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Abstract 

This paper considers the interaction between two-dimensional random waves and 
a co-linear, depth-varying, current. Two rotational wave-current models, capable of 
incorporating the effects of a depth dependent vorticity distribution, are combined with a 
conservation equation describing the total energy flux. This provides new solutions 
capable of predicting the change in a wave spectrum due to the interaction with a current. 
Comparisons between these solutions and a new data set confirms that a successful wave- 
current model must incorporate both the Doppler shift associated with the surface current 
and the near-surface vorticity distribution. Typical design calculations, based on a 
uniform current approximation, commonly satisfy neither of these constraints. 
Accordingly, they are shown to provide a poor description of the laboratory data. 
Furthermore, the nature of the wave-current interaction, which is shown to be 
significantly larger than the nonlinear wave-wave interactions, involves both a current- 
induced change in the wave motion and a wave-induced change in the current. While the 
former is reasonably well understood, the latter remains difficult to predict. Indeed, both 
parts of this overall interaction are shown to be strongly vorticity dependent. 

1.   Introduction 

The nonlinear interaction between waves and a co-existing current is an important 
feature of many coastal and offshore environments. Accordingly, several authors have 
considered the case of regular waves on a variety of current profiles (see, for example, 
the recent review article by Thomas and Klopman, 1997). In its simplest form the current 
profile, U(z), is assumed to be uniform with depth. In this case no vorticity is present and 
it has been conclusively shown that both the dispersion equation and the associated water 
particle kinematics are well described by a Doppler shifted solution (Fenton, 1985). 
Likewise, the change in the wave height, AH, which arises when the waves first 
propagate onto the current, can be modelled via the conservation of wave action 
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(Thomas, 1990). Alternatively, if it is assumed that the current profile is represented by a 
linear shear, then a uniform vorticity distribution (a>=dU/dz) is introduced. In this case the 
wave motion again remains irrotational, but additional vorticity dependent terms arise 
within the dispersion equation so that the Doppler shifted solution is no longer applicable. 
In this case the water particle kinematics have been considered by Tsao (1959) and 
Kishida and Sobey (1988); while a linear formulation of a conservation equation for 
wave action has been provided by Jonsson et al. (1988). 

More recently, solutions have been presented which address the case of waves on 
a current profile that varies arbitrarily with depth. In particular, considerable attention has 
been paid to cases in which the current profile is strongly sheared close to the water 
surface. Such cases are practically important since they are representative of a wind- 
driven current, and may also correspond to a typical estuarine outfall in the near-shore 
coastal region. In these cases the vorticity distribution is strongly non-uniform and, 
consequently, the wave motion becomes rotational. In terms of kinematic predictions an 
analytical model describing this type of interaction has been proposed by Swan (1992) 
and recently modified by Swan and James (1998); while numerical formulations are 
provided by Dalrymple (1974), Chaplin (1990), Thomas (1990) and Cummins and Swan 
(1993). In contrast, the initial wave height change, AH, caused by the interaction with a 
strongly sheared current is more difficult. In the absence of an appropriate (nonlinear) 
conservation of wave action equation, the conservation of total energy flux, Rx, must be 
applied. 

Although the advances noted above have greatly enhanced our understanding of 
nonlinear wave-current interactions, they are restricted in the sense that they have 
principally considered the case of regular waves on currents. In practice the waves 
observed in most offshore and coastal locations are random, or irregular, with a 
significant frequency spread. In these cases the design engineer may be primarily 
concerned with the changes in a wave spectrum due to the interaction with a sheared 
current. It is this task which the present paper will address. Section 2 commences with a 
description of the experimental facility in which two-dimensional random waves were 
super-imposed on a depth-varying current. The essential characteristics of both an 
analytical wave-current model (Swan and James, 1998) and a multi-layered numerical 
model (Cummins and Swan, 1993) are briefly outlined in section 3. Using these results, a 
conservation of total energy flux equation is outlined, and verified with comparisons to a 
fifth-order conservation of wave action equation (Thomas, 1990) for the simplified case 
of regular waves on a uniform current. Comparisons between the laboratory data and both 
the analytical and numerical models are presented in section 4; while section 5 provides 
some concluding remarks concerning the extent of the wave-current interaction, the 
importance of the vorticity distribution, and those areas which require further 
consideration. 

