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Abstract 

Three-dimensional propagating nonlinear waves can be simulated with a time- 
domain numerical model based on a boundary integral equation method. For the 
simulation of nonlinear wave deformation by a shoal, a domain decomposition 
method is used to increase the efficiency of the model. Features and efficiency of 
the domain decomposition method are described and its application to the shoal 
problem is discussed. 

1     Introduction 

In the modelling of refraction and shoaling of waves, it is important to describe 
the nonlinear free-surface boundary conditions properly. It is known, for exam- 
ple, that non-linearity opposes convergence and divergence of wave ray paths. In 
order to assure the correctness of modelling non-linearity, physical experiments 
are often used. 

We present a three-dimensional time-domain numerical model, based on a bound- 
ary integral equation method, which computes the propagation of waves with the 
exact nonlinear boundary conditions over an arbitrary bottom geometry. This 
method is therefore able to provide additional material suitable for verification. 
The results of a computation of the model are compared with the shoal exper- 
iment (Berkhoff et al. (1982)) in order to determine the accuracy of the model. 
Because the study of such problems requires large computational effort, the use 
of efficient numerical techniques is imperative. Here we present a domain decom- 
position method which reduces the computational costs of the boundary integral 
equation method considerably. 

This paper is organized as follows. First the numerical model is described in 
Section 2.   In Section 3 the domain decomposition method is described and its 
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efficiency is discussed. In Section 4 the application of the domain decomposition 
technique to the shoal problem is discussed. Finally some conclusions will be 
stated in Section 5. 

2    Numerical model 

2.1    Description 

In the mathematical model for nonlinear water waves considered here, the motion 
of the water is described by the usual potential-flow equations for inviscid irrota- 
tional fluid motion with a free surface on water of varying depth. It is described 
by the field equation for the velocity potential <j> (Laplace's equation) 

M = 0, (1) 

and the boundary conditions on the free surface BUFS 
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Appropriate in- and outflow boundary conditions are formulated on the lateral 
boundaries. 

The numerical model consists of a time marching scheme for the evolution 
of the free surface and its boundary conditions. At every time-step, Laplace's 
equation for the velocity potential is solved by using a boundary integral equa- 
tion method (BIEM). In the BIEM, only the boundary of the fluid domain is 
discretized into quadrangular panels represented by a collocation point in the 
centre of the panel. For each collocation point a Fredholm integral equation of 
the second kind equivalent with Laplace's equation is formulated (see e.g. Broeze 
(1993)). These integral equations are discretized and by using the boundary 
conditions a system of linear equations is built and subsequently solved. Inser- 
tion into equations (2) of the solution obtained in this way, provides the time 
derivatives which are needed for the time marching scheme. 

For the time integration of the collocation points, a Lagrangian description 
is used in combination with (small) tangential correction velocities to control 
the grid motion. In the present implementation the Lagrangian description is 
required to obtain stability near the inflow boundaries, see Broeze (1993). The 
lateral boundaries move along with the free-surface grid with uniform velocities 
over each vertical. Due to the Lagrangian motion the grid distorts during the 
time-domain simulation. For this reason a mixed Eulerian-Lagrangian description 
is preferred which controls the grid in the inside of the domain and retains the 
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stability. This is however not implemented in the model yet but seems to be 
of importance to be used in combination with domain decomposition, as will be 
pointed out in Section 4. See furthermore Broeze (1993) for a more detailed 
description of the method employed here. 

Boundary integral equation methods are very suitable for solving Laplace's 
equation on such domains because they only require a discretization of the bound- 
ary of the domain. Compared with field discretization methods, the advantages of 
a BIEM are a much smaller amount of grid points and a natural description of the 
evolution of the free surface. On the other hand, the computational requirements 
for some specific parts of the solution algorithm depend superlinearly on the num- 
ber of collocation points and often form the bottleneck for the computation of 
large-scale wave problems. These parts are the discretization of the boundary 
integral equations and the solution of the resulting system of linear equations. 
The domain decomposition technique is used to tackle these problems. 

2.2   Applications 

There are a number of applications for which the model can be used. For verifi- 
cation the model can be used to check higher-order wavemaker theory for both 
translating and rotating wavemakers in two dimensions. In this application the 
boundary condition related to the moving wavemaker is imposed on the exact po- 

sition of the wavemaker in time. Because the full nonlinear free surface boundary 
conditions are solved, the accuracy of the wavemaker theory can be investigated 
with respect to its order. 

