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Abstract 

In this paper, the VOF method for free surface flow is applied to simulate 
breaking waves incident on a submerged reef. An efficient numerical wave channel 
with two absorbing boundaries is developed. Corresponding boundary conditions 
are prescribed. Smagorinsky's sub-grid scale model is incorporated to account for 
the sub-grid scale turbulence. Numerical results are compared with laboratory mea- 
surements. 

Introduction 

Owing to the extremely complicated wave manner caused by the wave non- 
linearity and breaking, a complete satisfactory theory for wave deformation on 
uneven topographies seems to be not attainable so far. Small-scale model tests 
and field observations are still dominant in the traditional study. Nevertheless, 
small-scale model tests suffer from the scale effects, while large-scale model tests 
are too expensive. 

The booming progress in computer technology in the past decade witnesses the 
continuous improvements in computational fluid dynamics. With today's personal 
computer, it is possible to solve the Naiver-Stokes equations for coastal engineer- 
ing problems. 

The VOF method developed by Hirt and Nichols(1981) is among the best can- 
didates for solving free surface flow problems due to its clearness and simplicity of 
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tracing free surface. Besides, this method is especially useful for calculating break- 
ing waves, since the free surface is not necessarily required to be single. Several 
studies based on the VOF method to simulate breaking waves have been reported 
recently( van der Meer et al, 1992; Lemos, 1992; Petit et al, 1994; van Gent et 
al, 1994; Sabeur et al, 1996; Kawasaki and Iwata, 1997; Lin and Liu,1998; etc.). 

However, most of these studies either ignore the sub-grid scale turbulence to- 
tally, which implies that the sub-grid scale energy dissipation purely relies on 
the numerical viscosity appeared in the finite difference schemes; or use a con- 
stant eddy viscosity of the same order as that of Reynolds Averaged Navier- 
Stokes(RANS) equations. 

Lemos(1992), Lin and Liu(1998) demonstrate two-dimensional breaking wave 
models based on the Reynolds Averaged Navier-Stokes equations separately. Both 
of them used the k — e model with standard coefficients. Lemos used a linear clo- 
sure for the Reynolds stress terms, while Lin and Liu used a nonlinear closure 
to account for the anisotropic turbulence. Nevertheless, Lemos' results were not 
compared with experimental measurements directly. Lin and Liu's results showed 
that their model could give generally good agreement at the inner surf zone. Near 
the breaking point, however, the k — e model always overestimates the eddy vis- 
cosity, and thus leads to an underestimation of surface elevation. If we consider 
the breaking point is the transition point from laminar flow to turbulent flow, 
this in one way suggests the limitation of the k — e model in predicting the flow 
transition. Besides, there are too many coefficients in the k — e model, and this 
makes it difficult for calibration. 

In the present paper, therefore, we are trying to use a space filter to account 
for the sub-grid scale turbulence. It is expected that the sub-grid scale turbulence 
is more isotropic and less flow dependent, therefore, the closure model can be 
simpler and less sensitive to the parameterization. However, due to the very high 
Reynolds number and limited computer resources, we restrict the present study 
to two-dimensional problem. 

Numerical Formulation 

The governi ng equations are the mass conservation equation for incompressible 
flows: 

= 0 (1) 

and the Navier- -Stokes equations: 

dui         dui 

dt        3dxj 

1 dp 
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•9XJ 
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in which g and v are the fluid density and kinematic viscosity, respectively. gx is 
the gravitational acceleration at the ith direction, u$ is the velocity component, 
and p is the pressure. Here * = 1,2 correspond to horizontal (x) and vertical (z) 
directions, respectively, j is dummy. 
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Assuming that the sub-grid scale turbulence is isotropic, the filtered Navier- 
Stokes equations and the continuity equation read: 

4=° (3) 

dui     _ dui 1 dp d  r.dui      duj d 
• u Kirr + *)} - 7r-(u*ui ~ WJ) + gt   (4) 

dt dxj p dxi       dxj   dxj      dxf        dxj 

The top-hat filter(cell volume) is applied in the above equations, and the over- 
bars denote the resolvable scale quantities (for example «>): 

Ui(x,z,t) = / Ui(C,r),t)d(dr] (5) 
AlflZ Jx-lAx   Jz-lAz 

Where Ax and Az are the mesh sizes of the finite- difference equations in x and z 
directions, respectively. The «; is the filtered velocity component; p is the filtered 
pressure. The new terms appeared in the filtered equations are: 

