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Abstract 

Evolution of periodically generated wave groups of different shapes that propagate 
over a sloping beach is studied experimentally and theoretically, by solving numerically 
the cubic Schrodinger equation. The agreements and disagreements between the 
experimental and the numerical results are discussed. 

Introduction 

Real sea waves can be described quite faithfully by JONSWAP spectrum 
(Hasselmann et al., 1973). One of the important features of this spectrum is its quite 
narrow frequency band, which results in notable wave groupiness even in the open seas. It 
has been observed in many field experiments that the distribution of waves in a group 
approaching the shore becomes more uniform, so that the maximum wave height in the 
group decreases. Such a transformation of wave groups has important practical 
consequences, since it affects directly the value of the maximum wave height in the group. 
The importance of the significant wave height as a design parameter is generally 
recognized in coastal engineering. This demodulation effect may result from the 
dissipation in the bottom boundary layer, as well as from the nonlinear and dispersive 
effects, as shown in numerical simulations based on the Korteweg-de Vries equation by 
Kit et al. (1995). The reduction in the maximum wave height with decrease of the water 
depth was also obtained numerically by Barnes and Peregrine (1995). In the present study, 
the transformation of a deterministic wave group over a sloping beach is investigated 
experimentally, in a laboratory wave tank, and theoretically, by a numerical solution of 
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model equations. The simplest nonlinear theoretical model which is capable of describing 
the evolution of propagating wave packet with a narrow spectrum in the range of water 
depths from deep to intermediate is the so-called cubic Schrodinger equation (CSE) (see, 
e.g., Mei 1989). This equation was derived first by Zakharov (1968) and Hasimoto & Ono 
(1972) and has been extensively applied for description of wave group evolution in deep 
water. 

Experimental Facility and Procedure 

Experiments are performed in a wave tank that is 18m long, 1.2m wide and filled to 
a mean water depth of 0.6m. A computer-operated wavemaker is located at one end of 
the tank. A false bottom made of thick marine plywood is installed in the tank. The 
effective water depth is 0.3m in the vicinity of the wavemaker. The bottom slope is 1:30 
for the length of 7.5m along the tank. The last 5m of the false bottom represent a 
horizontal flat surface with the effective depth of 0.05m. At the far end of the false bottom 
is located a wave energy-absorbing beach. Two sets of four wave gauges, each on its own 
bar, are used in this study. The first set of the gauges is of resistance type, while the 
second one is of the capacitance type. The distance between the two consecutive probes is 
0.4m for the resistance wave gauges and about 0.3m for the capacitance probes. Each 
probe-supporting bar is mounted on a separate carriage that can be moved along the tank. 
More sensitive capacitance probes are used for measurements in the shallow water area, 
while resistance probes are used in the rest of the tank. Detailed measurements of 
instantaneous surface elevation are carried out at eight fixed measuring stations, thus 
covering 32 locations along the tank. 

Wave groups with three different shapes are selected in this study. The equations 
describing the driving signal applied to the wavemaker are as following: 

s(t) = Aosm(&t)sm(a)t),   £2 = to/20 (1) 

s(t) = A0\sin(at)\sm(cot),    Q = o)/20 (2) 

s(t) = A0 exp - (t/5T)2 sin( cot), 

-16T <t<\6T 
(3) 

where the carrier wave period T =2ic/co. These signals are repeated periodically. The first 
two driving signals produce identical wave groups envelopes, but their spectra differ 
essentially. The forcing signal (1) has a simple bimodal spectrum. The spectrum of (2) 
consists of a set of discrete frequencies, where 3 dominant modes can be identified. The 
third signal produces wave groups that are widely separated and have a discrete spectrum, 
which requires a considerable number of modes for its accurate description. Experiments 
are carried out for 7=0.7 sand for three values of the driving amplitude Ao, corresponding 
to a nearly linear, nonlinear, and strongly nonlinear wave steepnesses. In the vicinity of the 
wavemaker, the maximum values of the wave steepness adk0 in the group are 
approximately 0.07, 0.14 and 0.21. Variation of the wave group velocity along the tank 
and modification of the wave power spectra are measured. 
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Theoretical Model 

