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Abstract 

Statistical wave forecasting methods have been applied because of their 
convenience. Most of them, however, include some drawbacks from the statistical or 
numerical viewpoints. In this paper, these drawbacks are discussed and a new 
statistical wave forecasting method utilizing the Kalman filter technique combined 
with Principal Component Analysis (PCA) is proposed in order to mitigate the 
drawbacks. The applicability and reliability of the proposed method is examined for 
five wave observation stations around Japan through simulations based on 5-years of 
wave data and weather charts. 

Introduction 

Adequate wave forecasting is indispensable for the safe operations of cargo 
handling, optimum management of port construction projects, and navigating and/or 
mooring vessels. There are two kinds of wave forecasting methods. One is a 
numerical model describing the physical process between winds and waves. The 
other is an empirical model based on a statistical relationship between the weather 
and the wave data obtained in the past. 

The former method has been widely used for wave hindcasting for estimating 
design wave conditions. The reliability of the method has been discussed in several 
papers so far. Practical computation with this method, however, requires special 
knowledge of both the atmospheric and wave systems. Also, a large investment in 
computations is sometimes required. 

On the other hand, the latter method commonly utilizes simple statistical 
relationships among criterion variables and predictor variables using obtained data. 
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The statistical method has advantages in that it is easy to handle and does not require 
special knowledge in practical computations. Because of these advantages, several 
statistical models have been proposed so far. The most commonly used model is the 
multiple regression model in which the wave characteristics, such as significant wave 
height and period at a specific point, and the atmospheric pressure data and/or wind 
data at several points are interrelated. However, from numerical viewpoints, most of 
the existing models contain several drawbacks such as multicollinearity among 
predictor variables, over-fitting of the criterion variable to the data, and over adoption 
of predictor variables in the model. 

For these reasons, it necessitates the development of a reasonable statistical 
model in which the dynamical behavior of each variable and the statistical relation 
among variables are properly taken into consideration to eliminate the above 
drawbacks. Before applying the model, it is necessary to examine the model in detail 
for the real data obtained in various sea conditions for practical applications. 

In this paper, we propose a new statistical wave forecasting model utilizing the 
Kalman filter technique combined with Principal Component Analysis (PCA) in 
order to mitigate the above-mentioned drawbacks of the conventional statistical wave 
forecasting models. 

Drawbacks of the conventional statistical wave forecasting methods 

In the normal procedure of wave forecasting by using a numerical model, first, 
the wind field is calculated from the weather charts. Once the wind field is calculated, 
the generation, development and attenuation of the wave field can be calculated from 
the wind data. Usually, in numerical computations, a proper grid size is adopted to 
obtain accurate and reliable results. However, if the same grid size is applied to the 
statistical wave model, and the data for the predictor variables are given on the same 
grid points, such fine grid size sometimes cause inferior prediction. This is because of 
the high correlation among predictor variables themselves, which causes the 
multicollinearity in the correlation matrix of the predictor variables. In such situations, 
the data on such fine grids are no longer proper predictor variables. However, if a 
rough grid size is adopted for predictor variables to eliminate the above 
multicollinearity problem, important small scale atmospheric pressure patterns will be 
overlooked and the accuracy of the wave forecasting will be reduced. This is one of 
the problems for the conventional statistical wave forecasting method. 

When analyzing the time series of atmospheric pressure data, the spectrum of 
the atmospheric pressure includes energies in a considerably wide range of 
frequencies including seasonal and yearly changes. If the atmospheric pressure data 
are directly applied for establishing the equations for short-term wave forecasting, 
unnecessary long-term components of the energy included in the data may cause 
biases in the relation between the criterion variable and the predictor variables. This 
leads to the deterioration of the prediction accuracy. 

Over-fitting of the criterion variable to the data and over-adoption of predictor 
variables in the model are also common matters to be attended in the statistical model, 
which sometimes cause the prominent delay of the predicted values to the real values, 
and the predicted values tend to be more unstable. 
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In order to mitigate the above-mentioned drawbacks of the conventional 
statistical wave forecasting models, this new statistical wave forecasting model is 
developed which properly considers the dynamical behavior of each variable and the 
statistical relation among. 

