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Abstract 

Wave induced pore pressure and instantaneous liquefaction are known to occur 
and cause loss of bearing capacity of sand. Wave bottom pressure p forms the boundary 
condition for the wave induced pore pressure. It is believed that not only variation of the 
pressure itself, but also the variations of its first and second order spatial derivative play 
an important role in the formation of liquefaction. An experimental and a preliminary 
numerical study on unidirectional water wave propagation over a bar are presented. 
Emphasis is placed upon investigation on the wave induced pressure gradient at the 
seabed. Single sinusoidal, two-component sinusoidal and five-component sinusoidal 
waves are investigated in a wave flume of constant water density p. Only the results for 
single sinusoidal waves are reported herein. The variation of the dimensionless pressure 
gradient Cp = (dp I' 3c) I'{pg) was within ±0.4 for all experiments with a tendency of 

larger values for downslope gradients (negative values) than for upslope. (g is the 
acceleration gravity). The numerical results, based on the two-dimensional Green-Naghdi 
theory for fluid sheets - level II, compare well for sea bed pressures and gradients, but the 
sea surface does not fit the observations so well. 

The Numerical Model 

Introduction 

A new generation water wave model concept has developed during the last two 
decades. Its fundamental principle is known as the Green-Naghdi theory of fluid sheets, 
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hereafter referred to simply as GN theory (Green, Laws and Naghdi, 1974). The foundation 
for its application in water waves is discussed in the original work of Green and Naghdi 
(1986,1987). 

Webster and Kim (1990) use this theory to investigate the dispersion of large 
amplitude gravity waves in deep water. A level III GN-theory (a nonlinear 2D fluid sheet 
model) is used to simulate a train of steep regular waves and a random wave record 
corresponding to steep seas measured during hurricane Camille. An analysis of the 
simulated random wave record shows that linear dispersion, Airy theory with Wheeler 
stretching, often assumed for referring a random wave train from one point in space to 
another, does not result in conservative estimates of two important quantities used in 
design: the crest elevation and particle velocity under the crest. In regular waves the model 
reproduce (and confirmed by laboratory experiments) the tendency that the leading edge of 
a packet of relatively steep waves always appears to break before very many waves are 
created. 

Demirbilek and Webster (1992a, 1992b) derived a version of the GN-theory 
applicable for shallow water to moderate water depths and where the water depth may vary 
rapidly. The model named GNWAVE3 is as a nonlinear 2D numerical wave flume that 
simulates the wave transformation in shallow water in a finite difference scheme. Areas of 
applications may be wave transformation over submerged obstacles, reflections of waves, 
time history of bottom-mounted pressure gage measurements for estimation of surface wave 
conditions in coastal design projects. The theory is particularly suited for the collision of 
waves with natural and man-made structures, and their impact on preventive and hydraulic 
structures. The model is intended to be implemented in the Coastal Modeling System 
(CMS) provided by the Waterways Experiment Station, U.S. Army Corps of Engineers, 
Vicksburg, USA. 

The purpose of using GNWAVE3 in this project is to study the feasibility of its 
application on the computation of wave motion over a bar. Later, it would be of interest to 
compare the performance of this model to results obtained with numerical wave flumes 
based on more conventional wave models (e.g. the Boussinesq formulation) and with more 
data from field and/or laboratory experiments. 

Overview of theory 

This overview follows the description of the model development given in 
Demirbilek and Webster (1992a). The GN approach to water wave theory is fundamentally 
different from the perturbation methods used in classical wave theory. In contrast to the 
Stokes and Boussinesq theories, the equations of motion in the GN theory are derived by 
enforcing exact kinematic and dynamic boundary conditions on the free surface and on the 
bottom, and by enforcing conservation of mass, but approximating the conservation of 
momentum. In short, the treatment of the field equation and nonlinear boundary conditions 
by perturbation methods and GN theory are the antithesis of one another. The essential clue 
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of GN wave theory is that the vertical dependence of the kinematics of the fluid flow is 
restricted and prescribed a-priori. That is, a set of shape-functions (like the efe in deep water 
Airy theory) that serve as a basis for the vertical dependence is introduced. In this way the 
method achieves a simplification by reducing the computational domain from three 
dimensions to two (or from two dimensions to one in the case of 2D flows). The theory also 
yields governing equations for the flow, which are solved numerically in a more efficient 
manner than those from a conventional finite-difference, finite-element or similar schemes. 

