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Abstract 

Two recent approaches for computing wave evolution over varying topogra- 
phy are presented: the high order Boussinesq model of Gobbi and Kirby (1998) 
and the local polynomial approximation (LPA) method of Kennedy and Fen- 
ton (1997). Both analytical results and numerical solutions of Gobbi and Kirby 

(1998) model and two variants of the LPA method are presented and compared 
with exact solutions and laboratory measurements of waves propagating over sub- 
merged features. 

Introduction 

The increasing availability of high-speed computers has encouraged several 
researchers to work towards implementing deterministic nonlinear models and 
their numerical solutions for more accurate predictions of wave transformation 
in coastal areas. A great deal of effort has been made to extend the validity of 
0(n2) (ft ~ depth to length ratio) Boussinesq-type models to both deeper water 

(eg. Nwogu, 1993; Schaffer et al, 1995) and highly nonlinear conditions (Wei et 
al., 1995). Recently, noticing that existing Boussinesq models, which assume a 
second degree polynomial approximation for the velocity potential's vertical (z) 
dependency, have poor kinematics prediction in deep water, Gobbi et al. (1998) 
have derived a new Boussinesq-type model for a flat bed, which assumes that 
the velocity potential has a fourth degree polynomial dependency in z. The 
model's dependent variables are defined to give a (4,4) Fade linear dispersion 
relationship, and is fully nonlinear. Comparisons of several linear and nonlinear 
properties with exact solutions show great improvement of Gobbi et al. (1998) 
over Wei et al. (1995). A variable depth version of the model has been derived 
by Gobbi and Kirby (1998), and comparisons with laboratory experimental data 
show, again, very significant improvement over the model by Wei et al. (1995). 
We shall refer to these fourth order models as GKW98. 

'Simepar, Caixa Postal 360, Curitiba, PR 80001-970, Brazil. 
2Center for Applied Coastal Research, University of Delaware, Newark, DE. 19716 USA. 

631 



632 COASTAL ENGINEERING 1998 

Recently, several local polynomial approximation methods have been de- 
veloped (Kennedy and Fenton, 1997) which seek to provide local solutions to 
Laplace's equation in a weighted residual sense by assuming a local polyno- 
mial for the velocity potential at each local subdomain, where a subdomain is 
bounded by the bottom, the free surface, and vertical interfaces. The solution is 
subject to bottom and free surface constraints and continuity of the velocity and 
velocity potential at the subdomains' interfaces. With the problem completely 
specified for a given time, the coefficients of the polynomial are calculated. The 
kinematic and dynamic free surface boundary conditions are then used to ad- 
vance the solution in time, and provide new free surface constraints for the next 
time step. Of the several variants of LPA methods, in this paper we shall look 
at two cases: both with only one horizontal dimension and fully nonlinear, one 
with fourth degree (somewhat comparable to GKW98) and one with sixth degree 
polynomial vertical representation of the velocity potential. 

We briefly present both the GKW98 and LPA models, and then look at 
analytical properties of the linearized models and Stokes second harmonic am- 
plitudes. Finally, the models are compared with experimental data. 

Fully Nonlinear, 0(/J.*) Boussinesq Model 

This model, which was derived by Gobbi and Kirby (1998), consists of a set of 
coupled evolution equations which approximate the mass flux and momentum 
conservation in an arbitrary depth located at elevation z = —h(x,y), where 
(x,y) are the horizontal spatial coordinates. The dependent variables are the 
free surface displacement r\ and the weighted average of the eulerian velocity 
between two arbitrary elevations, za and zj, in the water column, u, with weight 
parameter /?. The choice of of these elevations and the weight parameter are 
related to the accuracy of the linear dispersion properties of the model. The 
nondimensionalized mass conservation equation is given by 

/in 
V<t>dz, (1) 

-h 

with 

M H ju + ii2   (Ah - ~^j (2VhF22 + VF2l) + (Bh2 - ~) VF2; 

[{M ~ f) (2V/iF42 + Vi?41 + 2VhF^ + Vi?43) +   f  ^ 

+   (Bh2 - ~j (VF42 + 3VftF45 + VF44) 

Ch3 - ?j\ (4VfcF46 + VF45) + (oh* - ^\ VF46 I, (2) 

and H = h + 5r). The pair of momentum conservation equations is given by 

u« = - V17 - &-v (|u|2) + r, (V, ut) + r2 (v, u), (3) 
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where 

U     = u + n2[(A-l)h(2VhF22 + VF2l) + (B-l)h2VF22] 