2.   Experimental Apparatus and Measuring Procedure 

The experimental work undertaken within this study was conducted in a purpose 
built wave-current flume. This facility is located in the Hydraulics Laboratory within the 
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Department of Civil and Environmental Engineering at Imperial College, London. The 
flume has an overall length of 25m, a width of 0.3m, and a working depth of 0.7m. The 
waves are generated by a bottom-hinged, numerically controlled, wave paddle located at 
one end of the wave flume. At the opposite end the wave energy is absorbed by a large 
block of poly-ether foam, the front face of which is cut to form a vertical wedge with an 
included angle of 30°. With this passive absorber in place, the reflection coefficient 
across a broad range of regular wave conditions was less than 2%. Further details of the 
wave flume are provided by Baldock el al. (1996). 

Within the present tests the current was introduced via three loops of pipework. 
These allow a re-circulating and reversible current with a maximum volume discharge of 
0.05m /s. A sketch indicating the layout of the experimental facility is given on figure 1. 
Measurements undertaken within the wave-current flume include both time-histories of 
the water surface elevation, rj(i), recorded at a number of fixed spatial locations, and 
point measurements of the water particle kinematics to define both the shape of the 
current profile (acting in the absence of the waves) and the extent of the wave-current 
interaction. The surface elevation data was recorded via an array of surface-piercing 
resistance gauges. Individually, these consist of two vertical wires, each with an external 
diameter of 1mm, placed 10mm apart. Previous experience has shown that these gauges 
cause almost no disturbance of the flow field, and allow the water surface elevation to be 
recorded with an accuracy of ±lmm. The velocity data was recorded using a three beam 
Laser Doppler anemometer based on a 30mW helium-neon laser. This system was 
established in a forward scatter mode for optimal signal to noise ratio, and allows two 
components of the water particle velocity to be recorded simultaneously with an accuracy 
of ±2%. In each of the cases presented the measuring section was located 2.8m 
downstream of the wave paddle. 
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Figure 1. Layout of experimental facility 

To create a vertically-sheared current at the measuring section, the mean flow was 
introduced in the form of an upwelling immediately downstream of the wave paddle 
(figure 1). With careful modifications of the inlet conditions a steady, two-dimensional, 
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current was achieved in which the surface velocities were of the order of £4=,,»().6ni/s and 
the surface vorticity was as large as (dl//dz)z==,,«2.0rn/s/m. Figure 2a describes the time- 
variation of the current profile over a period of 3 hours; while figure 2b describes the 
cross-tank variation. These results clearly suggest that the current profile is both steady 
and two-dimensional. In contrast, figure 2c describes the downstream variation in the 
current profile. Although there clearly remains some downstream variation, i.e. dU/dx^O, 
this is at least one order of magnitude smaller than the gradient in the z direction. Hence, 
we are able to conclude that the nature of the wave-current interaction is dominated by 
the vertical shear in the current profile. 

0.2 0.4 
U (m/s) 

0.2 0.4 
U (m/s) 

0.2        0.4        0.6 
U (m/s) 

Figures 2a-2c. Characteristics of the current profile, 
(a) Variation with time: t=0, lhr, 2hrs and 3hrs; (b) Cross-tank variation: y=0.25b, 

0.5b and 0.75b; (c) Downstream variation: x=0, 1.4m, 2.1m and 2.8m. 

3.   Modelling Work 

In this section we will briefly mention two methods which have previously been 
applied to the modelling of regular waves on depth-varying currents. The first is the 
multi-layered numerical model outlined by Cummins and Swan (1993); while the second 
corresponds to the weakly nonlinear analytical solution described by Swan and James 
(1998). Although the results of these models are shown to be in good mutual agreement, 
the latter model is much easier to apply in the context of random waves. Indeed, the 
agreement between these models is an important finding in itself since it implies that the 
analytical formulation, which is only accurate to a second-order of wave steepness, has a 
wider range of applicability than one might expect. 