In the following, the theoretical development behind GNWAVE3 is outlined. 
Although GNWAVE3 is a model for 2D inviscid flow, the development of GN theory in 
general is not at all limited to such fluids. The governing equations are the GN level II 
shallow water equations originally constructed by Shields (1986) and reported by Shields 
and Webster (1988). The coordinate system Oxyz, with the Oz axis oriented vertically up 
and the Oxy plane horizontal and corresponding to the undisturbed free surface. We assume 
that the fluid velocity v(x,y,z;t) = (u, 0, w) can be approximated as 

2 

v(x,z;t) = ^W„(x;t)y/„(z) (1) 
11-0 

where 

W„  = (u„,0,wj;  n = 0,1,2 (2) 

are vector coefficients associated with the shape-functions y„(z). The vector coefficients 
are unknown spacial- and time-dependent functions to be determined as a part of the 
solution. In the general GN-theory the number of shape-functions is not fixed to three. The 
theory put restrictions on the choice of shape-functions to those that possess the following 
property: 

dz 
J^a?  yr ,     (n < m) (3) 

a? are some constants. There are many function sets that satisfy (3). For instance, Webster 
and Kim (1990) use \y„(z) = z" e" , n = 0,1,2 as their set of shape-functions for deep- 
water waves. In GNWAVE3 polynomial functions y„(z) = z" form the shape-function 
set. The linear function \|/, = z was selected since it coincides with the z dependence found 
in linear shallow water wave theory. 

The kinematic assumption (1) is inserted into the equations for conservation of 
mass, conservation of momentum (Euler equations), and the kinematic boundary conditions 
on the free surface z = fi(x; t) and at the bottom z = a(x,t). These equations are all satisfied 
identically by this method. When (1) is substituted into the momentum equation and the 
resulting equation is required to be satisfied everywhere in the fluid domain, many more 
equations than the required number would be obtained. To overcome this difficulty, the 
shape-functions i|/m are used as weighting functions to develop the required number of 
equations to be solved. Euler's equations are multiplied by each \|/„ (z) and integrated from 
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the sea bottom to the free surface. The weighted momentum equations express the 
conservation of momentum in some integral sense and consequently the conservation of 
momentum is satisfied only approximately. The determination of the evolution equations in 
terms of derivatives of the primary variables requires a prodigious amount of algebraic 
manipulation. For theory of level I or of level II it is not too difficult to obtain this by hand, 
however, for higher level of the theory mathematical symbolic processors should be used. 

In GNWAVE3 the velocity profile is modeled as 

u(x,z;t) = uo(x;t) + ui(x;t)z + u2(x;t)z2 (4) 

w(x, z;t) = wo(x;t) + wi(x;t)z + w-i(x;t)z2 (5) 

Fulfillment of the continuity equation implies that U2(x;t) = 0, and consequently the 
horizontal velocity profile is restricted to linear variation with depth. 

It is now possible to eliminate the vertical vector coefficients as well as the integrated 
pressure coefficients. The final sets of governing equations involving the three unknown 
functions f!(x; t), u„ (x; t), ui (x; t) (free surface elevation and the two remaining coefficients 
of the horizontal velocity respectively) are rather difficult to derive without the help of 
mathematical symbolic software. 

Although the equations may seem large and complicated they may be integrated 
with little difficulty. Together they form a system of three coupled, partial differential 
equations that are of first order in time and of third order in space and the highest order of 
mixed derivatives are of first order in time and second order in space. Thus the system of 
equations can be summarized as 

dx       dx 
A^ + B^- + C-^ = g;       ^(MO.K/. (6) 

The matrices A, B, C and the vector gate functions of x and P, uo, ui and their 
derivatives. With prescribed boundary conditions at both ends of the domain the equations 
can be solved through a numerical technique. The domain of x over which a solution to the 
equations is desired is assumed to be a finite difference scheme of uniformly spaced grids in 
the x-direction spaced a distance Ax apart. Time is assumed to be discretised with intervals 

A^. The spatial distribution of £, is first found by a central difference technique combined 
with a forward backward substitution. The updated values for £, is obtained through a two 
step forward explicit scheme. 
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The Pressure Relation 

Taking the vector dot product between the vectored equations of motion and the 
vertical unity vector e} and integrating from the sea bed to the free surface, we obtain an 
explicit expression for the bottom pressure (^ is the x-direction unity vector). 