The model can also be used for verification of the modelling of the nonlinear 
free-surface conditions in other wave models, like Boussinesq models. This is es- 
pecially useful when experimental verification material is hard to get, for example 
in large scale problems. This also applies to the modelling of wave interaction 
with bottom topography. 

As a simulation model, the numerical model can be useful when interaction 
with objects is involved, for example with ships. Wave forces and run-up can 
be determined in order to simulate its motion. A development which has pro- 
gressed considerably recently, is the simulation of ship and water motion through 
a simultaneous solution of the equations of motion of the ship and the governing 
potential flow equations. These are coupled through the boundary conditions on 
the hull of the ship, which are taken on the exact wet part of the (moving) ship. 
Development on these kind of computations is still ongoing, see Berkvens (1998). 

For most interesting applications however, limited computer capacity often 
still prohibits the use of the model, especially in three dimensions. Therefore the 
development of numerical techniques, such as domain decomposition, is needed. 
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3    Domain decomposition 

3.1    Description 

The domain decomposition method described here consists of a division of the 
computational domain into subdomains (see Figure 1) and an iterative procedure 
which generates a sequence of solutions in the subdomains that converges towards 

the solution in the original domain. 
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Figure 1:   Domain subdivided into 8 subdomains (Panels on the front lateral 
boundaries are not shown) 

Every step of the iterative procedure consists of first solving Laplace's equa- 
tion for the potential cf> on the separate subdomains simultaneously and secondly 
formulating new boundary conditions on the subdomain interfaces. In the latter 
part the subdomain problems are coupled. 

There are many possibilities in the way information can be exchanged between 
the subdomains. We have chosen here to use the so-called DD/NN-scheme. Ev- 
ery odd step of the iterative procedure Dirichlet conditions are imposed on all 
interfaces. Neumann conditions are imposed at all even steps. These steps are 
illustrated in Figure 2 for the first two steps of a two-subdomain problem. 

This scheme is also known as a Neumann-Neumann preconditioner in the con- 
text of domain decomposition methods for field discretization techniques, see e.g. 
Le Tallec (1994). In the field of time-domain BIEM's for nonlinear water waves a 
similar technique was used by Wang et al. (1994) in 2D. In their work interfaces 
are used to formulate a block-structured matrix which is then solved iteratively. 
In the present approach the subdivision and the coupling is formulated on the 
continous level. It is implemented numerically through separate discretizations 
for all subdomains leading to matrices to be solved per subdomain and a sepa- 
rate coupling algorithm. The present method has been presented in De Haas et 
al. (1996) where it was applied to the simulation of propagating nonlinear wave 
groups in 2D. For a general impression of work being done in the field of domain 
decomposition the reader can consult for instance Quarteroni (1994). 
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Figure 2: Schematic representation of the DD/NN-scheme 

3.2 Implementation and application 

In the application of the domain decomposition technique to the time-domain 
numerical model described here, the domain is divided in one direction only. It is 
possible to change the subdivision of the domain during the computation which 
may for example be useful when initially having large subdomains in parts where 
hardly no waves are present and required CPU time per node is small, and small 
subdomains in parts where a lot of wave action takes place. We have chosen to 
use a fixed initial subdivision of the computational domain with subdomains of 
equal size so that no reorganization of data over the subdomains is necessary and 
the number of nodes in all subdomains is (approximately) the same. 

In the present implementation, each subdomain is treated numerically as a 
one-domain problem with respect to both the solution of Laplace's equation and 
the time integration. This implies that for each subdomain the interfaces move as 
if they were in- and outflow boundaries of this subdomain, moving along with the 
free-surface grid in a Lagrangian fashion. The subdomain problems are coupled 
to ensure a unique description of the interface position (the motion of each inter- 
face is determined from solutions of the neighbouring subdomains) and they are 
coupled through the averaging of the interface boundary conditions as required 
in the iterative process. 

3.3 Convergence characteristics 

The performance of the domain decomposition method is determined by the con- 
vergence of the iterative process. It can be monitored on each interface by con- 
sidering the jump across the interface between the solutions on both sides. The 
convergence on the interfaces depends on the geometrical form of the subdomains 
and on the coupling scheme used. Convergence characteristics for 2D-problems 
have been outlined in De Haas e.a. (1996) and are repeated here with inclusion 



COASTAL ENGINEERING 1998 675 

of typical three-dimensional aspects. 