3.1 Numerical Modelling 

The scheme proposed by Cummins and Swan (1993) is essentially a five-layered 
equivalent of the two-layered or bi-linear shear model originally proposed by Dalrymple 
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(1974). If the computational domain is defined according to figure 3a, the stream 
function, i//, in the i"1 fluid layer, where i=l,..., 5, is given by: 

I \      {ui-u,l)(z
2 ) 

(1) 
„. .   . . (lnnz\                 , (innz 
X,(ii) smh      + Y,{n) cosh     cos (nkx) 

where the Cartesian co-ordinates (x,z) have their origin at the mean water surface, z is 
measured vertically upwards and x in the direction of wave propagation, c is the phase 
velocity, d\ is the depth of the ith fluid layer, U\ defines the current profile, and X is the 
wave length. Within (1) the first term on the right hand side ensures that the solution is 
steady; the second term defines the current profile, approximated by a series of linear 
shear currents; while the third term defines the oscillating flow field and includes the 
unknown coefficients {X\ ,Y\). A solution of this type is appropriate to the description of 
the equilibrium conditions arising in a combined wave-current flow. 

yA\v\\v X-   UB 

Figure 3a. Co-ordinate arrangement and solution domain 

Assuming that the wave height, H, the wave period, T, the water depth, (/, and the 
current profile, U(z) (occurring in the presence of the waves) are defined, the usual 
boundary conditions coupled with a number of compatibility constraints applied at the 
interfacial sections (z=§, where i=l, ..., 5) allow the flow field to be solved. Solutions for 
the wave length, X, the surface profile, t], the oscillatory velocity components (u,v) and 
the pressure, p, are thus achieved. Using this approach the order of the approximation 
was typically set at A/=8 for nonlinear waves on a strongly sheared current, and the 
calculations undertaken on a standard 200MHz personal computer. Detailed comparisons 
between this model and a data set concerning regular waves on a variety of strongly 
sheared currents are provided by Swan et al. (1998). 
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3.2 Analytical Modelling 

In contrast to the numerical scheme noted above, the analytical model is restricted 
to a second-order of wave steepness and is based on the orthogonal transformation 
indicated on figure 3b. 

z 
c 

-.X                     J 

X 
a\ 

h 

777        ^X 777        ^vT~       "TTT       \SS ///     \\\ 

Cartesian (x,zi Curvi-linsar [g,T)l 

Figure 3b. Co-ordinate arrangement and solution domain 

Within the (£,rf) frame, TJ=0 defines the free-surface, rj=-cl, the bottom boundary, 
and the current profile (again specified in the presence of the waves) is defined by a third- 
order polynomial such that in a stationary frame of reference: 

U(rj) = (/> + 2Qi] + 3R?f + 4Stf).5s('7 + i'"l) (2) 

where P, Q, R and S are constants, rj=-md defines the vertical extent of the current, i.e. 
0<m<l, and 5S is a step function such that 8s(y) is 0 if y<0 or 1 if y>0. After solving the 
two-dimensional vorticity equation in general orthogonal co-ordinates for an inviscid 
fluid, subject to the usual boundary conditions, the stream function, y/, is given by: 

i// =-cr] + (Qij2 + Rif +5^4)<?,(?; + »)(/) -Pt].d^{~ri-md) 

^ k j     sm\\(kd) 

(3) 
,     3K)/      dSif      .) cosh k(d + ij) 

k k J     sinh(kd) 

+ afc sinh k (rj + md) cos (kl;). S, (-1) - md) 

where the constant coefficients/a ,/t> and /c are dependent on the wave characteristics and 
the current profile. Applying this solution, the velocity components in the (£?/) directions 
are given by: 

(4) -JmdAL     and      u=-J'"8l// 

dt) ' d £ 

where the Jacobian, J, is defined by ./=9(£,?/)/9(x,z). Within this solution the first term on 



712 COASTAL ENGINEERING 1998 

the right side of (3) reflects the translation of the co-ordinate axis; the second and third 
terms define the current profile; while the remaining terms provide a first approximation 
to the nonlinear wave-current interaction. Comparisons between this solution, the 
numerical model discussed in section 3.1, and a number of regular wave cases on 
strongly sheared currents, are provided in Swan and James (1998). This paper also gives 
explicit solutions for the Jacobian and the dispersion equation. 

