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Abstract 

Local polynomial approximation models for water wave simulation are ex- 
amined with the aim of improving accuracy and efficiency. Several potential 
improvements are considered. The first is based on a linearisation of the solu- 
tion for Laplace's equation and is shown to have good theoretical characteristics. 

However, it is found to have a fatal instability to high wavenumber bottom dis- 
turbances. The second method uses empirical collocation adjustment to provide 
better agreement with exact solutions for steady waves. This method provides 

significant improvements in accuracy for a given level of approximation and is 
recommended for future use. 

Introduction 

For the computation of water wave evolution over varying topography, there 
have been two main areas of effort in recent years. One has focused on improve- 
ments to Boussinesq-type models, continually increasing the range of validity to 
encompass deeper and higher waves (Nwogu, 1993., Schaffer and Madsen, 1995, 
Wei et al., 1995, Gobbi et al., 1998). Despite increasing complexity, solution 
times remain reasonable enough to consider wave motion in two horizontal di- 
mensions. This remains a very active area of research. At the other extreme 
from Boussinesq equations are numerical solutions of Laplace's equation using 
boundary element methods (BEM, e.g. Dold and Peregrine, 1980, Grilli et al., 
1994). These offer unparalleled accuracy in any depth and can even compute 
overturning waves. However, despite significant advances (Wang et al, 1995), 
they are extremely computationally intensive; enough that large domains for 
one horizontal dimension can become problematic, and two dimensional compu- 
tations are extremely limited in scope. Although research continues in this area, 
boundary element models are considered to be a relatively mature field. 

Local polynomial approximation methods (LPA, Kennedy and Fenton, 1996, 
Kennedy and Fenton, 1997, Kennedy, 1997) were introduced as a way of bridging 
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this gap between highly accurate, computationally intensive models (BEM), and 
Boussinesq models of moderate accuracy and expense. The basis of these mod- 
els is a polynomial representation of arbitrary degree in the vertical coordinate 
combined with a weighted residual solution of the continuity equation for poten- 
tial flow. For lower levels of approximation, accuracy is comparable to high end 
Boussinesq equations, while higher levels of approximation can provide accuracy 
comparable to some implementations of boundary element models. Computa- 
tional expense lies in between BEM and Boussinesq schemes. A comparison of 
an advanced Boussinesq and LPA models is given in this volume (Gobbi et al., 
1998). 

This paper reports recent efforts to improve the accuracy and efficiency of 
LPA models. Two basic strategies are considered: one which makes further 
approximations which slightly degrade nonlinear properties, but potentially of- 
fers great computational savings, and a second method which improves linear 
and nonlinear accuracy for a given level of approximation with no increase in 
computational expense. 

Local Polynomial Approximation Model 

Local polyonomial approximation models all assume potential flow, and are 
essentially weighted residual solutions of Laplace's equation combined with po- 
tential flow evolution equations. The velocity potential is assumed to vary in 
the vertical coordinate, z, like a polynomial of some specified degree. This may 
be represented as 

n-l 

4>{x,y,z) = Y,Aj(x,y)z:' (1) 
3=0 

where Aj(x,y) is an initially unspecified function of the horizontal coordinates. 
The level of approximation, n, controls the degree of polynomial and, hence, the 
accuracy of the computation. To specify these functions, boundary conditions 
must be given at the free surface z = ij(x, y) and bed z = —h(x, y), and continu- 
ity must be imposed over the entire flow field. The bottom boundary condition 
is 

4>z + 4>xhx + 4>yhy = 0 0112 = -h(x, y) (2) 

The condition at the free surface specifies the velocity potential 

<t>(x,y, z = r/(x, y)) = <t>('\x, y) (3) 

where (j>^(x,y) is the known free surface velocity potential. For all methods 
considered here, these two equations will remain unchanged. In a more general 
sense, this is not entirely necessary, and Kennedy (1997) presents a method 
similar to Dommermuth and Yue (1987), which expands (3) about the still water 
level, with some loss of accuracy. However, in this paper attention instead will 
be paid to Laplace's equation, which imposes continuity throughout the flow 
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field. In its most general form, the LPA approximation to the field equation 
becomes 

