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Abstract 

This paper presents probability density functions applicable 
to peaks, troughs and peak-to-trough excursions of coastal waves 
with finite water depth in closed form.  It is found that for a non- 
Gaussian waves for which the skewness of the distribution is less 
than 1.2, the probability density function of peaks (and troughs) 
can be approximately represented by the Rayleigh distribution with a 
parameter which is a function of three parameters representing the 
non-Gaussian waves.  The agreement between the probability density 
functions and the histograms constructed from data obtained by the 
Coastal Engineering Research Center is satisfactory. 

Introduction 

It has been known that waves in finite water depth (hereafter 
defined as coastal waves) are, in general, considered to be a 
nonlinear, non-Gaussian random process.  The profile of wave peaks 
(positive side) is sharp as contrasted to the round profile of the 
troughs (negative side) as shown in Figure 1.  The degree of 
difference in the positive and negative sides of the wave profile 
can be presented mathematically in terms of skewness.  It is highly 
desirable that the statistical properties of peaks and trough 
amplitudes be presented separately, and then the properties of wave 
height (peak to trough excursion) may be obtained through the 
distribution function applicable to the sum of two independent 

Figure 1: A portion of the time 
history of shallow water wave 
record obtained by CERC during 
ARSLOE Project 
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random variables (peaks and troughs).  Furthermore, It is requisite 
that the probability distributions of peaks and troughs be developed 
from the distribution representing a non-Gaussian wave profile; the 
same approach as considered for derivation of the Rayleigh 
probability distribution for Gaussian waves in deep water. 

Only a limited number of studies has been carried out on the 
probability distribution of coastal wave height.  It is often 
assumed in these studies that the wave profile is amplitude 
modulated and follows the Stokes expansion to the second or third 
components; Tayfun (1980), Arhan and Plaistad (1981), among others. 
There is some reservations, however, in applying Stokes theory for 
shallow water waves unless the expansion includes higher order 
terms.  Furthermore, it is advisable not to assume any preliminary 
form of the wave profile for derivation of its probability 
distribution. 

Another approach for derivation of the probability 
distribution of wave amplitudes is to apply the Gram-Charlier series 
distribution representing coastal wave profiles; Ochi and Wang 
(1984) for example.  The results, however, are not promising since 
the Gram-Charlier series distribution is not given in closed form 
and the density function at times becomes negative for large 
negative displacements. 

On the other hand, several empirical probability distributions 
applicable for coastal wave heights have been developed from 
analysis of observed data.  These include Kuo and Kuo (1975), Goda 
(1975), Ochi, Malakar and Wang (1982) and Hughs and Borgman (1987), 
among others. 

In the present paper, the probability function applicable to 
amplitudes of response of a nonlinear mechanical system (Ochi 1998) 
is applied to coastal waves.  That is, the probability density 
function applicable to peaks and troughs of wave data are presented 
separately in closed form as a function of three parameters 
representing non-Gaussian waves.  Since these three parameters have 
been presented as a function of water depth and sea severity 
(Robillard and Ochi, 1996), the probability density function of wave 
amplitudes of coastal waves can be evaluated for a specified water 
depth and sea severity. 

Probability Distribution of Wave Peaks 

For derivation of the probability distribution representing 
statistical properties of wave peaks, a peak envelope process, 
denoted by 5(t), shown in Figure 2 is considered. 

Figure 2 
Definition of the envelope process of 
peaks of non-Gaussian wave 
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The non-Gaussian random waves y(t) are expressed as a function 
of normal random process and its square.  That is, 

y(t) = U(t) + a{U(t)}2 (1) 

where "a" is a constant and U(t) is a Gaussian wave with mean u^ and 
variance a2.  ; all of these parameters can be evaluated from data. 
The parameter a represents the intensity of non-Gaussian wave 
characteristics; the larger the a-value the stronger the 
nonlinearity.  We may consider Y and U to be random variables for a 
given time of y(t) and u(t), respectively, and the functional 
relationship given in Eq.(l) is inversely expressed as follows (Ochi 
and Ahn 1994): 

where y - 1.28 for y > 0, 3.00 for y < 0. 