3.3 Energy Flux 

We have already noted that in the case of nonlinear waves interacting with a 
strongly sheared current (with non-uniform vorticity) a conservation equation for wave 
action has not, as yet, been derived. Accordingly, a simpler approach, orginally proposed 
by Longuet-Higgins and Stewart (1960) in their derivation of the radiation stress tensor, 
is adopted. This ensures that the total energy flux associated with both the wave and the 
current is conserved. In effect, the total energy flux comprises three distinct 
contributions. The first arises due to the rate at which work is done by the pressure, p. If 
we consider the combined wave-current flow, this contribution is defined by: 

Rl
x=^puxdzdx (5) 

where ux is the total horizontal velocity including both the wave and the current 
components, i.e. ux=u+U. The second contribution arises from the additional transport of 
kinetic energy and is given by: 

Rl = \\i^pu)uxdzdx (6) 

where p is the density of the fluid and u=ux+uz. Similarly, the third contribution 
represents an additional transport of potential energy and is given by: 

Rl = W(pgz)uxdzdx (7) 

where g is the gravitational acceleration and d the total water depth. Combining these 
results gives a total energy flux of Rx = R[ + R* + R3

X. Assuming that this total flux is 
constant, one can add the energy flux associated with the current (acting alone) with the 
energy flux associated with the waves (again acting alone), and equate this to the total 
energy flux in the combined wave-current environment: 

(8) 

If this equation is combined with the results of either the numerical model (section 3.1) or 
the analytical solution (section 3.2) the wave height change, AH, which arises when the 
wave and the current first interact, can be determined. 

To verify this energy flux formulation we first considered a simple waves only 
situation (no current) and compared the sum of (5), (6) and (7) with the energy flux 
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calculated according to Ecg, where E is the energy in one wave length and cg is the group 
velocity. Figure 4a presents the results of this comparison for regular waves (THOs, 
rf=50m) in which Ecg was calculated using a high-order stream function solution. The 
observed agreement is clearly very good, with minor deviations only arising in the very 
steepest waves. In a second test, we considered the case of regular waves (//=7.5m, 
T=\Os, and <5?=50m) propagating on a uniform current. In this case the wave height 
change predicted using the present formulation, i.e. (8), coupled with a high-order stream 
function solution was compared to the linear solution proposed by Bretherton and Garrett 
(1968) and the fifth-order solution proposed by Thomas (1990). The latter solutions being 
based upon the conservation of wave action. Figure 4b contrasts these results and shows 
good agreement between the present energy flux approach and the nonlinear conservation 
of wave action. Indeed, this figure also highlights the importance of the nonlinear terms 
when seeking to define the change in wave height. 

4.   Discussion of Results: Random Waves 

The solutions outlined in sections 3.1 and 3.2 were formulated to solve the 
interaction of regular waves with depth-varying currents. Nonetheless, they can be 
applied in a 'linear' sense to the individual components of a random or irregular sea in an 
attempt to determine a first approximation to the changes in the wave spectra. If this 
approach is adopted, the nonlinear interaction between the individual wave components 
and the co-existing current are correctly modelled, but the nonlinear wave-wave 
interactions (together with any subsequent interactions that these components have with 
the current) are neglected. However, it will be shown that for a typical Pierson- 
Moskowitz (P-M) spectrum interacting with a strongly sheared current, the nonlinear 
wave-wave interactions are negligible in comparison to the wave-current interactions. As 
a result, the present approach should provide a good first approximation to any changes 
in the wave spectrum. 