Wj(x,y)(<t>xx + <j>yy + <j)zz)dz = 0,   j = l,...,ra-2 (4) 
-h 

where Wj(x, y) are weighting functions, which can take almost any form. Kennedy 
and Fenton (1996) used polynomial weighting functions, but here, as in Kennedy 
and Fenton (1997), weighting functions will be taken to be Dirac delta functions. 
This turns (4) into a set of collocation equations 

4>xx + 4>yy + <l>zz = 0 on 2 = ZJ(X, y),  j = 1,..., n - 2 (5) 

The set of collocation points in Kennedy and Fenton (1997) were given as 

z3 = -h + {-q + h)aj (6) 

where ay's were chosen so that Zj's were the Gauss-Legendre points for N — n—2, 
using the free surface and the bed as limits. This set was chosen because of 
continuity considerations, and will be considered as the standard against which 
the revised methods will be judged. 

With the addition of conditions on the lateral boundaries, equations (2-4) 
form a set of linear equations which may be solved to find the flow field. Once 
interior velocities are known, the system may be advanced in time using the 
evolution equations 

and 

=-(I>4+(/->»4 (7) 

4s) = -gv'l{4>l + ^ + €)+^m (8) 
In Kennedy and Fenton (1997), an equation different from (7) was used to 
update the free surface elevation. This in general did not analytically guarantee 
conservation of mass for approximate solutions, but because the Gauss-Legendre 
collocation points were used, overall conservation was guaranteed for levels of 
approximation n > 4. However, in this paper different collocation points will be 
used, and to guarantee overall continuity, (7) is employed. 

This system of equations defined by (1-8) may be solved in a variety of 
ways, for both one and two horizontal dimensions. However, for simplicity, 
and because of computational constraints, we will limit tests to one horizontal 
dimension. Here, a good method involves complex polynomials and is detailed 
in Kennedy and Fenton (1997). This will be the base method used here. 

In the previously referenced papers, these models have been shown to provide 
good accuracy with a reasonable computational cost for a variety of conditions. 
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However, two possible areas of improvement seem obvious. The first concerns 
the number of computational variables. According to (1), n variables define the 
flow field at each computational point. Each of these makes its way into the 
system of unknowns which must be solved at each time step. If the number of 
computational unknowns were reduced, computational speed would almost cer- 
tainly increase. This will form one avenue of exploration. The second concerns 
the accuracy of any given level of approximation. The weighting functions in (4) 
were not specified using a strict theoretical basis and indeed none will be used 
now. Instead, sets of points will be found for different levels of approximation 
that provide some sort of best fit to a theoretical special case, such as wave 
celerity over a level bed. For both avenues of improvement, results will then be 
tested using the experiments of Ohyama et al. (1995), which measured wave 
transformation over a submerged breakwater. 

Improved Speed: Linearised B-Splines 

The first effort at improvement will be directed towards increasing compu- 
tational speed. In the previous section, it was stated that one way to do this 
would be to reduce the number of computational unknowns that form the sys- 
tem of equations that must be solved at each time step. Unfortunately, despite 
significant effort, no such technique has been found for the general case of fully 
nonlinear wave motion in two horizontal dimensions. However, if one small 
additional approximation is made, a method exists which promises great im- 
provements in computational efficiency. The change that must be made is to 
the field equation, (6), which becomes 

ZJ = A(-l + a3) (9) 

where a/s are identical to those previously used. Linearly, computations will 
be identical but, because collocations are chosen with respect to the still wa- 
ter level and not the instantaneous free surface, nonlinear properties should be 
slightly worse. However, because collocation points are invariant with time, it 
is possible to use what we will call the linearised B-spline approximation to 
speed computations. This may only be used for one horizontal dimension, as it 
makes use of the complex polynomial solution method. A detailed discussion 
of the method (only used there for expansion techniques) is given in Kennedy 
(1997), but a brief description will be given here. Essentially, because equations 
(2,5) are homogeneous, it is possible to rewrite the basis functions used in the 
complex polynomial solution method so that (2,5) are satisfied and the number 
of equations to be solved is equal to the number of computational points (plus 
additional boundary conditions). As an additional bonus, the bandwith of the 
resulting matrix equation is reduced, further increasing speed. The new basis 
functions are analogous to B-splines, which may also be thought of as methods 
to eliminate homogeneous equations. It would be possible to rewite these basis 
functions even when (6) is used, but because the collocation points change with 
the free surface, they would need to be rederived at each time step, actually 
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slowing computations. However, with (9), collocation points remain constant 
with time and the revised basis functions would only need to be computed once, 
at the beginning of computations. 