It is noted that the random variable U defined in Eq.(2) is 
normally distributed with sample space (-<», 1/ya) instead of (-<», °o) 
as originally defined.  However, this restriction does not affect 
the distribution of U, in practice, since the value of (|J* + 3cr*) 
where the density function of the normal variate U becomes almost 
zero, is much smaller than 1/ya.  Hence, the sample space (-°o, 1/ya) 
is essentially equivalent to (-°o, °o). 

For the random variable U associated with the peak envelope 
process, the mean value is ^ but the variance is that affiliated 
with the positive (peak) side only which can be evaluated by 

OO 

a' = 21 yZf(y)dy 

(3) 

= f {i (v*f + &7^{\ / -*) +1K / -*)] 

where    X-^  = aY, Y = 1.28 for the positive y. 

The probability density function f(y) in Eq.(3) represents 
non-Gaussian random wave profile and is given by 

f(y)= nr     exp-U- -jfl-yau -e^7) - yay[ (4) 
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Next, we may define the random variable V by subtracting the 
mean value m. from the random variable U.  That is, 

1 (       -K Y"| 
Y = U-n* = -±-[l-e l J-M* (5) 

We may write the cosine and sine components of V as V  and Vs , 
respectively, and the joint probability density function of Vc and 
V is given by a statistically independent bi-variate normal 
distribution with zero mean and a common variance c^ .  That is, 

f(v^)=^4^(—)} (6) 

By applying the change of random variable technique and by 
using the relationship given in Eq.(5), the joint probability 
density function f(V  V ) is transformed to the joint probability 
density function f(y   y ) .  Furthermore, we may write Yc and Ys as 
a function of amplitude and phase.  That is, 

Y = E COST c  ' 
(7) 

Y = £ sint 
s  ' 

where % —  amplitude (peak), z—  phase. 

Then, we can derive the joint probability density function of 
E and x as follows: 

f (E,x) = -L^exp  -f1 k
7}1"*]   - X^CCOST + sinx) 

1 - X1\JLJC( -X^ECOST     -^Esii 
' 1      •} I ® T S 

-ZI^ECOST -?X£, si.ra\ 

,2 2 

Vi 

-M2„2 

0 < E < oo,  0 < x < 2TI. (8) 

In order to obtain the marginal density function of E by 
integrating Eq.(8) with respect to x, the exponential parts of the 
3rd and 4th term of Eq.(8) are expanded to a series of XE and we 
may take terms up to (A^E) .  We can then derive the following 
probability density function of peaks fig) . 
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f(Vi-H*)2   + l + ^^    | 

f© = A F^ e   l J I0  V2   \-^ 
ai I     I CTi7 

0 < % < oo. (9) 

The detailed description of the derivation of Eq.(9) is given in the 
reference Ochi (1998). 

In the case of Gaussian waves, LU as well as X, are both zero, 
2 2 i 

and the variance ax reduces to a .  Hence, Eq.(9) becomes 

_t_ 
f© = 4j e 2CT2 (10) 

which is the Rayleigh probability density function applicable for 
amplitudes of narrow-band Gaussian waves. 

In Eq.(9), let us write 

s, 1 + V*   1 

(11) 

i + v*   "Ci 

then, we have the probability density function of the positive 
amplitude as 

(12) 

The above equation is the probability density function 
applicable for the sum of two statistically independent random 
processes; one being a narrow-band Gaussian random process with zero 
mean and variance sx, the other a sine wave with amplitude clt   both 
having the same frequency (Rice 1945).  This implies that the 
probability density function of the envelope of the positive side of 
the non-Gaussian waves given in Eq.(9) is equivalent to the 
probability density function of the envelope of a random process 
consisting of the sum of a narrow-band Gaussian wave with zero-mean 
and variance a, /(1+X,u., ) and a sine wave with amplitude 
<—2        1 '     lr sir ' * 
V2 (XJOJ-H^/(l+XjU ) .  This result provides insight as to the 
structure of the probability distribution function of wave height in 
finite water depth. 
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It is further possible to simplify Eq.(12) for non-Gaussian 
waves for which the skewness of the distribution is less than 
approximately 1.2.  That is, we may approximate the modified Bessel 
Function in Eq.(12) as 