The first P-M spectrum investigated in the laboratory study had an average zero 
up-crossing period of 7>=0.94s and a significant wave height (measured in the absence of 
a current) of ft=0.062m. This case therefore corresponds to a relatively linear sea state. 
The characteristics of this spectrum measured on quiescent water (or in the absence of a 
current) are indicated by the uppermost curve on figure 5a. This spectrum was generated 
by the summation of 99 individual wave components with random phasing; it was 
calculated from two time-histories of the water surface elevation, each recorded at 25Hz 
for a duration of 600s. Preliminary tests confirmed that this spectrum was highly 
repeatable, being both stationary and ergodic. In subsequent tests the current profile 
indicated on figure 2a was generated within the wave flume. Having allowed sufficient 
time for the profile to become stable, an identical signal to that described above was sent 
to the wave paddle. The resulting water surface elevations, involving the waves on the 
current, were again recorded and the corresponding spectra calculated in an identical 
manner. The results of this process are indicated by the second solid line on figure 5a. 
The effect of the wave-current interaction, in terms of spectral changes, is clearly 
apparent. 
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The remaining curves indicated on figure 5a correspond to the predicted wave 
spectrum assuming that: (a) the current is uniform with depth and has a value equal to the 
surface current; (b) the current is uniform with depth and has a value such that the total 
(depth-integrated) mass flux is conserved; and (c) the current varies linearly with depth. 
These comparisons suggest that while solution (a) correctly models the Doppler shift, it 
entirely neglects the vorticity and therefore over-predicts the change in the wave 
spectrum. Alternatively solution (b), which is commonly applied in a design context, fails 
to model either the Doppler shift or the vorticity profile, and consequently provides the 
worst prediction of the wave-spectra on the current. In contrast, the solution which uses a 
linearly-sheared current correctly describes the Doppler shift, and makes some attempt to 
model the effects of the vorticity. As a result, this latter model provides an improved 
description of the measured spectra. Nevertheless, even in this case, there remain 
significant differences between the measured and predicted data. 

In contrast figure 5b compares the wave spectra measured on the current with the 
results of both the numerical model and the analytical solution described in sections 3.1 
and 3.2. In each of these solutions iterative calculations were undertaken to determine the 
individual wave heights which satisfy the total energy flux constraint (8). In applying this 
approach it is assumed that there is no transfer of energy between components within the 
spectrum. This point is further discussed below. Furthermore, it is important to note that 
although the iterative calculations are relatively straightforward, those based on the 
numerical model can be somewhat time-consuming. Whereas those based on the 
analytical model are rapid and easy to apply. In essence, this latter solution is no more 
difficult to apply than a second-order Stokes' model. 

The comparisons provided on figure 5b confirm that both these solutions provide 
a much improved description of the wave spectra measured in the presence of the current. 
Indeed, this is to be expected since these models (and only these models) allow the 
affects of both the Doppler shift and the vorticity distribution to be correctly 
incorporated. Furthermore, comparisons between figures 5a and 5b suggest that the 
vorticity can be of equal importance to the Doppler shift when attempting to predict the 
changes in the wave spectra due to the interaction with a sheared current. 

Figures 6a and 6b present a similar sequence of results in which the P-M spectrum 
measured in quiescent water has an average zero up-crossing period of rz=0.98s and a 
significant wave height of i/s=0.090m. In this case the sea-state is more nonlinear, with 
some evidence of occasional wave breaking. However, the frequency of the breaking 
events was such that they had no significant influence on the characteristics of the wave 
spectrum. In figure 6a the measured and predicted spectra show similar trends to those 
identified on figure 5a, although the differences are inevitably somewhat larger. This is 
particularly true of the linearly-sheared current (Jonsson et ah, 1978) since this neglects 
the nonlinear terms in the wave-current interaction. Figure 6a also includes an additional 
curve, which indicates the magnitude of the second-order nonlinear wave-wave 
interactions (the scale appropriate to this curve is given on the right hand axis). 
Comparisons between this curve and the change in the wave spectrum due to the 
interaction with the current confirm that the wave-current interaction is indeed dominant. 
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Figure 6a-6b. Changes in a nonlinear spectrum 

