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ABSTRACT 

The study aims at investigating the non-linear triad interaction process affecting shoaling 
surface gravity wave fields in shallow water areas. Attention is specifically paid to 
analyse the effects of these second-order non-linearities on the directional distribution of 
incident waves. A stochastic approach was chosen to model the triad interaction process. 
Three source terms have been implemented in the spectral wave model TOMAWAC 
developed at the Laboratoire National d'Hydraulique (LNH). The model results are 
compared to the laboratory data of Nwogu (1994). 

1.  INTRODUCTION: 
This work focusses to the study of the non-linear interactions between triplets of waves 
which occur in the nearshore zone. These non-linearities, of lower order than the four 
wave interactions, are usually considered as the main exchange mechanism for wave 
energy of an irregular wave train towards sub- (long waves) and super-harmonics (bound 
higher order waves) (e.g. Freilich and Guza, 1984). The strength of these near-resonant 
interactions is governed by the phase mismatch between the bound and free 
wavenumbers. As for decreasing water depth the waves tend to become non-dispersive, 
the phenomenon is enhanced towards the shore. The effect of the transfer of energy 
associated with near-resonant wave interactions is not only distortions of the frequency 
spectrum, but also modifications of the directional spreading of energy. Elgar et al. (1993) 
observed that directionally bi-modal wave spectra can give rise to a new directional peak. 
This implies that both collinear and non-collinear triad interactions are important. 
Boussinesq equations have been extensively used to establish evolution equations for the 
amplitudes and phases of unidirectional waves propagating over a mildly sloping bottom. 
The models (e.g. Freilich and Guza (1984), Madsen and Sorensen (1993)) are able to 
correctly reproduce the generation of harmonics. The quality of the results incited us to 
extend the deterministic model of Madsen and Sorensen (1993) to bidimensional 
situations. The model is presented in part 2. 
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Alternatively, stochastic (phase-averaged) models are more useful to predict the evolution 
of directional wave spectra. The shallow water three-waves interaction process is 
simulated by including a source term in the energy balance equation. From the works of 
Zakharov et al. (1992), Eldeberky et al. (1996) proposed a directionally coupled source 
term. Some misbehaviours of this non-linear model were pointed out by the authors. We 
studied more particularly the problem of energy conservation and the ability to generate 
new directional peaks (which was not demonstrated in Eldeberky, 1996). For practical 
applications, Eldeberky et al. (1996) recommended the use of the parametrized LTA 
(Lumped Triad Approximation) model proposed by Eldeberky and Battjes (1995) and 
Eldeberky (1996). This model has been applied in the wave propagation model SWAN 
developed at Delft University of Technology (Ris, 1997). The LTA model is characterised 
by the restriction to self-self interactions leading to a great computational efficiency. 
From the 2D spectral deterministic equation presented in §2, we developed a new 
stochastic model. To solve the classical problem of closure, we used the works of 
Holloway (1980) who assumes that the sum over fourth-order moments draws some 
contribution from third-order moments through a coupling coefficient interpreted as a 
broadening of the resonance condition. The three formulations for phase-averaged models 
are presented in part 3. They are implemented in the spectral wave model TOMAWAC 
developed at the LNH (Benoit et al., 1996) and they have been compared to the 
experimental laboratory results presented by Nwogu (1994) (§4). 

2.  DETERMINISTIC APPROACH: 

Deterministic Boussinesq (SB) model: 
Starting from their extended Boussinesq equations, Madsen and Sorensen (1993) derived 
a set of deterministic evolution equations for the amplitudes and phases of unidirectional 
waves   propagating   over   a   mildly   sloping  bottom.   We   extended   the   model   to 
bidimensional situations by use of the 2D Boussinesq equations of Madsen and Sorensen 
(1992): 

^ + V.P = 0 (1) 

dP -(v.p)+(?.v)—t ... +g(h + C)V^-\B + Uh2V 
' dt 

6{    dt)        6^        \dt)    6 {        dt) 