Io(z)~exp{z
2/5}, where z < 3.0 (13) 

A comparison of the approximate formula and IQ(z) is shown in 
Figure 3.  By applying the approximation given in Eq.(13), the 
probability density function given Eq.(12) can be expressed in the 
following form: 

f K) = K (HH-H^H) (14) 

o < 4 < 

where K is a normalization factor determined from the condition that 
the integration of Eq.(14) in the sample space be unity.  Then we 
have 

f© 
2c^ 

5s? 
I -exp 

2s 
1-- 

2c: 

(15) 

0 < % < oo 

exp{*¥5* 
; 

1 V/ 

,y 

*a<^ 
**' 

' 

Figure 3 
Comparison between the modified 
Bessel function I0(z) and its 
approximate formula 

This   is  the Rayleigh probability density  function.     Thus,   it 
is  found that  amplitudes  of the positive part of non-Gaussian waves 
may be approximately distributed following the Rayleigh probability 
distribution with the parameter  (2s^)/{l-(2c2/5s2)}. 

Figure 4  shows  a comparison of the  exact   (Eq.9)   and the 
approximate  (Eq.15)  probability density functions with the histogram 
constructed from data shown in Figure  1.     The data shown in the 



964 COASTAL ENGINEERING 1998 

Figure 4 

Comparison of exact (solid line) and 
approximate (dashed line) probabili- 
ty density functions applicable for 
peaks of a non-Gaussian wave with 
the histogram constructed from data 

PEAK IB METERS 

figure are obtained at Duck, North Carolina, by the Coastal 
Engineering Research Center during the ARSLOE Project.  As seen, the 
difference between the exact and approximate density functions is 
very small and they represent well the histogram of peaks. 

Derivation of Probability Distribution of Wave Troughs 

The probability density function applicable to troughs of non- 
Gaussian waves, denoted by f (r|) , has essentially the same form as 
Eq.(9).  The parameter X.    and variance a1   in Eq.(9), however, should 
be replaced by Xz   and a2, respectively, which are appropriate for 
troughs.  The variance a2 for the trough envelope process can be 
evaluated by subtracting G±   from twice the data variance a2   computed 
including both positive and negative displacements from the mean 
value.  That is, the probability density function is given by 

f© (1+V*)'1 (1 + v*H 
1+KV-+ J 

+ — r\2\ 
2o-J     " 

I   V2 

where        a\    -   2E y 1 - a2 

0 S r, < oo (16) 

As in the case for the probability distribution of peaks, the 
probability distribution of envelope of troughs is equivalent to 
that of a random process consisting of the sum of a narrow-band 
Gaussian wave with zero-mean and variance o-„ / (1+^.u., ) and a sine 
wave with amplitude V2 ( X2a2- u)/(1+ X^x.   ).  These may be denoted by 
s2 and c2, respectively. Furthermore, the probability density 
function may be expressed approximately by the following Rayleigh 
probability distribution: 
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Figure 5 
Comparison of exact (solid line) and 
approximate (dashed line) probabili- 
ty density functions applicable for 
troughs of a non-Gaussian wave with 
the histogram constructed from data 
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fOi) 
2c; 
f R • exP' 

_1_ 

2s* 

2c; 
 i 

5s! 

0 < T| < (17) 

Figure 5 shows a comparison between the exact (Eq.16) and 
approximate (Eq.17) probability density functions applicable for the 
troughs of non-Gaussian waves and the histogram constructed from 
data.  As seen, the difference between the exact and approximate 
density functions is extremely small and the overall agreement 
between the histogram and density functions is satisfactory. 