• The convergence of the iterative procedure deteriorates if there is more 
asymmetry near the interfaces due to a disturbed free surface or an uneven 
bottom. In numerical experiments it was shown that it is mainly determined 
by the slope in the direction perpendicular to the interface, see De Haas 
and Zandbergen (1996). 

• If either the length-to-height ratios or the length-to-width ratios are not 
too small (typically larger than 1) then convergence on each interface is not 
influenced by iterative processes on other interfaces. 

Implications of these features with resepect to the division of a computational 
domain in more than two subdomains can be considered in two ways. 

• For a fixed length-to-height ratio L/h of the computational domain, the 
convergence of the iterative procedure deteriorates as the number of subdo- 
mains N increases. For problems with an even bottom a specific number ,/V 
(and corresponding length / = L/N) exists for which the iterative process 
on one interface is influenced by the iterative processes on neighbouring 
interfaces. 

• For a fixed length-to-height ratio l/h of the subdomains, the convergence 
rate does not change as the number of subdomains increases, in the case of 
rectangular subdomains of equal size I > I. In applications with a disturbed 
free surface over an even bottom it is seen that convergence is determined 
by the interface with the worst convergence. The number of iterations has 
an upper bound which is independent of N. 

Examples of the first type of computation are shown in Section 3.4. The shoal 
problem treated in Section 4 represents a problem with an uneven bottom. 

3.4    Efficiency 

The efficiency of the domain decomposition technique is of course related to the 
convergence of the iterative method. It is considered for the case of a computa- 
tional domain with a fixed length-to-height ratio and illustrated with an example. 

• If for a computational domain with a fixed length the number of subdo- 
mains is increased, on the one hand the number of required iterations will 
increase. On the other hand, the CPU-time to solve Laplace's equation 
per subdomain decreases, since the subdomains become smaller. In general 
a certain optimal number of subdomains exists with respect to required 
computer capacity to solve a given water-wave problem. 

• If the computational domain is built from subdomains with a fixed length- 
to-height ratio and the number of subdomains is increased, the number 
of iterations increases but remains below a upper bound independent of 
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the number of subdomains used. Therefore the computational costs per 
subdomain have an upper bound independent of the number of subdomains 
and the maximum total computational cost per time step can be given by 
a function linearly dependent on the size of the computational domain. 

Results are shown for the fully nonlinear water wave problem illustrated in 
Figure 1. This problem involves a Fourier series solution which propagates undis- 
turbed in water of constant depth. It is computed using the method by Rienecker 
and Fenton for waterdepth h = 10.0 m and wavelength A = 60.0 m. The compu- 
tations are started from an initial state prescribed by the solution with the wave 
direction under an angle of 30° with the positive i-direction, see Figure 1. 

In the first example a computational domain of length L = 153.8 m is consid- 
ered with subdivisions into 2, 4 and 8 subdomains. Time domain computations 
are done over the time interval [0,10] s. Required CPU times are measured for 
computations using Gaussian elimination and for computations using a conjugate 
gradient type of solver for the system of linear equations. To reduce CPU times 
these computations are performed for a wave height H = 2.5 m instead of the 
wave height H = 5.0 m shown in Figure 1. For the investigation of the number of 
iterations the waveheight H = 5.0 m is only used for the 8-subdomain problem. 
The number of required iterations is shown in Figure 3. The number of required 

Number of subdomains 

Figure 3: Number of iterations k required per timestep during the computa- 
tion over the time interval [0,10] using 2, 4 and 8 subdomains indicated by the 
thick, medium thick and thin line respectively, for H = 2.5 m. The dashed line 
corresponds to the 8-subdomain computation with H — 5.0 m. 

iterations for the 2- and 4-subdomain problem is approximately equal. For the 8- 
subdomain problem the number of required iterations is significantly larger. The 
variation during the considered time interval is clearly visible for the 8-subdomain 
problem with H = 5.0 m. This variation is related to the varying distortion of 
the free-surface grid and the connected interfaces. After approximately one wave 
period the number of required iterations is on the initial level again because all 
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the free surface collocation points have made the same excursion through space. 
The initial domain is recovered apart from a Lagrangian drift in the wave prop- 
agation direction. See Figure 4 in which the domain at t = 10.0 s « 1.53T is 

shown. 
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Figure 4: Domain at time level t = 10 s using 8 subdomains. Again the networks 
of the front lateral boundary are not shown. 