+ p,4 {(A -l)h (2VhF42 + VF41 + 2VhF44 + VF43) 

+ (B - 1) h2 (VF42 + 3V/»F45 + VF44) 

+ (C-l)h3(4VhF46 + VF4,) + (D~l)h4\/F46\ (4) 

T!     = M
2V [<^F21t + (2hSr, + S2

V
2) F22t] 

+ /V [<fy (F4U + F43() + (2h6r) + <$V) (F42( + F44t) 

+ (3h2Sri + 3/icSy + <5
3

T?
3
) F45( 

+ [AhHrj + 6A W + 4foSV + SAif) F45t] (5) 

r2   = - /i2SV {u • [(Ah - if) (VF21 + 2V/iF22) + (Bh2 - H2) VF22] 

+ l-(F2l + 2HF22)
2} 

- 1S8V {u • [(Ah - H) (VF41 + 2VAF42 + VF43 + 2V/i.F44) 

+ {Bh2 - H2) (VF42 + VF44 + 3V/iF4! 45j 

I rr4 \ r-7 r.      , 
46 +      (<7/i3 - H3) (VF45 + 4VfeF46) + (Dh4 - H4) VF, 

+      ^\(Ah-H) (VF21 + 2V/iF22) + (Bh2 - H2) VF42|
2 

+     i [(F21 + 2ffF22) (F41 + 2ffF42 

+      F43 + 2ffF44 + 3ff2F45 + 4ff3F46)]} (6) 

F2i(u)     =     GVh-u (7) 

F22(u)     =     ~GV-u (8) 

F41(fi)      =     -\Vh\2[(A-l)Vh-u + (B-A)hV-u] (9) 

F42(u)     EE     -]-V2h[(A-l)Vh-iL + (B-A)hV-u] (10) 

F43(u)     =     V/i • V (AhVh • u) + )-Vh • V (fl/i2V • u) (11) 

F44(u)     EE     ^V2 (AM • u) + iv2 (B/i2V • u) 

-     )-V2hVh • u - Vh • V (Vfc • u) (12) 

F45(u)     =     --V2hV -u--Vh- V(V-u)-iv2(Vft-u) (13) 
6                    3                            6 

F46(u)     EE     _lv2(V.fl). (14) 

where G = (1 + /i2|V/i|2)- .   The nondimensional parameters appearing are <5 
and jU, characterizing the importance of nonlinearity and dispersion, respectively. 
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For details on the derivation of the equations above, the values of A, B, C, D 
(functions of constants /3, za/h, and zb/h), and the numerical implementation, 
the reader is referred to Gobbi et al. (1998) and Gobbi and Kirby (1998). 

Local Polynomial Approximation Method 

The local polynomial approximation method is a finite depth, potential flow 
technique for computing wave evolution over varying topography. It was de- 
signed to provide high accuracy with a reasonable computational cost, and re- 
mains general enough that the order of approximation may be easily changed. 

The local polynomial approximation method used here is identical to that 
presented in Kennedy and Penton (1997). In contrast to the presentation there, 
where the numerical solution method was highlighted, it is presented here in 
as a dimensionless set of differential equations for the approximate solution of 
Laplace's equation coupled with potential flow evolution equations. The velocity 
potential <p is assumed to be represented in the vertical coordinate z, by a 
polynomial of arbitrary degree 

<Kx,*) = Y,M*)*i (15) 
3=0 

where the A/s are functions only of the horizontal coordinate. The level of 
approximation n controls the degree of polynomial used and hence the accuracy. 
Here, the levels of approximation n = 5 and n = 7 will be used which have, 
respectively, fourth and sixth degree polynomial approximations in the vertical 
direction z. The initially unknown functions Aj must be chosen to satisfy the 
bottom boundary condition at the bed location z = —h(x) 

<t>z + 4>xhx = 0 onz—-h (16) 

and also the free surface boundary condition 

4>{x,z = r,(x)) = ^'\x) (17) 

This leaves n — 2 constraints needed to completely specify the distribution of the 
Aj functions. These are found by imposing an approximation to the full field 
equation at collocation points in the vertical plane 

V2</> = 0 on z3 = -h + (rj + h)aj, j = 1,2,..., n - 2 (18) 

For all results presented here, collocation points, Zj, are taken to be the Gauss- 
Legendre points for N = n — 2, using the free surface and the bed as limits. 