Definition of the "wave forecast" used in this study 

First, to eliminate any possible confusion, the meaning of the word "forecast" 
used in this study should to be clarified. The word "forecast" is generally used to 
estimate an unknown situation based on the information obtained at present or in the 
past. However, in this study, we assume that the accurate weather information at the 
time for wave forecasting has already been known, which is assumed to be predicted 
by some other methods. That is, when we try to forecast waves 24 hours ahead, the 
accurate weather chart 24 hours ahead has already been obtained and wave data 
observed at the time are also available. Though the accuracy of the wave forecast 
strongly depends on the accuracy of the weather information, we examine only the 
accuracy of waves forecasted by the proposed method under the condition that the 
accurate weather information is given. Though the forecasted weather chart may 
include some errors, it is beyond our research to examine the accuracy of the weather 
chart. 

Wave data and atmospheric pressure data used in this study 

The computation for wave forecasting is carried out using the atmospheric 
pressure data read every 12 hours at the grid points of 500km X 500km shown in 
Figure 1. Five years of atmospheric pressure data, from 1980 to 1984, are used in this 
study. The locations of the wave forecasting points are denoted by the upper case 
letters in Figure 1. At each location, wave observations have been obtained every 2 
hours for many years. Though the grid size is very rough compared to the numerical 
model, the forecasted wave heights using this grid size is acceptable for practical 
applications as shown later. 
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Figure 1    Wave observation stations and grid points of atmospheric pressure data 
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Statistical wave forecasting model utilizing Kalman filter combined with 
Principal Component Analysis (PCA) 

Figure 2 shows the flow chart of the procedure of wave forecasting by using 
the Kalman filter combined with Principal Component Analysis (PCA). The model 
employed here consists of three parts. The first is the real-time filtering by using the 
Kalman filter. The second step is the PCA. The final step is the wave forecasting by 
the time-dependent regression model utilizing the Kalman filter. By obtaining new 
wave information and atmospheric pressure data, these three steps are repeated to 
update the wave forecasting equation and improve the accuracy of the wave 
forecasting.    The procedure of each step is introduced in detail in the following. 

1) Real-time filtering of the atmospheric pressure data by the Kalman filter 
The first step in Figure 2 is the real-time filtering by the Kalman filter. Using 

their technique, the time series of atmospheric pressure data on the grid points are 
separated into two components, i.e., a long-term component (longer than one-week 
period) and the remaining short-term component. The outline of the Kalman filter is 
as follows. 

The equations of the state space representation are expressed by: 
x„ =F„xn_, +G„v„    (System Equation) (1) 

y„=Hwxn+w„        (Observation Equation) (2) 

where x„ : state vector ( kX 1 ), v„ : system noise (Gaussian white noise with mean 

vector 0 and covariance matrix Q„) ( mXl ), yn : observation vector ( /Xl ), 

w„ : observation noise (Gaussian white noise with mean vector O and covariance 

matrix R„) ( /X 1 ) and F„, G„, H„ : respectively (kxk), (kxm) and (Ixk) 

matrix. 
To estimate the state vector x„ in Equation (1) on the basis of the observation 

vector y„ in Equation (2), the following one-step prediction and filtering are 

recursively applied through Equations (3) - (7). 
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Figure 2    Flow chart of the proposed wave forecasting procedure 
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[One-step prediction] 

n|n-l       *nXn-l|n-l 

i^n-1 - FflV«-l[n-lF» +G„Q„G„ 

(3) 

(4) 
[Filtering] 

Kalman gain (5) 

(6) 

(7) 

K« - v*-iH„(H„V„j„_1Hj, +R„) 

V„[„ = (I - K„H„ )V„|„_[ 

where xn|] =£(x„ | Y;) and  V^ =E(xn -x„u)(x„ -x^)' 

For separating long-term and  short-term components of the  atmospheric 
pressure, equation (8) is assumed as the observation equation of equation (2). 

yn ~ tn + wn    (Observation equation) (8) 

where yn : the observed value, tn : the long-term component and wn: the short-term 
component. 

Since the long-term component is a slowly varying value, Equation (9) is assumed 
as the system equation of equation (1). 

^{
n ~ Vn    (System equation) (9) 

where A* : k-th order difference operator, and the second order difference operator is 
applied in this study as tn - 2tn_l + tn_2 = vn. 