Before testing the new technique, it is helpful to consider the change to 
the nonlinear properties caused by the approximation (9). Figure 1 shows the 
amplitude of the second harmonic of LPA Stokes-type steady waves compared 
to exact results. Two levels of approximation are shown: n = 5, which contains 
z4 terms in the velocity potential, and n = 7, which contains z6 terms. The 
original formulation for the level of approximation n = 5 has a second harmonic 
which remains quite accurate into water of depth kh = 27r, while the linearised 
basis functions show greater error at high wavenumbers. Still, error remains 
small up to a dimensionless wavenumber of kh — 5, which is quite good. Using 
the level of approximation n = 7, second harmonics for both the original and 
linearised versions are extremely accurate to wavenumbers of kh = 3ir. 
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Figure 1: Second harmonics for a second order steady wave compared to Stokes' 
solution 

A special case of subharmonics, second order setdowns under a steady wave 
were also calculated and provided a major surprise: setdowns using both the fully 
nonlinear and linearised basis functions were identical. Figure 2 shows setdown 
magnitudes relative to Stokes' solution plotted on a semi-logarithmic scale. For 
the level of approximation n = 5, results are very good until a dimensionless 
wavenumber of kh = 2.5, when error increases very quickly. For the higher 
level of approximation n = 7, error remains small until around kh = 4.   For 
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high wavenumbers, both levels of approximation can show order of magnitude 
errors in setdown. However, since setdown decays exponentially with increasing 
wavenumber, for the most part the error is merely a "different flavour of zero", 
and should make little difference to computations. For very high wavenumbers 
around kh = 6, the lower level of approximation does begin to show errors which 
may not be negligible in terms of absolute, rather than relative, error. 

Figure 2:  Second order setdown for a second order steady wave compared to 
Stokes' solution. Symbols identical to previous figure. 

These results show a small, but noticeable difference in nonlinear accuracy 
between the original and linearised basis functions. Computations using the 
level of approximation n = 7 and the linearised basis functions were then 
tested against the experimental results of Ohyama et al (1995). Figure 3 shows 
a schematic drawing of the experimental setup, where monochromatic waves 
propagated over a steep-sided submerged bar. All waves had an initial height 

H/h = 0.1, and cases 2,4, and 6 had periods TJg/h = 5.94, 8.91, 11.88 respec- 
tively 

It was here that the problems with the linearised B-spline approximation 
became apparent. For all cases tested, and with all spatial and temporal reso- 
lutions used, computations became unstable as waves passed from the crest of 
the shelf onto the back slope. The reason for this was not readily obvious, but 
became apparent after some additional analysis. The culprit was a nonlinear in- 
stability to short wavelength bottom disturbances. Consider a small amplitude 
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Figure 3: Setup for Experiments of Ohyama et al. (1995). All measurements in 
m. 

sinusoidal bottom disturbance in otherwise quiescent water. The water level is 
assumed to be at elevation r\ = 0.5h, similar to that under the crest of a very 
large wave. Although this is somewhat different from what happens when the 
wave crest passes over the sharp corner of the submerged bar, it provides an 
illuminating demonstration of model response to short wavelength disturbances 
in topography. 
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Figure 4 plots the structure of the resulting vertical velocity field, showing 
the exact solution using hyperbolic functions, the fully nonlinear LPA solution, 
and the LPA solution using linearised basis functions, both with the level of 
approximation n = 7. The wavenumbers shown straddle the Nyquist wavenum- 
ber used in computations. The fully nonlinear LPA solution closely resembles 
the exact decaying relation for both short wavenumbers tested, but results us- 
ing the linearised functions show wild oscillations and large amplitudes above 
the still water level. This is because the linearised functions have collocation 
points which extend only from the bed to the still water level. Above this, 
the linearised basis functions essentially extrapolate the interpolated solution 
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of Laplace's equation. In contrast, the fully nonlinear solution lias collocation 
points which move with the instantaneous water surface (Eq. (6)). This ensures 
that solutions of the field equation are interpolations rather than extrapolations, 
as with the linearised solution. Possible solutions to this dilemma would be to 
increase the range of collocation points using the linearised functions to above 
the still water level, but this has its own problems. Both linear and nonlinear 
performance would deteriorate for any given level of approximation, perhaps 
enough to cancel out any increase in efficiency. No completely satisfactory solu- 
tion has yet been found. 