(uluj - UiUj) = Lij + Cij + Rij (6) 

with L^, C^, Rij referred as the Leonard term, the cross term and the sub-grid 
scale(SGS) Reynolds term, respectively: 

L^   =   Uiitj — uiiij (7) 

C^   =   Uiu'j + u'iilj (8) 

Rij   =   ^7j (9) 

The prime denotes a SGS quantity. Notice that the sum of the Leonard term and 
the cross term (Ly + Cy) is small comparing with the SGS Reynolds stress (Dear- 
dorff, 1970), and thus can be neglected. Therefore, we finally obtain the filtered 
Navier-Stokes equations in which the SGS Reynolds stress need to be modeled. 

Applying Boussinesq's eddy-viscosity hypothesis, the SGS Reynolds stress is 
given by: 

Rij = -2vTSij (10) 

where _ _ 
= !(**£ + dnj} (n) 

2  dxj      dxi 

is the strain rate tensor of the resolved scales. Smagorinsky's model gives: 

vT = (CSA)2\S\ (12) 

A = (AxAz)* (13) 

in which VT is SGS eddy viscosity, A is SGS length scale for two-dimensional 
problems, and Cs = 0.10. 
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Equation (12) is used otherwise of the fluid except at the solid boundary, where 
the van Driest damping function is applied to the SGS length scale. At free surface, 
the closure for the SGS Reynolds stress is less certain, we apply Smagorinsky's 
model at the present stage. 

Besides the above equations, a volume of fluid function (F) is used to define 
the fluid region in the VOF method. A unit value of F corresponds to a cell full of 
fluid, while a zero value indicates that cell contains no fluid. Cells with F values 
between zero and one represent the water-air interface. The governing equation 
of F function is given by: 

dF      _ 8F 
uj— = 0 (14) 

Numerical Methods 

The governing equations are discretized using a staggered grid where the ve- 
locities are located at the cell faces, the pressures and the F functions are settled 
at each cell center. The time increment is achieved by the Euler scheme and the 
convective terms are approximated by the third-order difference scheme due to 
stability consideration. 

In order to obtain accurate result, boundary conditions must be treated very 
carefully. In the present study, the boundary conditions for resolved field have 
been summarized into three kinds, namely, the lateral boundary conditions, the 
free surface boundary conditions and the solid boundary conditions. 

The lateral boundary conditions include the inflow boundary and the out flow 
boundary(open boundary). At the inflow boundary, we choose to generate the in- 
cident wave by simulating a piston-type wave-maker. The wave paddle is driven by 
the second order Stokes wave theory (Hughes, 1993), and an absorbing wave-maker 
system(Zhao, 1998) which is essentially same as that in the physical experiment. 
This method is particularly effective for our case, where waves are generated at 
deeper water region and encounter a reflective structure(submerged reef with a 
steep reef face). The secondary wave for this case is very small according to our 
study. The example of second order Stokes waves incident on a vertical wall is 
shown in Fig. 1, where T is the wave period, h is the still water depth, Hin denotes 
the incident wave height, L is the incident wavelength calculated by linear wave 
theory, and t] is the water surface relative to the still water level. 

At the open boundary, an artificial boundary condition has to be given to 
truncate the computational domain from the infinite physical domain, but with- 
out rendering disturbances to the inside area. For wave problems, this is normally 
fulfilled by the well-known Sommerfeld radiation boundary condition. However, 
the wave dispersion induced by wave nonlinearity and breaking makes it difficult 
to use one wave celerity to represent the whole wave field. Hence, a damping 
zone(Arai, 1993) and the Sommerfeld radiation condition are combined at the 
open boundary. 
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Fig. 1 Nonlinear wave incident on a vertical wall 
(a) calculation condition; (b) wave profile in one wave period; 
(c) wave profile at time 15 wave period and 20 wave period 
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Fig.2 Examples of surface cells partially open to the air 
The solid arrows denote the velocities normally calculated; 
the dash arrows denote the velocities obtained by extrapolation 
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Fig. 3 Orbital velocities calculated by original VOF method 
at different vertical locations: inside the water(z/h=-0.33), 
at the trough level(z/h=-0.07) and above the still water level(z/h=0.040) 