With the addition of global boundary conditions on the lateral boundaries, 
a set of block-banded linear equations results which completely specifies the 
problem. Once the system of equations has been solved, the flow field may be 



COASTAL ENGINEERING 1998 635 

determined and the free surface elevation and velocity potential may be advanced 
to the next time step using the free surface evolution equations 

nt = -(P<fr*d*) (19) 

4>\s) = -v - \ 0* + <£) + ^vt (20) 

It is very simple to extend the system of equations to three dimensions, but 
because of computational considerations, this is not advisable. For one horizon- 
tal dimension, a good solution technique uses complex polynomials to represent 
the flow field as detailed in Kennedy and Fenton (1997), but this particular 
technique cannot be extended into an extra dimension. 

Analytical Properties 

For very small amplitude waves propagating over a level bottom, a progres- 
sive sinusoidal wave solution can be substituted into the linearized constant 
depth versions of both GKW98 and LPA to give an approximation to the ex- 
act linear dispersion relationship. Details can be found in Gobbi et al. (1998) 
for GKW98 dispersion, which results in a (4,4) Pade approximant to the exact 
relationship, and in Kennedy (1997) for the LPA formulations. Figure 1 shows 
the ratio to the exact solution of the linear phase speed calculated for GKW98, 
LPA n = 5, and LPA n — 1. It is clear that the GKW98 phase speed sits in 
between the two LPA results in terms of accuracy. Figures 2 and 3 show the 
vertical profile of the horizontal and vertical velocity amplitudes, respectively, 
normalized by their value at the free surface, for GKW98 and both LPA results. 
Notice the effect of the more powerful representation of the vertical dependence 
in LPA n = 7 over both GKW98 and LPA n = 5, which are quite comparable. 
Turning to a second order nonlinear property, figure 4 shows the ratio to the full 
theory solution of the amplitude of the second harmonic of a Stokes expansion 
of GKW98 and both LPA's. For this case, both LPA solutions give better re- 
sult than the GKW98 model. This is probably because the GKW98 model was 
derived for optimized performance in a linear sense, whereas the LPA method 
uses the full water column in the specification of the problem. 

Comparisons with Laboratory Measurements 

In this section we compare the computations from GKW98 and both LPA 
implementations presented earlier with experimental data of waves propagating 
over submerged sills. First we use data from Beji and Battjes (1993) and Luth 
et al. (1994) consisting of regular waves propagating over a structure resembling 
a sand bar. Then we use the data from Ohyama et al. (1994) where the sub- 
merged structure has much steeper slopes, resembling a submerged breakwater. 
These two experiments have become quite popular for tests of wave propagation 
models, and the reader is referred to the original papers for additional informa- 
tion. 
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Figure 1: Ratio to exact solution of phase speed. 

kh = n/2 

0.8 / 
0.6 

z/h / 
0.4 1 
0.2 1 

0 0.2        0.4       0.6       0.8 

kh = 3TC/2 

0        0.2       0.4      0.6      0.8        1 0.2       0.4      0.6      0.8        1 

Figure 2:  Horizontal velocity profile.   Exact (solid), GKW98 (dot), LPA n=5 
(dash-dot), LPA n=7 (dash). 
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Figure 3: Vertical velocity profile. Exact (solid), GKW98 (dot), LPA n=5 (dash- 
dot), LPA n=7 (dash). 
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Figure 4: Ratio to full problem solution of Stokes second harmonic amplitude. 
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Figure 5: Sketch of wave flume of Delft experiments. All dimensions in (m) 

The experiments performed by Beji and Battjes (1993) and Luth et al. (1994) 
have the same geometric characteristics, except for the length scale in Luth et 
al. (1994), which is twice as large as in Beji and Battjes (1993). In Luth et 
al. (1994) all gauge locations used in Beji and Battjes (1993) were repeated, 
and another run of measurements was performed with the gauges at different 
locations. Here, we re-scale all measurements to the scales used in Beji and 
Battjes (1993). The layout of the experimental set-up with the locations of the 
measurement stations and the geometry of the flume are illustrated in Figure 5. 

Three sets of data were collected using different incident wave conditions. 
We refer to these data sets as cases (a), (b), and (c). In case (b), wave breaking 
occurred and this case was disregarded. The incident wave amplitude and period 
were 0.01m, 2.02s, and 0.0205m, 1.01s, for cases (a) and (c) respectively. 