In Figure 6b the results are (unfortunately) somewhat different from those given 
on figure 5b. In this case, the comparisons suggest that neither of the present methods 
provide a good description of the spectral changes, although they do represent a 
significant improvement over the solutions indicated on figure 6a. However, it is 
interesting to note that the apparent shortcomings are equally applicable to both the 
numerical calculations and the second-order analytical model. This suggests that the 
'errors' do not arise as a result of higher-order nonlinear terms within the wave-current 
interaction. Indeed, the present results confirm that the weakly nonlinear analytical model 
is more widely applicable than one might expect. 
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The most probable explanation for the 'errors' in figure 6b lie in our treatment of 
the current profile. In previous studies, concerning regular waves on a vertically-sheared 
current, considerable effort was made to determine the current profile in the presence of 
the waves. Indeed, good agreement between the measured and predicted oscillatory 
velocities was only achieved when this profile was applied within either the analytical 
solution or the numerical model. In the present case this approach has not been adopted. 
Indeed, the results presented in figures 5 and 6 were calculated using the current profile 
measured in the absence of waves. The reason for this difference is clear. In a regular 
wave case the magnitude of the current was calculated along an empirically determined 
streamline. This approach allows the characteristics of the current, in particular its 
gradient, to be determined close to the water surface. In random waves it is simply not 
possible to undertake such an approach. 

• 
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~ 0.10 
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3 .•'• 

0.05 #••' 

0.28                    0.36 0.44 
Wave Steepness (0.51-Ik) 

Figure 7. Changes in the surface current (regular waves) 

Nevertheless, if we return to our previous regular wave data, it is clear that the 
extent of the current change is dependent upon the wave height, or more probably the 
wave steepness. For example, figure 7 considers four regular wave cases and describes 
the change in the magnitude of the surface current as a function of the wave steepness. 
Taking into account this change, it is clear that as the steepness of a random sea-state 
increases, the present methods will provide less reliable results. Furthermore, it is clear 
that if the change in a wave spectrum due to the interaction with a current is to be 
adequately predicted, the change in the current due to the presence of the waves must be 
defined. Recent work by Groeneweg and Klopman (1998) provide a possible method for 
investigating this effect. However, if the results of recent regular wave studies are to be 
believed, it would appear that in random waves the current profile will be continuously 
changing as it attempts to adjust to the local (or instantaneous) wave conditions. In such 
circumstances it may be very difficult to separate those parts of the fluid motion that 
relate individually to the wave and the current. 

In an attempt to account for the extent of the current change, An, particularly that 
arising close to the water surface, the present study has reconsidered the current change 
arising in several regular wave cases, and has applied a similar change to the present 
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study. Having identified a 'modified' current profile, the iterative calculations were 
repeated and a new wave spectrum determined. The results of this procedure are 
presented on figure 8. This is identical to the case considered in figures 6a and 6b, and 
contrasts the spectrum measured in the presence ofthe waves with two predictions based 
on the analytical formulation. The first assumes the current remains unchanged; while the 
second is based upon our best estimate ofthe changed current profile. The improvement 
in the solution is clearly significant, and highlights the importance of the wave-induced 
current change. However, it should be noted that although the peak ofthe spectrum is in 
good agreement, its overall shape is no longer self-similar. This clearly raises the 
possibility of significant energy transfers within the spectrum due to subtle changes in the 
current profile. 
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Figure 8. Spectral predictions based on a changed current 

5.   Concluding Remarks 

The present paper has considered the modification of a random wave spectrum 
due to the interaction with a depth-varying current. New experimental data has been 
presented, and the results shown to be in reasonable agreement with a new calculation 
procedure based upon the conservation of total energy flux. Although this solution 
represents a significant improvement over existing design methods (traditionally based 
upon a uniform current approximation), difficulties remain concerning the description of 
a current profile in the presence of waves. Indeed, the present study has clearly 
demonstrated that in the case of a depth-varying current, the nature ofthe wave-current 
interaction involves both a current-induced change in the wave motion, and a wave- 
induced change in the current. Finally, the present study has also shown that a relatively 
simple, weakly nonlinear, analytical solution can be surprisingly effective, and provides 
clear guidance as to the importance ofthe vorticity distribution. 
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