The free surface boundary conditions include the dynamic and the kinematic 
boundary conditions. The dynamic boundary condition is satisfied by p = 0 at 
the free surface. The pressures at the surface cells are calculated by linear extrap- 
olation from the cells inside the fluid domain. The kinematic boundary condition 
is automatically satisfied by Eq.(14). However, special care must be paid to the 
treatment of velocities at surface cells . The examples are shown in Fig. 2 , 
where parts of the cell faces are exposed to the air. For these cases, the momen- 
tum equations for water can not be used. The determination of these values is 
quite arbitrary In the original VOF method(Hirt and Nichols, 1981) and some 
other methods related to the VOF method(ex. Ashgrizon and Poo, 1991), these 
velocities are obtained by the continuity equation.  In the calculation of solitary 



898 COASTAL ENGINEERING 1998 

wave, Chan and Street (1970) used vertical extrapolation to obtain these veloci- 
ties, therefore, the continuity equation is not forced at the surface cells. Actually, 
the approximation of the former method is acceptable provide the flow in nonpe- 
riodic. But it brings considerably errors for periodic problem. Figure 3 shows the 
calculated results by the original VOF method at different vertical positions. 

It is seen that the influence of the free surface boundary increases consider- 
ably as the vertical position approaches to the surface. And this effect is more 
pronounced for the horizontal velocities than the vertical velocities. Accordingly, 
in our calculation, we used the extrapolation to obtain the horizontal velocities. 
For example, u(i + |, j) in Fig. 2 can be approximated as: 

«i+i,i = h-ij*0-5*(AzJ-l-A^_i)+«i+^._1*Aa;i]/[Aa;i-|-0.5*(A^+Azj_1)] (15) 

In case the vertical velocity is also exposed to the air (Fig. 2(b)), the vertical 
velocity can be obtained by the continuity equation. As for the case shown in Fig. 
2(a), there is no way to satisfy the continuity equation in the surface cells. The 
results of the modified calculation are shown in Fig. 4. 

In the numerical simulation, still water level is given at time t = 0. No initial 
superimposed condition has been introduced to the sub-grid scale variables. 

Fig.4 Examples of orbital velocities calculated by the present calculation: 
at the trough level(z/h=-0.07); above the still water level(z/h=0.04) 
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Verification with Experimental Measurements 

899 

1.Experimental Setup 

Finally, breaking waves propagating on a submerged reef are numerically cal- 
culated and verified with previous experimental data(Nakamura 1995). 

Figure 5 shows the experimental setup and coordinates layout. The wave chan- 
nel is 17.0 meters long. The model reef is fully impervious and 32.5cm high with a 
seaward reef face of 1 : 2. Regular waves were generated by a computer controlled 
piston type wave-maker. Water surface elevations were measured by capacitance- 
type wave gauges. In the experiment, only six wave gauges were available. The 
first two gauges(from the wave paddle) were served as reference gauges for inci- 
dent waves. The other 15 locations of water surfaces were obtained by moving 
the remained four wave gauges prior to each run. In each run, data were recorded 
simultaneously from 6 channels at sampling time interval of 50ms. Velocities and 
pressures were measured at three locations(I, II and III) on the slope of the reef for 
case A. The L\/A in the figure denotes a quarter of incident wavelength calculated 
by linear wave theory. The incident wave characters are given in Table 1 in which 
xi, is the measured position nearest to the breaking point. 

wave 
paddle 

reference 
gauges 

\   LDV m=16.3   1=8.0  n=10.0  k=15.0     Unit: cm 
I II III 

wave 
absorber 

'^00^    65 250 100 

Fig. 5 Experimental set-up and coordinates layout 

Case hi h2 T ti%n Li xb 

A 45.0cm 12.5cm 1.6s 6.60cm 296.2cm 105.0cm 
B 37.5cm 5.0cm 1.6s 5.64cm 276.4cm 57.0cm 

Table 1. Simulated cases 

In the calculation, incident waves are generated at the left boundary. In order 
to avoid the pressure divergence at the initial stage, incident wave heights were 
slowly increased to Hi„, where Hin is the incident wave height obtained by com- 
paring the surface elevations at reference gauge with the physical experiments. 
The calculated surface elevations were obtained by integration of the F function 
from the bottom of the channel to the water surface. In the position where air 
entrainment appears inside the fluid domain, the F function was set to 1 to keep 
consistency in the experimental measurements. In order to limit effects of wave 
reflection from the end of the wave channel, the analysis of the experimental data 
was restricted to the first fully grown-up four or five waves in a record. 
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2.Calculation Results 