In all cases, the data from gauges at 2.0m or 4.0m were used to synchronize 
the data with the models. Figures 6, 7, and 8 show, respectively, comparisons of 
GKW98, LPA n — 7, and LPA n = 5, with the case (a) of the Delft experimental 
data at several gauge locations. For this case, all three models' performance are 
quite satisfactory, with GKW98 and LPA n — 1 showing excellent agreement, 
while LPA n = 5 shows larger discrepancies, due to its less accurate linear phase 
speed. Similarly, figures 9, 10, and 11 show comparisons with case (c). Notice 
that because the incident waves in this case are shorter, it is a more demanding 
case than case (a), especially behind the bar, where nonlinear superharmonics 
are released as free waves, and are much shorter than the incident wave. For 
this case, LPA n — 1 performs best, followed by the also very good agreement of 
GKW98, but LPA n = 5 has poor agreement behind the structure. This result 
is in agreement with the linear phase speed results shown in figure 1. 

We now compare the numerical results to the Ohyama experimental data. 
Summarizing the experimental setup, the wave flume is 65m long and 1.0m wide. 
The total depth of the flume is 1.6m. The location of the center of the bar was 
28.3m from the wavemaker. Figure 12 shows a sketch of the flume. Three tests 
with incident wave periods 1.34s, 2.01s, and 2.68s, (cases 2, 4, 6, respectively) 
and fixed amplitude equal to 0.025m will be used in the comparisons. No wave 
breaking occurred in any of the tests. The time series were synchronized with 
the computations at station 3.   Figures 12, 13, and 14 show the comparisons 
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Figure 6: Comparisons of free surface displacement with case (a) of Delft exper- 
imental data at several gauge locations. GKW98 (dash-dot), data (solid). 
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Figure 7: Comparisons of free surface displacement with case (a) of Delft exper- 
imental data at several gauge locations. LPA n=7 (dash-dot), data (solid). 
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Figure 8: Comparisons of free surface displacement with case (a) of Delft exper- 
imental data at several gauge locations. LPA n=5 (dash-dot), data (solid). 
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Figure 9: Comparisons of free surface displacement with case (c) of Delft exper- 
imental data at several gauge locations. GKW98 (dash-dot), data (solid). 
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Figure 10:  Comparisons of free surface displacement with case (c) of Delft ex- 
perimental data at several gauge locations. LPA n—7 (dash-dot), data (solid). 
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Figure 11: Comparisons of free surface displacement with case (c) of Delft ex- 
perimental data at several gauge locations. LPA n=5 (dash-dot), data (solid). 
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Figure 12: Sketch of wave flume of the Ohyama experiment. 
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Figure 13:   Comparisons of free surface displacement with case 2 of Ohyama 
experimental data. Computations (dash-dot), data (solid). 

for the three cases, and it is possible to see that GKW98 and LPA n = 5 are 
comparable for cases 2 and 4, while LPA n = 7 outperforms them for these cases. 
In case 6, GKW98 and LPA n = 7 are comparable, while LPA n = 5 shows 
poorer performance. It might seem surprising that GKW98 does not perform 
in Ohyama cases 2 and 4 as well as in the Delft cases (a) and (c), since the 
incident wave conditions are not that different. This is due to the steep bottom 
slopes in Ohyama's cases which violates the intrinsic mild-slope assumption of 
GKW98 (w -C «), which the fourth order polynomial for the potential's vertical 
dependence is not powerful enough to handle, for large enough fi. 

Conclusions 

Fully nonlinear local polynomial approximations and a 0(p4) Boussinesq 
model were compared both in terms of analytical properties and of agreement 
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Figure 14:   Comparisons of free surface displacement with case 4 of Ohyama 
experimental data. Computations (dash-dot), data (solid). 
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Figure 15:   Comparisons of free surface displacement with case 6 of Ohyama 
experimental data. Computations (dash-dot), data (solid). 
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with experimental data. In general, because of its more accurate dispersion, the 
Boussinesq model performed better than the LPA with the same level of polyno- 
mial accuracy (n = 5), while the sixth degree polynomial LPA (n = 7) proved to 
be more accurate than both. The Boussinesq model has the advantage of being 
potentially faster in terms of computational time, and its 3-D implementation 
is more natural than the LPA methods shown here, which uses complex formu- 
lation to solve Laplace's equation and therefore cannot be extended to 3-D in 
an efficient manner. However, it is much simpler to extend the LPA model to 
any level of accuracy desired. The authors are now working on improvements in 
nonlinear behavior of Boussinesq models, improvements on dispersion properties 
of LPA methods, and 3-D implementation of the models. 
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