Figure 3 shows the example of the spectra of the logarithm of the significant 
wave height measured at Mutsuogawara port and the atmospheric pressure data at a 
point. The spectra of the separated time series data of long-term component and short- 
term component are shown in the figure. As seen in the figure, appropriate separation 
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Figure 3   Spectra of the logarithm of the significant wave height at Mutsuogawara 
port and atmospheric pressure with the separated components 
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Figure 4    Cross-correlation coefficients between the logarithm of the significant 
wave height at Mutsuogawara port and the atmospheric pressure data 

can be done by the Kalman filter by choosing a proper value of the trade-off 
parameter   al ja\,  where   al   and   al   are the variances of v„   and   w„   in 

equations (9) and (8), respectively. The trade-off parameter of the Kalman filter is 
used to control the magnitude of the change of the model in each time step of the 
computations. That is, by changing the value of al /al , the ratio of the energy of 
the separated long-term component and the short-term component can be controlled. 

Figure 4 shows the cross-correlation coefficients between the logarithm of the 
significant wave height measured at Mutsuogawara port and the atmospheric pressure 
data at a point. The cross-correlation coefficient in figure (a) was estimated from the 
original atmospheric pressure data. The cross-correlation coefficient in figure (b) was 
estimated from the short-term atmospheric pressure component separated from the 
original data. The cross-correlation coefficient in figure (a) shows distinct positive 
and negative peaks with clear time lag between the two time series, though figure (b) 
shows vague negative peaks and time lag. 

The purpose of separating the atmospheric pressure data into two components 
is to reduce negative effects from the long-term component to the short-term 
forecasting. This is necessary since we focus on the short-term wave forecasting and 
the long-term component may cause a bias in the relation between the criterion 
variable and the predictor variables. 

2) Principal Component Analysis of atmospheric pressure data 
The second step is the PCA by which the separated time series data on the grid 

points are projected onto the empirical eigen-vectors obtained from each component 
of the atmospheric pressure data on the grid points. Here, the empirical eigen- 
vectors are preliminarily computed by using the past three-years' atmospheric 
pressure data. The outline of the PCA is as follows. 

Atmospheric pressure field   PZJ   can be  approximately  expressed by the 
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superposition of the eigen-vectors e„z with weighting coefficients  cnt: 

where atmospheric pressure field Pz) is normalized by the mean value and standard 

deviation of P(x,y,t), and each eigen-vector e„z is assumed to be orthogonal to 

each other as 

TJ
e^em,z=-Sn,m (H) 

Then the eigen-vector e„. can be estimated by solving the following equation. 

A = 2„e„ (12) 
where Xn: eigen-value, ahJ is the (i,j) component of matrix A and is expressed 

by 

1 
-I^Ar (13) 

Using the orthogonal condition of the eigen-vector, the weighting coefficient c„, can 

be obtained by 

c„, = E^A,* (14> 
Figure 5 shows examples of the eigen-vectors of the long-term component of 

the atmospheric pressure system. From the left to the right in Figure 5, each figure 
shows the 1-st, the 2-nd, the 3-rd, and the 4-th principal component, respectively. 

As seen in the figure, the 1-st component is invariable with respect to time /. 
This component seems to be the average of the atmospheric pressure system. The 2- 
nd component seems to show the phenomenon in which the atmospheric pressure 

1st component vector' 2nd component vector 3rd component vector 4th component vector 

LsnKltudB 

Figure 5    Components of PC A for target time and 12, 24 hours before target time 
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Time series of weighting coefficient for 1st component 

Time series of weighting coefficient for 2nd component 
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Figure 6    Time series of the weighting coefficients of the PCA 

system moves from the west to the east. The 3-rd component shows from the south to 
the north. The 4-th component from the south-west to the north-east with the 
developing pressure system. The behavior of the atmospheric pressure system is 
assumed to be approximated by the superposition of these orthogonal empirical eigen 
patterns in this study. 