Figure 6 shows the normalized vertical distribution of velocities, phase differ- 
ence and dynamic pressures of case A in which H is the local wave height. To 
be succinct, only the results of position III are presented here. Besides the exper- 
imental results and the numerical simulation, the first order Biesel theory with 
slight modification(Zhao et al, 1996) is also presented. The general agreements 
among the analytical solution, the numerical simulation and the experimental re- 
sults are good. The numerical simulation and the experimental measurement show 
the same trend of skewness in the vertical velocity and phase difference. 
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Fig.6 Vertical distribution of maximum and minum orbital velocities, 
phase differences and dynamic pressures 

Measured • Biesel  theory -*— Present calculation 

Figure 7 shows the simulated time series of surface elevations together with 
experimental measurements. Both the measured and calculated surface elevations 
include the reflective waves from the submerged reef. 
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Fig.7 Comparison of surface elevations(Case B) at positions: 
before wave breaking (a,b); near the breaking point(c) ; 
after wave breaking(d,e,f) 
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Fig. 8 Comparison of wave height and mean water level distribution 
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The wave height distribution and mean water level changes are presented in 
Fig. 8. It is seen that the numerical simulation can give very good results of 
breaking waves incident on a submerged reef at the reflection side, near the break- 
ing point, and at the transmission region. However, the calculation intends to 
underestimate the mean water level changes. 

Figure 9 shows the filtered vorticity distribution of case B where BP denotes 
the position of measured breaking point. According to the calculation, the vortices 
in the figures are generated by two mechanisms, one is by the breaker, and the 
other one is by the presence of the submerged reef. 

-250 -150 -50    50 
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30 
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10 

0 

BP 1/s 

I i i i i I i I/I i I i i i i I i i i i I 

-250 -150 -50    50 

x(cm) 

150   250 

Fig. 9 Vorticity distribution at different phases: 
approaching the breaking point(a); after wave breaking(b,c) 

The figure indicates that the vortex generated by the breaker is initiated at 
the toe of the wave front. This vortex is further convected and diffused to almost 
the whole wave crest. 

The other kind of vortices is due to the appearance of the submerged reef. 
Clockwise and counter-clockwise vortices are generated alternatively depending 
on the phase of the wave motion. These vortices are not as strong as the one 
generated by the breaker. They are also convected by the wave. 



COASTAL ENGINEERING 1998 903 

The figure also shows that for the present condition, the vortex generated by 
the breaker is confined above the trough level. 

It should be noticed that the present model, as well as other two-dimensional 
models, lacks the three-dimensional vortex stretching mechanism. However, two- 
dimensional vortex stretching is enabled due to the numerical viscosity. 

In Fig. 10 we show the spatial distribution of the sub-grid scale eddy viscosity 
normalized by kinematic viscosity. The calculation shows that the highest eddy 
viscosity, about 120 times of the kinmeatic viscosity, is appeared slightly after the 
measured breaking point. The SGS eddy viscosity is smaller than those calculated 
from Reynolds-averaged equations. This is because that in the present method, 
only parts of the turbulence whose length scales are smaller than the mesh sizes 
are modeled. In the RANS models, all fluctuations are modeled. However, it 
seems premature to say at this stage that the fluctuations appeared in our cal- 
culation are turbulence. The fact that F is a step function and the air bubbles 
which occasionally appeared in the fluid may also contribute to these fluctuations. 
Further study is necessary. At the present stage, our model can only capture the 
major flow. 

70 P 
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~ 50 
I 40 
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N20 
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Fig. 10 Normalized SGS eddy viscosity at: 
approaching the breaking point (a); after wave breaking(b) 

Conclusions and Further Improvements 

In this paper, the VOF method is applied to simulate breaking waves incident 
on a submerged reef. In the calculation, an absorbing wave-maker is adopted to 
handle the wave reflection from the structure. In order to account for the sub-grid 
scale turbulence, a space filter is applied. The closure is given by Smagorinsky's 
model. The comparison between the simulation and experimental measurements 
showed satisfactory agreements. Future work would use a modified SGS model 
instead of Smagorinsky's SGS model, or develop 3D models to scrutinize the tur- 
bulent flow more carefully. The studies of air-water mixing and non-negligible 
density variations are also necessary. 
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