* (7) 

Assuming the surface pressure pp equal to zero and denoting the bottom pressure pa=p 
this results in: 

Within the limits of level II theory and uneven bottom this expression can be rewritten in 
terms of the variables u0 and w, and their derivatives with respect to time and horizontal 
variation and/? in addition to the known bottom variation a(x). The resulting equation is: 

where 

+p~(a-p)(u0+aul)(2u0+(a0+p)ul)/2   -    p^-(-a +P)-^-(ua +/&/,) 
ox ox ox 

+ fa-pf^.(3u0 + (a + 2p)ul)/6   -    fa -p)\a + 0)^^ 12 

+ P^{a-p){{3a-p)ua+a{a+p)u{)^l2   -    fa-pf(a + pf^j/8 

+ fa-pf(4(2a + p)u0+3{a+pfUl)^/24} 

P„llt=--^{°l-P)P>   P^,=-{a-fifpl2,   p„f=-a—(a- P)p and 

Pu,x=-(cc-p?(2a+p)p/6. 
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Initial Conditions 

For this shallow water study it is assumed that the time history of the waves is 
known at x = 0. The waves are input not only as local wave height history [3(0,0, but also 
as a history of the corresponding values of the other variables in this Level II theory 
(M0(0,0 and «j(0,/)). These variables are obtained from the solution of steady waves on a 
flow (linearized for small wave amplitude and flow speed = - celerity of the waves). These 
linear solutions for waves propagating with a celerity c are: 

P(0, t) - P0 cos(fa: - ©0 = p0 cos(£(x - ct)) (10) 

"o(0,0 = A, 
12g(20 + 7(fa/s)

2) 

c(240 + l04(kdsf +3(kds)
4) 

COS(ft)/) (11) 

Hj (0,0= A 
\20g(kdsf 

cds(240 + W4(kdsf +3(kds)) 
cos(a>t) (12) 

24gds{(kdsf +10) 

240 + 104(fo/s)
2+3(fe^)4 (13) 

where ds is the still water depth at the wave generator and g is the acceleration of gravity. 
Thus, u(0,z,t) = uo(0,t) + u}(0,t) z is the horizontal particle velocity at the wave paddle. 
Here z is measured positive upwards from the seabed. Figure 1 compares the distribution to 
that obtained from Airy wave theory, in the case of a T = 2.3 s wave period and a 77=0.2 m 
high wave in water depth of 0.6 m and of a 9.65 s wave of 3.0 m height in 35 m waterdepth. 

°l<(m/s)       ' ,s ° °i(m/s) 

a) H= 0.2 m, T= 2.3 s, ds = 0.6 m b) H= 3.0 m, T= 9.65 s, ds = 35 m. 
Figure 1. Wavemaker boundary conditions (horizontal particle velocity) in GNWAVE3 
compared to Airy linear wave theory. 

The boundary condition at the other end of the wave flume is modeled either as fully 
reflective or fully open. 
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GNWAVE3 Performance Example 

A simple test run of GNWAVE3 shows its capability of time-simulation of waves. 
This test run is performed with wave-data from one of the experimental runs, but with 
constant water depth equal to 0.70 m. Other inputs to the model is the same as for the 
reference experiment bpl36150 described later. A time-series recording at x=5 meters is 
shown in Figure 2 and a snapshot of the surface elevation after 39.95 seconds is shown in 
Figure 3. The time function in Figure 2 has been analyzed with respect to zero-upcrossings 
and also a peak-to-peak analysis to establish two sequences of wave periods. Similarly the 
function in Figure 3 has been analyzed with respect to zero-upcrossings, and the sequence 
of identified wave-lengths was found. The results are seen in Figure 4 together with the 
average values. In Table 1 the derived wave parameters are compared to values obtained by 
Airy wave theory and by an analytical nonlinear model known as the Fourier-series model, 
both available in (ACES, 1992). The Fourier-series model requires knowledge of the 
vertically integrated flow in the flume. It was set equal to zero in this example. 

