11:   Estimated (x) and actual (-) depths over a bar-trough topography, 
HRMS = 1-5 m 
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Figure 12: Depth contours over the BBR shoal (-) actual; (- • -) estimated 
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Figure 13: Cross section of depth through the BBR shoal, (-) actual; (*) estimated 
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Figure 14: Depth contours over the BBR shoal (-) actual; ( ) estimated from noisy 
data 
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Figure 15: Cross section of depth through the BBR shoal, (-) actual; (*) estimated 
from noisy data 