The cubic Schrodinger equation (CSE) for a mild slope is selected as the theoretical 
model. The CSE is written in a form given by Mei (1989): 

ifiA-iAx+ocAn+P\A\  A=0 (4) 

where A(X,x) is the complex wave group envelope, and the slow variables are related 
to the coordinate along the tank x and the time t as 

X=elx;      T=- j 
\x,   dX 
e 0cg(X) 

-el (5) 

In (5), cg = dco/d k is the group velocity, k being the local wave number, and A(X=0, z = 
0) = aje. The local values of the X-dependent coefficients in the CSE are defined in the 
dimensionless form by 

ji _dq (1-tanh   #)(1 - # tanh ^) 
ko    dx  £0[tanh<5r + #(tanh2<3')] 

am CO dzco 

k0    k0c\ dk2 ' 

cosh 4<7+8-2 tanh   <7 (2cosh2^+«)2 

16sinh4^r 2sinh22q' 1      „2 
tanh^r 

(6) 

(7) 

(8) 

where q = kh, k0 =k(X=0) and the parameter n = cgk/co represents the local value of the 
ratio of group and phase velocities and is given by 

«4I i+-irr 1 \     sinh 2q (9) 

It is well know that the coefficient ft of the nonlinear term given by (8) and (9) changes its sign 
at 9=1.36. For <7>1.36, j3>0, corresponding to the focusing condition, while for <7<1.36, /J<0 
and wave energy defocusing occurs. The radian frequency of the carrier wave CO is related to its 
wave number k by the dispersion relation 

of = kg tanh q, (10) 
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where g is the acceleration due to gravity. Equation (4) is solved numerically using an 
implicit finite difference scheme with periodic in X boundary conditions, Initial conditions 
at X = 0 are in accordance with the shapes defined by (1) to (3). The variation of the 
surface elevation r\ is obtained using the complex amplitude A(X, x) from the solution of 
(4) and the relations (5) between the scaled (X, x) and the physical (x, t) variables as 

rt(x,t)=e[A(X,x)ei{kx~0X) +c.c], (11) 

where c.c. denotes complex conjugate. 

Results and Discussion 

The results for the wave groups excited by the driving signal given by the equations 
(1) - (3) are presented in Figures 1 - 3, respectively, for the two extreme values of the 
forcing amplitude, ajk0 = 0.07 and aoko = 0.21. 

x=0.25 m x=7.0 m 

Figure 1. The measured surface elevation (a and b) and 
the computed group envelopes (c and d) for the driving signal (1). 

In each Figure, the results are given at two locations along the tank, x = 0.25 m, h = 
0.3 m (Figures a and c), and x = 7.0 m, h = 0.075 m (Figures b and d). The measured 
variation in time of the instantaneous surface elevation is given in Figures a and b, where 
the curves representing the low and the high amplitudes are shifted in the vertical 
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direction. The corresponding variation in time of group envelopes obtained numerically is 
given in Figures c and d. 

x=0.25 m x=7.0 m 

•-^^^^ 
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Figure 2. The measured surface elevation (a and b) and 
the computed group envelopes (c and d) for the driving signal (2). 