GNWAVE3, which is a numerical model based on the first principles of 
conservation of momentum and continuity of mass demonstrates stability and accuracy that 
of sufficient quality for this example test. E.g. the deviations between GNWAVE3 results 
and Airy theory are less 0.5 % both in wavelength and celerity. 

! 
ID 

1.00 10.00 20.00 30.00 
time [8] 

Figure 2. Time-series of the surface elevation at x = 5 meters. 

10.00 20.00 30.00 
length [m] 

Figure 3. Snapshot of the surface at time 39.95 sec. 
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Figure 4. Sequences of wavelengths and wave periods 

40.0 

Table 1. Wave parameters computed from three different wave models 

Parameter GNWAVE3 AIRY THEORY FOURIER-SERIES 
(input) protype values protype values protype values 
Froude scaling (M=l:50) (M=l:50) (M=l:50) 
H (3.00 m) 
T (9.645 s) 
d (35.0 m) 

2.90 m (num. res.) 
9.638 s (num. res.) 
35.0 m (input) 
133.9 m (num. res.) 

3.00 m (input) 
9.645 s (input) 
35.0 m (input) 
134.5 m (num. res.) 

3.00 m (input) 
9.645 s (input) 
35.0 m (input) 
135.0 m (num. res.) 

13.89 m/s (num.res.)      13.95 m/s (num. res.)       13.98 m/s (num. res.) 

Laboratory Experiments 

Setup 

The experimental setup is shown in Figure 5. The experiments were carried out in 
a wave flume with a trapezoidal bar. The flume is 40 m long, 5m wide. Around the bar 
the water depth was 0.70 m, on the bar plateau the depth was 0.25 m. Free surface waves 
were measured by parallel-wire resistance gauges at three stations. Two pressure sensors 
of type Kistler 4043 were installed in the sea bed near the top break of the slope at a 
location were waves were expected to break. The numerical model was gauged at the 
same five locations, see Table 2 and Figure 5. Gauge 1 measures surface elevation at the 
beginning of the slope, Gauge 2 measures the surface elevation near the top break of the 
slope, Gauge 3 measures the surface elevation on the bar plateau. Gauge 4 and Gauge 5 
measures bottom pressures at Gauge 2, from which the bottom pressure gradient can be 
estimated by computing the differences. All the gauges were leveled to zero before each 
run, thus only the dynamical part of the processes were recorded. The accuracy of the 
gauges is indicated in Table 2. However some zero-drift was detected during the analysis 
of data, thus the mean levels of the processes have been somewhat adjusted before the 
final presentation. 
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30 
30.8 

20 
length (m) 

Figure 5. Experimental set up. Measures in meters. 

40 

Results 

Table 2. Gauge locations and accuracy 

Gauge process x(m) z(m) accuracy 
1 water level, r|, 13.42  (*,) 0.000 +2mm 
2 water level, r|2 25.25  (x2) 0.000 +2mm 
3 water level, T|3 26.82  (JC3) 0.000 +2mm 
4 pressure, p4 25.30  04) -0.265 ±50Pa 
5 pressure, ps 25.20  (x5) -0.268 ±50Pa 

The experiments included one-component, two-component and five-component 
sinusoidal waves. The results shown below are for one-component waves only. Preliminary 
inspection of the other runs reveals similar pressure gradients . Results for both breaking 
and nonbreaking waves are included. Table 3 summarizes the results in which; 
• Hx is an estimate for the wave height at Gauge 1; = (r|, max - T|, min). 
• T is an estimate for the wave period = average time between peeks over about a 

20 s interval. 
• H2 is an estimate for the wave height at Gauge 2; = (r]2 raax - r\2 miI1). 
• H0 is the deep water wave height given by the Airy theory shoaling coefficient 