Probability Distribution of Wave Height 

Wave height is defined as a peak-to-trough excursion.  As 
stated earlier, peak and trough envelope processes are independently 
considered for probability distribution of peaks and troughs of non- 
Gaussian waves.  The results of analysis have shown that large peak 
envelopes and large trough envelopes do not occur simultaneously, in 
general.  Correlation between the two envelopes is rather small; 
hence, it is assumed that peaks and troughs are statistically 
independent and thereby the probability density function of peak-to- 
trough excursions may be obtained as a convolution integral of the 
two probability density functions, f(5) and f ("H) .  That is 

f(C) 

00 

J w ,(C-!)dS (18) 

where f^( ) and f^( ) represent the probability density functions 
given in Eqs.(9) and (16), respectively, for the exact density 
functions, and Eqs.(15) and (17), respectively, for the approximate 
density functions. 

The integration given in Eq.(18) cannot be analytically 
carried out for the exact density functions because of the product 
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of two modified Bessel functions involved.  The probability density 
function of C, therefore, is numerically evaluated.  The convolution 
integral for the two approximate probability density functions given 
in Eqs.(15) and (17), however, can be analytically carried out.  It 
is the sum of two independent Rayleigh distributions.  That is, by 
writing the parameters of the Rayleigh distributions applicable for 
the peaks and troughs as 

R1 = (2s?)/{l-(2c^/5s^)} 

R2 = (2s*)/{l-(2c*/5s*)} 
(19) 

the probability density function of the sum of the Rayleigh 
distribution, denoted by f(C), becomes 

K (C - ?f 
to -£. V^J)e    R

2   d? 
Rl K2 

z, 
(R! + R2) 

(      c
2 /-2 

R1       R9 
Rj s   +R2 e  

z 

ll + R2 VR1 + R2 lRl + R2 ^ 

^c-,kUA^c R^+Rj 

0 < C, < (20) 

where <D = cumulative distribution function of the standardized 
normal distribution. 

Figure 6 shows a comparison between the exact (Eq.18) and 
approximate (Eq.20) probability density functions for the peak-to- 
trough excursions and the histogram constructed from the same wave 
data as used for the histograms of peaks and troughs.  The 
difference between the exact and approximate density functions is 
negligibly small, and the theoretical density functions agree 
reasonably well with the histogram.  Included also in the figure is 
the Rayleigh probability density function applicable for Gaussian 
waves commonly considered for analysis of deep water waves.  The 
probability density function for the Gaussian wave assumption 
substantially deviates from the histogram. 

The cumulative distribution function of the wave height can be 
evaluated by integrating Eq.(20) with respect to C.  The derivation 
of the distribution function, however, may be much easier using the 
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Figure 6 
Comparison between exact  (solid line) 
and approximate (dashed line) proba- 
bility density functions developed 
based on non-Gaussian concept, Gau- 
ssian concept  (chain line)  and 
histogram constructed from data 

following  approach  since   the  distributions   of  the  peaks   and  troughs 
are   assumed to be   statistically  independent.     That  is 

F(Q =    I I f(5,il)d?dTi = fiWdr, 

5 + r|Sc, o   V  o J 

f(?)d§ (21) 

By applying Eqs.(15)   and   (17),   and with the parameters  given in 
Eq.(19),   we have 

F(Q    = 1 • 
Ri + R2 

R. e + R„ e 

nR.R„ R +R 1   2m 2R„ 

IKK 
-<D 

2R, 

\K + R
2) 

0 < C, < oo (22) 

It may be of interest to see how the shape of the probability 
distribution of amplitudes of coastal waves changes when wave energy 
propagates from deep to shallow water.  Figure 7 shows an example of 
the probability density functions of peaks and troughs along with 
wave records simultaneously measured at four locations (60 m, 151 m, 
456 m and 12 km offshore) during the ARSLOE Project.  The waves 
obtained at the 12 km offshore are considered to be Gaussian at the 
time of measurement.  As seen, the mode of the Rayleigh distribution 
applicable to non-Gaussian waves shifts to the smaller values as 
waves approach the shoreline.  In particular, the rate of change of 
the probability density function of troughs is much faster than that 
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Figure 7      Probability density functions of wave peaks and troughs 
obtained from data at various  locations  in the nearshore 
zone 

of peaks.     This  is understandable  since wave  troughs  are much more 
susceptible  to bottom effect. 