This instability to bottom disturbances is also of concern for higher order 
Boussinesq-type approximations, which extrapolate solutions of Laplace's equa- 
tion using Taylor series. In fact, the higher order Boussinesq model of Gobbi 
et al. (1998) has also exhibited instabilities in computational tests with sharp 
corners (M. Gobbi, pers. commun.). Clearly, the extrapolation of a decaying 
function with a polynomial remains an area of difficulty. 

Improved Accuracy: Revised Collocation 

Although the efforts to improve efficiency in the previous section ultimately 
proved unworkable, results here were much more successful. The question was 
quite simple: for a given level of approximation, n, find the set of collocation 
points which best optimises certain analytic properties, and see if this translates 
to better performance for real computations. 

To begin with, the analytic property chosen for comparison was small am- 
plitude phase celerity, as it greatly influences accuracy in comparison with ex- 
periments such as Ohyama et al. (1995). The exact celerity was expanded in a 
Taylor series about the long wavelength limit kh = 0, and LPA celerities were 
made to match as many terms as possible. First of all, we will start with the low 
level of approximation, n = 3, although this level is of little practical use. One 
free collocation point is available for manipulation, and for any choice of colloca- 
tion points, the LPA dispersion relationship is accurate to 0(kh2). However, for 
the choice a\ = 1/V5, dispersion is accurate to 0(kh4). In fact, the resulting 
dispersion relationship is the [2,2] Pade approximant found in Nwogu (1993) 
and Wei et al. (1995). For the level of approximation n = 5, three collocation 
points were available, while the base level of accuracy was 0(kh4). With the 
choice of an = 0.1255280883, a2 = 0.5008959415, a3 = 0.8419853513, accuracy 
is increased to 0(khw). For the level of approximation n = 7, however, no opti- 
mised approximation was found. This was due to the lack of a general solution 
for dispersion; i.e. dispersion relationships could be found for any particular set 
of a/s, but not for the general set. Solutions using the Gauss-Legendre points 
were close to optimal, but the possibility for improvements remains. 

Figure 5 shows the original and improved dispersion relationships compared 
to the exact small amplitude solution. For the level n = 3, the resulting re- 
lationship is usable up to the nominal deep water limit of kh = ir, which is a 
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significant improvement. However, in contrast to the Gauss-Legendre relation- 
ship, phase speeds are greatly overpredicted for high wave numbers. For the 
level n = 5 errors in improved phase speed remain less than 1 percent until a 
dimensionless depth of approximately kh = 9. However, this level is still some- 
what less accurate than the level of approximation n = 7, which has excellent 
accuracy. Clearly, dispersion relationships can be much improved. 
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Figure 5: LPA celerities using Gauss-Legendre (GLE) and new collocation 
points. Squares, GLE n = 3; stars, new collocation n = 3; +, GLE n = 5; 
triangles new collocation n = 5; x GLE n = 7 

Nonlinear performance is improved as well. Figure 6 shows amplitudes of 
second harmonics for a steady wave relative to Stokes' solution. For all levels 
of approximation, results are much asymptotically much improved, although at 
higher wave numbers, the revised collocation points tend to show greater error. 
Subharmonics show a similar trend. Figure 7 shows a significant improvement 
in the accuracy of the steady wave setdown for the levels of approximation 
n = 3 and n = 5. Notably, for the level of approximation n = 5 using the new 
collocation points, absolute errors remains small over the entire range considered. 
Accuracy for the level of approximation n = 7, however, remains significantly 
better. 