With respect to the computational requirements results are shown in Figure 5. 
The following observations are made: 
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Figure 5: Measured CPU-times using 1, 2, 4 and 8 subdomains with H = 2.5 
m. Crosses indicate computations using Gaussian elimination and circles indi- 
cate computations using CGS. Symbols printed thin indicate CPU-times that are 
corrected for the performance of the computing system by normalizing with the 
performance of the 1-domain computation. The solid line indicates the required 
memory. In cases in which the thin symbols can not be observed, the thin and 
the thick symbols coincide. 

The CPU-time for the one-domain problem is much smaller using CGS com- 
pared with using Gaussian elimination. This is due to the small efficiency 
of the latter method for large numbers of panels. 
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• For the computations using Gaussian elimination, the CPU-times for the 
subdivisions are smaller than the CPU-time for the original one-domain 
problem. If the results are corrected for the performance of the system still 
less CPU-time is required except for the two-subdomain problem. 

• For the computations using CGS, reductions in CPU-time are obtained in 
all cases up to a factor 3 when using 8 subdomains. The performance is 
hardly affected so that it can be concluded that the number of floating point 
operations is decreased. 

• The memory required for these computations is largely decreased when 
using domain decomposition. 

4    Shoal problem 

For the intercomparison of some wave propagation models a laboratory exper- 
iment was set up at Delft Hydraulics in which a coastal area was schematized, 
see Berkhoff et al. (1982). The bottom geometry consists of a sloping bottom 
with slope 1/50 and a shoal. A number of tests were done with different wave 
conditions. Wave heights were measured along a number of sections. See also 
Dingemans (1997), sections 4.6 and 5.6.6. Figure 6 shows the geometry of the 
shoal experiment. 

Figure 6: The geometry of the shoal experiment. 

The experiment has been used by Broeze (1993) to test the accuracy of the 
present numerical model. Due to the relatively large domain and the limited 
number of panels given the available memory at the time, computations were 
restricted to only a part of the domain and using coarse resolutions. Nevertheless 
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the results agreed fairly well with the measured data. Figure 7 shows computed 
and measured wave heights along four sections. 

Figure 7: Wave heights relative to height of incoming wave. Computed (solid 
line) and measured (dashed line) wave heights along sections 2 and 3 (upper two 
plots) and 6 and 7 (lower two plots). 

The domain decomposition technique has the potential to decrease the re- 
strictions mentioned above with respect to the limited available memory. Using 
domain decomposition more panels can be used taking up the same amount of 
memory. The computational domain can be increased or a finer resolution can 
be used. 

In application to the shoal problem, however, we found that stability problems 
occured due to the Lagrangian motion of the grid and a subsequent deterioration 
of the convergence of the iterative process. These problems were not solved in 
the limited time available. A representative computation for these problems is 
shown in Figure 8. 

At the time level shown in this figure, the iterative process diverges on the 
interfaces located near y = 13.1 m and y = 16.5 m. Most probably it is related 
to the distortion of the grid on the interfaces, especially on the interface near y 
= 13.1 m. Due to the large variation of wave height in the region behind the 
shoal, the variation in horizontal velocities of the free-surface grid is large which 
causes the grid to distort. As a consequence the interface located behind the 
shoal distorts as well. 

Also subdivisions in the direction perpendicular to the incoming wave di- 
rection were applied and showed to be much more stable. But still simulation 
over the time interval [0,18] s (required to obtain periodic wave height mea- 
surements) did not succeed.   As pointed out in Section 2, the use of a mixed 
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Figure 8: Domain of the shoal-problem at t = 9.26 s in the computation using 4 
subdomains. The networks in the front lateral boundary are not shown. Waves 
enter the domain from the right. 

Eulerian-Lagrangian method seems to be required to successfully apply the do- 
main decomposition technique. 

5    Conclusion 

Domain decomposition is a suitable technique to improve the efficiency of bound- 
ary integral equation methods, especially in domains originating from water wave 
problems. In the application to time domain simulations of propagating nonlinear 
water waves over even bottoms, it leads to large reductions of required computer 
capacity. In the application to simulations of waves propagating over uneven bot- 
toms, the method still fails. This is probably related to the Lagrangian motion of 
the free-surface grid and the consequent deterioration of the convergence process. 
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