(computed from H,, Tand dv dx - the still water depth at Gauge 1). 
• X0 is the deep water wave length; = gT2I In. 
• Xs is the wave length in the constant depth part of the flume in front of the slope 

determined by the Airy wave theory: Xs=2it/ks where kg is given by: co2 = gks tanhksds 

and co = 2K IT; ds - the water depth at start of the slope). 
• Cp is the dimensionless dynamic pressure gradient defined as: 

C„ 
pg 3c 

1  A ~Ps 
Pg x4-x5 

(14) 

Column of positive index refers to positive values, column of negative index refers to 
negative values. 
H2ld2'is a breaking wave index (rule of thumb: waves break for approx. 0.78). 
(d2 = depth at Gauge 2). 
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• ^ is a local Irribarren number defined as £ =   XgO/ ^H21A0. 

• Ir is the Irribarren number based on deep water wave height, i.e. Ir =   tg<? / ^///0 / /t0 

The three latter parameters are used as dimensionless variables for graphical 
presentation. They appear to be powerful parameters to determine for which wave 
conditions large pressure gradients are favorable. Figure 6 shows the variability of Cp with 
respect to these dimension-less numbers. It is seen that the values of Cp are all within ±0.4 
and that the largest values occur for the steepest waves just about breaking. The Irribarren 
number is often used for breaker type classification (Battjes, 1974), as listed below in Table 
3. According to this table all runs should have resulted in spilling breakers. That was not 
the case. In Table 4 is listed the observed type of breakers. When these observations are 
held together with the results in Table 3, we see that the plunging breakers are associated 
with the largest values of Cp. |Cp |<0.4 is believed not sufficient to cause liquefaction in a 
saturated seabed. If the seabed contains a fraction of gases these levels may be sufficient. 
(Moshagen, 1997). 

Table 3 Summary of the wave conditions and the main derivations 

reference Hf [cm] T[s] H2 [cm] /folcm] Xo[cm] a-Slcm] Cp+[-] Cp- [-] H2ld2 [- 

] 
5H in-] 

bp100100 13.8 1.07 13.1 14.2 179 176 0.22 0.23 0.49 0.123 0.118 
bp100120 16.6 1.07 17.8 17.1 179 176 0.25 0.27 0.67 0.106 0.108 
bp100121 17.1 1.07 18.1 17.6 179 176 0.27 0.26 0.68 0.105 0.106 
bp100130 19.2 1.07 19.5 19.8 179 176 0.23 0.27 0.74 0.101 0.100 
bp100140 20.0 1.07 19.8 20.6 179 176 0.24 0.29 0.75 0.100 0.098 
bp100150 18.2 1.07 19.1 18.8 179 176 0.23 0.29 0.72 0.102 0.103 
bp116150 22.3 1.18 16.2 23.7 217 210 0.22 0.20 0.61 0.122 0.101 
bp126150 19.1 1.25 22.1 20.3 244 232 0.25 0.35 0.83 0.111 0.116 
bp136150 18.1 1.36 22.0 19.5 289 268 0.24 0.36 0.83 0.121 0.128 
bp145150 18.1 1.45 22.0 19.7 328 296 0.24 0.36 0.83 0.129 0.136 
bp154150 15.8 1.55 22.3 17.3 375 326 0.33 0.37 0.84 0.137 0.155 
bp160150 15.9 1.56 21.5 17.4 380 330 0.27 0.31 0.81 0.140 0.156 
bp165150 15.2 1.65 23.0 16.6 425 358 0.23 0.37 0.87 0.143 0.169 
bp200200 17.2 2.13 22.6 18.3 708 500 0.22 0.33 0.85 0.187 0.207 
bp300100 6.7 3.15 8.4 6.4 1548 786 0.13 0.12 0.32 0.452 0.518 

Table 4 Breaker type index 

Breaker type Irribarren number 
Spilling 
Plunging 
Surging, collapsing 

0</r<0.5 
0.5</r<3.3 
3.3 < Ir 
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Table 5 Observed breaker type and location of regular waves. 