We will now consider computational results over the topography of Ohyama 
et al. (1995) which, as mentioned previously, is shown in Figure 3. Fortunately, 
computations with the revised collocation points showed none of the instabilities 



598 COASTAL ENGINEERING 1998 

D ft 
1 1  

ft      a V 

ft 
D 

V 

ft V _ 
ft              D 

V 
*                                                                  V 

+ St w ^&——-—^D '——^?"" ^——~*—x- ^—- X 

D                                                    + 

-              °DD                                                                  + + + + 

X             +             X 
-t- 

a    Gauss-Legend re points, n=3 

-    ft    New Collocation points, n=3 - 
+    Gauss-Legendre points, n=5 

v    New Collocation points, n=5 

x    Gauss-Legendre,points, p=7 ( , , , 

Figure 6: Second harmonics for a second order steady wave compared to Stokes' 
solution 

of the previous section. Full experimental results are available for comparison 
at both Stations 3 and 5. However, almost any nonlinear model will give good 
results at Station 3, while good agreement at Station 5 is much more difficult. 
Therefore, instead of showing results at Station 3, we will merely say that all 
comparisons were uniformly excellent, no matter what levels of approximation 
were used. Figure 8 shows results at Station 5 for the level of approximation 
n — 5, for both the original and revised collocation points. For case 2, the 
shortest wave, computations using the original collocation show some error, 
while this error is greatly reduced with the revised collocation. For case 4, 
computations show a similar trend, although the reduction in error is not as 
large. For case 6, agreement using the improved collocation is quite good, while 
results using the original formulation show higher harmonics which are visibly 
too large. 

Figure 9 shows results for the level of approximation n = 7. For all cases 
considered, results are excellent, with experimental and computational results 
nearly identical. Once again, the higher level of approximation gives results 
somewhat better than the improved lower level. 

Discussion and Conclusions 

Analytic results and computational tests using the revised collocation points 
show significant improvements in accuracy for all levels of approximation. Since 
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kh 

Figure 7:   Setdown under a second order wave compared to Stokes' solution. 
Symbols identical to previous figure. 

a change in collocation points provides no increase in computational expense, 
there seems to be no reason why this new feature should not be adopted as a 
matter of routine. 

It should be possible to increase nonlinear accuracy further by changing the 
collocation technique itself. If the definition for collocation points (6) is changed 
to 

ZJ = h(aj- 1) + 13,7] (10) 

where a/s are unchanged, linear dispersion will be the same, but an additional 
parameter will be available to tune second or third order nonlinear character- 
istics. Although no comprehensive effort has yet been made to optimise /?* 
parameters, ad hoc tests show that significant improvement in nonlinear param- 
eters is indeed possible. Figure 10 shows second harmonics computed using (10) 
using the set # = 0.0319, /J2 = 1.4018, j33 = 1.4297. Although this set is not 
fully optimised, significant improvement can be seen. However, manipulation of 
this sort introduces a dependency on the definition of the still water level which 
was not present in the previous fully nonlinear LPA solutions. Slight changes in 
the still water level from what was assumed could lead to significant changes in 
the model properties if (10) were used, negating any advantage that might be 
gained. Still, this idea may deserve further consideration. 

Another possible area of investigation lies in what quantities should be op- 
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time series at Station 5 for 

timised for best results. Previously, linear dispersion was the only analytic 
quantity used, but the experience with the linearised B-splines suggests that it 
might be wise to include response to bottom disturbances in the optimisation 
criteria. Yet another candidate is linear shoaling, although this would involve a 
significantly more complicated analyis. 

Practical performance of the linearised B-spline approximation was quite dis- 
appointing, and the solution does not appear to be simple. The basic problem of 
extrapolating a decaying function is fundamental, and requires careful thought. 
Several possible solutions were proposed in an earlier section, but all will require 
testing. 

So in conclusion, it can be stated that revised collocation offers significant 
improvements in accuracy for all levels of approximation considered and should 
be used on a regular basis. However, the linearised B-spline approximation 
exhibits a strong nonlinear instability to short wavenumber bottom disturbances, 
and presently remains unworkable. 
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