Significant Wave Height 

Significant wave height  defined as  the  average  of the highest 
one-third wave heights,   denoted by Hg ,   is most commonly used for 
representing the  severity of random waves.     It can be  evaluated by 

CO 

H, = 3    ?f(Qd? 

where  C  = the value of wave height C,  for which F(Q = 2/3, 

f(Q — probability density of wave height. 

(23) 
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Table 1 
Comparison between computed and measured significant 
wave heights 

Water Depth 
IN) 

Significant Wave Height in meters 

Non-Gaussian 
Concept 

Gaussian 
Concept Measured 

2.32 

6.53 

10.07 

1.97 

2.56 

3.72 

1.86 

2.48 

3.69 

1.92 

2.52 

3.70 

Equation   (23)   yields  a very simple  result  for deep water   : 
4,/nT   where   mQ   is  the  area under  the  spectral  density  function.     For 
non-Gaussian waves,   however,   the  computation of Eq.(23)   is  rather 
complicated.     After  some mathematical manipulations,   we can derive 

H    =3 
s 

R, + R. 

4 
t^e   ^^{l-vyi/y^ 

£ 
^JR^"

1+R
{R4R;C + U 

(24) 

Comparisons of significant wave heights computed by Eq.(24) 
and those evaluated from data obtained at three water depths is 
shown in Table 1.  Included also in the table are those computed by 
using the formula applicable for deep water.  As seen in the table, 
significant wave heights computed based on non-Gaussian and Gaussian 
concepts do not differ more than 6 per cent, and the significant 
wave height obtained from measured data is between the two computed 
values for a given water depth.  As shown in Figure 6, the 
probability density function of wave height for non-Gaussian waves 
intersects that of Gaussian waves at a large wave height.  This 
results in the centers of gravity of the highest one-third of these 
two probability density functions (significant wave heights) may not 
be too far apart. 

In order to supplement the above-mentioned statement, Figure 8 
is prepared.  The figure shows the cumulative distribution function 
of wave heights computed at two water depths based on Gaussian and 
non-Gaussian concepts.  As seen, the two cumulative distribution 
functions slowly approach each other with increase in wave height 
and intersect at a certain high wave height.  The value of the 
significant wave height is slightly greater than the wave height at 
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Figure 8 
Comparison of cumulative dis- 
tribution functions of wave 
heights computed based on 
Gaussian and non-Gaussian 
concepts 
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the point of crossing, but much less than the height where the two 
distribution functions start separating widely.  Since the 
computation of significant wave height based on the Gaussian concept 
is quite simple, and since computed significant wave height is close 
to that computed using the formula for non-Gaussian waves, it may be 
concluded that the formula to evaluate significant wave height in 
deep water may also be applied approximately to non-Gaussian waves 
as far as the evaluation of significant wave height is concerned. 

Conclusions 

Probability density functions applicable to peaks, troughs and 
peak-to-trough excursions of coastal waves with finite water depth 
are presented separately in closed form.  It is found that the 
probability density function applicable to peaks (and troughs) 
consists of the sum of narrow-band Gaussian waves and sine waves 
having the same frequency.  It is also found that for non-Gaussian 
waves for which the skewness of the distribution is less than 1.2, 
the probability density function of peaks (and troughs) can be 
represented approximately by the Rayleigh distribution with a 
parameter which is a function of three parameters representing the 
non-Gaussian waves.  Since these three parameters have been 
presented as a function of water depth and sea severity, the 
probability density function of amplitudes of coastal waves can be 
evaluated for a specified water depth and sea severity.  The 
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agreement between the probability density functions and the 
histograms constructed from data obtained by the Coastal Engineering 
Research Center during the ARSLOE Project is satisfactory. 

The significant wave height of non-Gaussian coastal waves is 
analytically derived.  The results of the computations show that 
computed significant wave height is close to that evaluated by 
applying the formula for waves in deep water (Gaussian waves). 
Therefore, since the computations based on the Gaussian concept are 
quite simple, it may be used for non-Gaussian waves as far as the 
evaluation of significant wave height is concerned. 
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