The weighting coefficient of each eigen-vector is stored to be used in the 
following 3-rd step computation. Through this procedure, the atmospheric pressure 
data on the grid points are transformed and condensed into fewer, yet more efficient 
and independent predictor variables. The purpose of introducing the PCA is to avoid 
the unfavorable effect of multicollinearity of the atmospheric pressure data on the 
space-time grid points, by which new predictor variables are generated through the 
PCA. Figure 6 is an example of the time series of the weighting coefficient c„,, 

which is used as the predictor variable in the next step. 

3) Time dependent regression model for wave forecasting by Kalman Filter 
The final step is the wave forecasting where the weighting coefficients 

previously obtained are used as the input data for the time-dependent regression 
model utilizing the Kalman filter. 

The equation for the time-dependent regression model is assumed by 
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loglO-tfl/3=«0+I>Z/+£ 05) 
;=i 

This equation can be reduced to 
y„=Hnxn+wn    (Observation equation) (16) 

where    y„ = log10#1/3, x„ =(a0,a1,—,aN)', H„ =(l,zuz2, — ,zN), w„ = s and 

the weighting coefficient cnt is expressed as  zt for convenience. 

If the coefficient a„ is slowly varying value, then 

^xn~vn    (System equation) (17) 

where  A  is the k-th order difference operator, and the first order difference operator 
is applied in this study as an - an_^ - vn . 

The trade-off parameter defined by al /al is used to control the magnitude 

of the change of the model in each time step of the computations, where al and al 

are the variances of vn and wn in equations (17) and (16), respectively. Figure 7 

shows examples of the variations of the time series of the state variables 
a,(' = 0,---,N). Figure (a) shows the results calculated with al/al = 1CT3, while 

figure (b) shows the results calculated with al/al = 10-10. When choosing a small 

trade-off parameter, the time variations of the state variables a, (z = 0,---, N) can be 
suppressed so as to fluctuate around the mean values as seen in figure (b). The rapid 
change of the state variables at (i = 0,--,N) in figure (a) seems to reflect the over- 

fitting of the model to the data. In other words, the problem of the over-fitting can be 
reduced by choosing a proper value of the trade-off parameter al ja\ in the model. 

Time series of state variables (1st component~-5th component) 

1980 1981 1982 1983 1984 

Time series of state variables (1st component~-5th component) 

(b) 1 o£/a Jr-lO-'l 

Figure 7 Time series of the state variables at (i - 0, • • •, JV) 

of the time-dependent regression model 
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The purpose of adopting a time-dependent regression model utilizing Kalman 
filtering is to detect a gradual change such as a seasonal variation in the atmospheric 
and wave systems, and to reflect it in the forecasting model to improve the accuracy 
of the wave forecasting. 

These three steps are repeated for each time step. That is, by obtaining new 
wave data or atmospheric pressure data, the wave forecasting equation is updated to 
improve the accuracy of the wave forecasting. 

Numerical simulations of wave forecasting based on 5-years of data 

The applicability and reliability of the proposed method is examined for six 
wave observation stations around Japan, shown in Figure 1, through simulations 
based on 5-years of wave data and weather charts. 

Figure 8 shows the accuracy of the proposed method applied for 
Mutsuogawara port. The horizontal axis is the lead time for wave forecasting. The 
vertical axis is the standard deviation of the prediction errors. It is seen that the 
predicted wave height by the proposed method shows different characteristics 
depending on the magnitude of the trade-off parameter, a\ j a^ , of the Kalman filter 
used in the 3-rd step. The trade-off parameter controls the magnitude of the change of 
the coefficients in each time step of the computations. If an appropriate trade-off 
parameter is chosen, the wave height errors, predicted several-steps-ahead, can be 
controlled within an allowable range, although the prediction error of one-step-ahead 
may not be the minimum. In other words, the problem of the over-fitting of the 
criterion variable to the data can be resolved by choosing an appropriate value of the 
trade-off parameter in the model. 

1. o 
Mutsuogawara 

48 72 96 

Lead Time (hour) 

Figure 8    Accuracy of the proposed method (Error vs. lead time) 



1374 COASTAL ENGINEERING 1998 

Consideration of the separation 
of long-term component 

and short-term component 

Trade-off 
parameter 

(a) X icr3 

(b) X io-10 

(c) O icr3 

(d) 0 10-io 

Table 1    Simulation conditions for wave forecasting 

To examine the validity of the proposed method, we applied the proposed 
method for 4 different computation conditions. Table 1 shows the 4 cases. Figure 9 
shows the scatter diagram between the observed wave height and the forecasted wave 
height for a lead time of 120 hours under the 4 different conditions for Mutsuogawara 
port. 