The most striking effect observed in this study is the difference in the evolution of 
wave groups excited by the driving signals (1) and (2). In the vicinity of the wavemaker, 
both types of wave groups look practically identical, see Figures la and 2a. At a larger 
distance, the wave groups generated by (1), Figure lb, tend to retain their identity, 
although nonlinear effects are clearly visible, while the wave groups excited by (2), Figure 
2b, are spread significantly. This spreading can be interpreted as the demodulation effect. 
Certain spreading can also be observed in the detached wave groups excited using (3), 
Figure 36. For all shapes of the forcing signals, the initially symmetric wave groups at 
higher amplitude loose their symmetry. The trough-crest asymmetry is clearly visible at 
high amplitude of forcing at both locations. This asymmetry is a clear indication of the 
appearance of the higher harmonics in the surface elevation spectrum. In addition to the 
trough-crest asymmetry, left-right asymmetry is observed at the remote measuring station 
at high amplitude of forcing. This effect is most prominent for the driving signal (3), 
Figure 3b, although it also can be observed in Figure lb. Note that similar group shapes 
were observed in experiments and obtained numerically in deep water by solving the 
modified nonlinear Schrodinger equation (Lo & Mei 1985). 
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The demodulation effect observed in the experiments away from the wavemaker is 
clearly seen in the numerical simulation as well, Figure 2d. Contrary to that, wave group 
shapes for the forcing signals (1) and (3) do not change notably, although certain focusing 
effects can be observed at high amplitude of forcing in Figures \d and 3d. It should be 
mentioned here that the left-right asymmetry observed in the experiments could not be 
obtained in the framework of the adopted theoretical model, since the CSE conserves the 
symmetry of the initial conditions. In Figures c and d, the envelope corresponding to the 
temporal variation of wave groups at the carrier frequency only is presented, and the 
contribution of the bound waves at higher harmonics, which leads to the trough - crest 
asymmetry observed in the experiments, is not accounted for. 

x=0.25 m x=7.0 m 

H 1 I H 

Figure 3. The measured surface elevation (a and b) 
and the computed group envelopes (c and d) for the driving signal (3). 

Both the experimental and the numerical results indicate that for the driving signals 
(1) and (3) no considerable variation in the maximum wave amplitude can be observed for 
the conditions employed in this study. For the driving signal given by (2), both the 
experiments and the computations give considerable spreading of the wave energy in the 
group. The results presented in Figures 1 - 3 thus suggest that the adopted theoretical 
model is capable of providing a reasonable pattern of wave group evolution over a sloping 
beach. The CSE can therefore be used to investigate the wave group evolution over larger 
distances, which could not be verified experimentally due to the limitations of the 
experimental facility. 
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Figure 4. The computed variation of the wave group envelopes with the distance 
from the wavemaker for the bottom slope 1:30; initial depth h=0.6m. a) driving signal 
(1), b) driving signal (2), c) driving signal (3). 
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Computations were therefore performed wave groups of high wave steepness (acko - 
0.21) for the driving signals given by (1) to (3) for the same slope of 1:30 as in the 
experiments, but with the initial depth of h=Q6 m. The results at three locations along the 
tank for the duration corresponding to two wave groups are presented in Figure 4. The 
locations selected for the presentation correspond to the initial wave group at the 
wavemaker, x=0 m, h=0.6 m, intermediate depth at x=9.0 m, h=0.3 m, and shallow water 
at x=16.0 m, //=0.067 m. 

9  1 i a 
iu    0 o--~~~w«|p~**~~~^ 
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|x=0.25m| 

y\ 
Figure 5. The measured surface elevation (a and b) and the computed group envelopes 

(c and d) for the constant water depth A=0.6m and the driving signal (3). 

The qualitative difference in the evolution pattern of wave groups excited by signal 
(1), Figure 4a, and (2), Figure 4b, is quite evident. The wave groups excited by the 
driving signal (1) initially exhibit strong focusing, and the maximum amplitude is nearly 
doubled at x=9.0 m. As the waves propagate over more shallow water, strong defocusing 
occurs, and the wave energy is spread nearly uniformly in the group. It should be stressed 
here that due to the symmetry properties of the driving signal (1) and the CSE (4), the 
node points in the envelope distribution in time are conserved in the course of the 
evolution process. This particular feature does not apply to the driving signals (2) and (3). 
The qualitative difference between the driving signals (1) and (2) is responsible for the 
different evolution patterns on Figures 4a and 46. Contrary to Figure 4a, no strong 
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focusing is observed at the initial stages of evolution for the driving signal (2), and at both 
locations in Figure 4b, x=9.0 m, /?=0.3 m, and x=16.0 m, A=0.067 m, the waves are 
distributed essentially uniformly along the group. 

Evolution pattern for the detached groups in Figure 4c is similar qualitatively to that 
observed in Figure 4a. Here too, the wave energy is initially focused at x=9.0 m, h=03 m. 
At larger distances from the wavemaker and in more shallow water demodulation is 
obtained. Although the driving signal (3) does not require conservation of the node points 
as it is the case for the signal (1), the groups are initially sufficiently separated, so that no 
substantial interference between the neighboring groups can occur for the time and length 
scales employed in the present computations. 