reference   remarks  
bp100100  No breaking waves on the slope. The wave broke approx. 3.5 m past Gauge 3. 
bp100120 Spilling/Plunging breaker occurred approx. 0.8 m past Gauge 2. 
bp100121   Spilling/Plunging breaker occurred approx. 0.8 m past Gauge 2. 
bp100130 Spilling breaker occurred approx. 0.8 m in front of Gauge 2. 
bp100140 Spilling breaker occurred approx. 1.5 m in front of Gauge 2, 
bp100150 Spilling breaker occurred approx. 4.0 m in front of Gauge 2. 
bp116150  Spilling/Plunging breaker approx. 2.0 m in front of Gauge 2. 
bp126150  Plunging breaker approx. at Gauge 2. 
bp136150  Plunging breaker approx. at Gauge 2. 
bp145150  Plunging breaker approx. 0.8 m behind Gauge 2. 
bp154150  Plunging breaker approx. 1.2 m behind Gauge 2. 
bp160150  Plunging breaker approx. midway between Gauge 2 and Gauge 3. 
bp165150  Plunging breaker approx. midway between Gauge 2 and Gauge 3. 
bp200200 Plunging breaker approx. at Gauge 2. 
bp300100  No breaking waves.  

C„ 
0.4 - 
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-QCP+J 

0 8 
*   DTP 

0.3 . 

0.2 . 
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n I            I            I            I  I  —H          I —t 'I                            '         I 
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Figure 6 Variation of the dynamic pressure gradient, Cp. 
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Comparisons - GNWAVE3 and Experimental Results 

Raw time-series plots of Tlj,ri2,r|3,p4,/?5 
an^ Cp are available for all runs in a 

separate report (Arntsen, 1996). In this paper only one run will be presented. The output of 
the model was sampled at flume positions close to those in the physical model. However, 
since the model operates at discrete time and spacial steps a slight difference in locations are 
present. The output of the model are "snapshots" at prescribed times, and/or timeseries at 
prescribed positions. In this run, 5 sets of timeseries were recorded at the gauges 1-5 plus a 
snapshot at time 30 seconds after switching the model on. The model was set to run for 40 
seconds, but collapsed due to "wave breaking" after 30.1 seconds. The spatial discretization 
was dx = 0.0462 m and the time discretization was dt = 0.0227 s. A snapshot of the surface 
elevation is shown in Figure 7, while a timeseries of the surface elevation at Gauge 2 is 
shown in Figure 8. Figure 9 is an intercomparison between observations and results from 
the numerical model for the run with reference bp!36150. Although the fit of surface 
elevations are not so well in shape and phase, the model seem to predict the bed pressure 
fluctuations excellently. Also the amplitude of the waves before breaking is in good 
agreement. Breaking is identified by the "noisy" results close to the downslope break-point 
in Figure 7. It is believed that the model would perform better if that slope has been 
modeled less steep. Some of the deviations in amplitude are definitively caused by that the 
model has not run sufficiently long time to establish a stable solution. Cf. the initial 
disturbances in Figure 8. All considered, the GNWAVE3 seems to be a fairly good tool for 
the modeling of bed-pressure fluctuations in non-breaking shallow water waves. 

20 
Length [m] (model) 

Figure 7 Snapshot of surface elevation (GNWAVE3). 

[m] 

0.20 

0.10 

0.00 

0.10 

0.20 

dx = 0.0462 m 
dt= 0.0227 s 

bp136150 

0.00 10.00 20.00 
time [s] (model) 

30.00 40.0 

Figure 8 Timeseries of surface elevation at Gauge 2 (GNWAVE3) 
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Figure 9   Intercomparisons between measured and modeled 
(GNWAVE3) wave dynamics over a trapezoidal bar. 
Prototype scale (M=l:50). #=9.1 m, T=9.6 s, ds = 35 m. 
The timeseries are synchronized at Gauge 2 measurements. 
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Conclusions 

GNWAVE3 seems to be a good tool for modeling bottom-pressure fluctuations in 
non-breaking shallow water waves. The observed levels of pressure gradients are believed 
not sufficient to cause liquefaction in a saturated seabed. However, if the seabed contains 
fraction of gases, these levels may be sufficient. 
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