The low correlation coefficient between the forecasted value and the observed 
value can be seen in the case (a) where the separation of the long-term component is 
not considered, and the trade-off parameter is also inappropriate. In the case (b), the 
trade-off parameter is properly chosen though the separation of the long-term 
component is not considered. In this case, the correlation coefficient is improved 
compared to the case (a). However, prominent bias between the forecasted value and 
observed value can be seen. In the case (c) where the separation of the long-term 
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120 hour forecast 120 hour forecast 
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Figure 9    Scatter diagram between the observed wave height and the forecasted 
wave height for a lead time of 120 hours under the 4 different conditions 
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component is considered while the trade-off parameter is not appropriate, the 
correlation coefficient is not improved when compared to the case (b) although it 
does not show the prominent bias. In the case (d) where the separation of the long- 
term component is considered and the trade-off parameter is appropriate, this case 
shows the highest correlation coefficient in the 4 cases and does not show the 
prominent bias between forecasted and observed values. 

From these comparative results obtained under the different conditions using 
the same data, it is demonstrated that each technique introduced in each step of the 
proposed method is effective. It is also demonstrated that the accuracy of the 
proposed method for short-term wave forecasting is better than the other methods 
(Kobune, et.al., 1988, 1990 and Suda and Yuzawa, 1983) when an appropriate trade- 
off parameter is properly chosen. 

Mutsuogawara       120 hour forecast .Hajikizaki 120 hour forecast 120 hour forecast 

April,   1982                                                            November,    1982 

M»tsiiogawara 120 hour forecast Hajikizaki 120 hour forecas 

May,    1982                                                             December,    1982 

Mutsuogawara       120 hour forecast Hajikizaki 120 hour forecast 

February,    1984 

Habu 120 hour forecast 

March,    1984 

Habu 120 hour forecast 

January,    1983 April,    1984 

120 hour forecast Abuiatsu 120 hour forecast 

February,    1983 

Aburntsu 120 hour forecast 

March,    1983 

Aburatsu 120 hour forecast 

Nakagusuku IZQ hour forecas 

mil 

August,    1983 

Nakagusuku 120 hour forecast 

•September,    1983 

Nakagusuku 120 hour forecast 

Figure 10 Comparison of the time series of the forecasted wave heights (•) 
for a lead time of 120 hours and the observed wave height (solid line) 
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Figure 11    Scatter diagram between the observed wave heights and 
the forecasted wave heights for a lead time of 120 hours. 

The examinations of the wave forecasting for other observation stations were 
carried out using the atmospheric pressure data at 500km x 500km grid points around 
the wave observation stations shown in Figure 1. Figure 10 shows an example of the 
comparison of the time series of the forecasted wave heights for a lead time of 120 
hours and the observed wave height, where • is the forecasted wave height and solid 
line is the observed wave height. As seen in the figure, the tendency of the time delay 
of the forecasted wave height to the real wave height is not recognized although most 
of the conventional statistical wave forecasting methods show such a drawback 
(Kobune, et.al., 1988, 1990 and Suda and Yuzawa, 1983). 

Figure 11 shows the scatter diagram between the observed wave heights and 
the forecasted wave heights for a lead time of 120 hours. The examples for 6 wave 
observation stations around Japan are shown in the figure. All the data in one year are 
plotted in the figure. These examples demonstrate that the reliability of the proposed 
method for short-term wave forecasting can be acceptable for practical use if errors 
are allowed to a certain extent. 
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Conclusions 

The overall conclusions of this study are summarized below. 
1) The proposed method utilizing the Kalman filter combined with Principal 

Component Analysis can be a useful tool for a short-term wave forecast if errors 
are allowed to a certain extent. 

2) If an appropriate trade-off parameter is chosen in the model, the wave height 
errors predicted several-steps-ahead can be controlled within an allowable range, 
although the prediction error one-step-ahead may not be the minimum. 

3) The proposed method is easy to handle, which enables us to use the proposed 
method with a small personal computer. 
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