I3' 

x=t .o m a 

12 15 18 12 15 18 

1 J ^_^__—-|x = 7.6m |           o 

I    0.8  - 
a 
f   0.6  . n\ A 
=    0.4  J 

UJ 
/|x=0.25m|   \       /                       \ 

0.2  . 

0 -i /   v   \ 
E   2.5 

UJ        1 

0.5 

—.     |x=7.6 m]|      _. 

(iWX\ 
//|x=0.25 ml   \\j/                       \\ 

1        w        \ 

Figure 6. The measured surface elevation (a and b) and the computed group envelopes 
(c and d) for the constant water depth h=0.6m, T=0.9s and the driving signal (3). 

These computational results suggest that it may be instructive to study wave group 
evolution in water of constant depth. The representative experimental and numerical 
results for the two extreme forcing amplitudes (aoko = 0.07 and aok0 = 0.21) for the deep 
(h=0.6 m) and shallow (A=0.012 m) water cases are given in Figures 5 and 6, 
respectively. The driving signal (3) is used in the results of Figure 5, while the signal (1) is 
employed in Figure 6. 

For the conditions of Figure 5, focusing (increase in the maximum wave amplitude 
within the group) is obtained for the high forcing amplitude both in the experiments 
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(Figure 5b) and in computations (Figure 5d). For the low amplitude of forcing, no 
significant variation of the maximum wave amplitude along the tank is obtained in Figures 
5a and 5c. 

In shallow water the spreading of the wave energy is obtained experimentally for the 
high amplitude of forcing in Figure 6b. The corresponding demodulation effect is 
observed in the numerical simulations presented in Figure 6d. At low amplitude of forcing, 
no significant effects are observed neither in experiments (Figure 6a), nor in computations 
(Figure 6c). 

A more detailed analysis of the evolution of nonlinear wave groups in water of a 
constant intermediate depth is presented in Shemer et al. (1998). The experimental results 
are compared in this study with the numerical solutions of the CSE. In an additional study, 
Kit et al. (1998), nonlinear wave group evolution in shallow water is investigated. The 
measurements of the temporal and spatial variation of the instantaneous surface elevation 
are supported by the numerical solutions of the Korteweg-de Vries equation. 

Concluding remarks 

The present study indeed confirms that wave groups propagating over a sloping 
beach undergo modulation and subsequent demodulation and their wave energy tends 
eventually to spread more uniformly over the group. In the case of the constant water 
depth, defocusing is obtained in shallow water, while in deeper water, the trend is 
opposite and wave energy focusing leading to increase of the maximum wave height 
above its initial value is observed. 

The current investigation reveals that shoaling wave groups having identical initial 
envelope shapes but different spectral contents may undergo completely different 
evolution processes. Specifically, groups having a bimodal spectrum, driving signal (1), 
retain their clear identity in the process of propagation, and their envelope periodically 
attains zero. For wave groups with the same shape and more complicated spectra, driving 
signal (2), the wave energy tends to become more uniformly distributed along the group, 
so that the clear distinction between the groups vanishes. 

The simplest possible nonlinear model, the cubic Schrodinger equation, which 
contains an additional term accounting for mild water depth variation and is thus capable 
of describing wave group shoaling, is selected here. The coefficient of the nonlinear term 
in this equation changes its sign in the course of wave group propagation toward the 
beach. 

The total body of experimental and numerical results accumulated in this study 
indicates that the cubic Schrodinger equation (4) constitutes a reasonable model for 
studies of shoaling of nonlinear gravity wave groups over a sloping beach. CSE appears to 
be able to capture successfully the global features of nonlinear wave group transformation 
for the whole range of the water depth variation employed here. It also reflects correctly 
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in general the effect of the initial maximum wave steepness kja0 on the group evolution 
pattern. The CSE thus can be considered as a robust, albeit crude model for description of 
the nonlinear wave group evolution and transformation in water of slowly varying depth. 
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