-Bgh2(Vh.v)(V£)- Bgh2[V.V;)Vh- Bg/zJv(v.Vf) = 0 

where f is the free surface elevation, P is the depth-integrated velocity and h is the 
water depth. These equations include a linear parameter B which improves the dispersion 
properties and the shoaling mechanisms associated with the model. The optimal value 
B=l/15 was obtained by the authors by a fit to the reference linear shoaling coefficient 
predicted by the Stokes first-order theory. The standard form of the Boussinesq equations 
can be recovered by setting B=0. 
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The extended Boussinesq equations are combined into one single equation. For this, the 
partial derivative in time of the continuity equation is substracted to the partial derivative 
in space of the momentum equation. This leads to: 

L=M + N (3) 
where: 

L = c„-gW.v? + B^v.(v(v.vc))-fs+^yv.(v^„) (4) 

M = gVh.V£+(2B+l)hVh.V£,,-5Bgh2Vh.^.fC)+-Vh.(v®(V®Pl))        (5 ) 

JV = V. :{y.p)+(p.v)- + gVf.VC + g£V.VC (6) 

L contains the lowest order and dispersive terms, M represents the effects of slowly 
varying depths on the wave propagation and N models the non-linear effects due to wave 
coupling. Now, the equation is transformed into the spectral domain. £ is written as a 
discrete Fourier series: 

£(x,y,t)= £A„(*,)0exp[i(<V-y „(*,)<))] (7) 
/;=-•*> 

in which p refers to a directional wave component. Ap is the complex Fourier amplitude 
{A_p = A*), co is the angular frequency {co„p =-a>p) and y/ is the linear wave phase, 
linked to the wavenumber by the relation Vi//p = k~ (x,y). P is linked to £ through the 
continuity equation, so: 

P{x,y,t)~^cpAp{x,y)e^^\ (8) 

where c is the wave phase celerity. The Fourier expressions of f and P are inserted in 
the equation (3). We follow for this the guideline presented by Madsen and Sorensen 
(1993) for ID situations. First derivatives of Ap , kp and h axe assumed to be small, and 
products of derivatives and higher derivatives of these quantities are neglected. After 
algebraic manipulations, we get, 
• at lowest order, the linear dispersion relation: 

<h=   {k„h)2
+B(kph)4 (g) 

g       l + (B + j/3)(kph)2 

• at second order, the coupled differential equations: 

^+CgJAp +l^LA„V.g + S>->-S*-> A =-*- Np (10) 
dt       Sp      "    2 kp     "      "       2S,p       "    2SUp    " 

where Cg is the group velocity: 

CgP=^-kP (11) 

SliP=<Dp[l + {B + l/3)h2kl] (12) 
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i + 2Bgh3k2
p-\B + -\o2

ph
2 

,-k.1,\g + 3Bgh2k2-2{B + \l3)ha    _   , 

•' 2[gh + 2Bgh3k2
p-(B + l/3)h2(ol] 

S^=-(kpyh)[g+5Bgh2kl-(2B + l)co2
ph] 

^=X2i^-A»yW <(-V „-V m+V rtm) 
p-\ 

•^Rp-mjn   An,AP~me 
A A     „-i(-v*+v'~+<i'l-~) 

(13) 

(14) 

(15) 

(16) 

The left hand side of (10) represents the propagation terms, whereas the right hand side 
governs the non-linear triads interactions. N models the exchange of energy towards sub 
and super-harmonics through the coupling coefficient, R, which controls the strength of 
the interactions. Its expression is given by: 

R,   = 

J_ 
gh 

l{k2
p+k2

m+2kp.km) + 

{k2
p+k2

m)kp.km+{{kpkm)
2+{kp.km)

2 «>„(D, 

(M.) L 

(17) 

3. STOCHASTIC APPROACHES: 

Stochastic Parametrized Zakharov (SPZ) model: 
The model proposed by Eldeberky et al. (1996) is based on the so-called Zakharov 
equation for resonant three-wave interactions (Zakharov, 1968; Zakharov et al., 1992): 

dt 
^=-i(a(ial3-ijj[R3naiak5w+2R132alal8l^2]dkldk2 (18) 

S3_,_2 is shorthand for <5(£, - £, - k2) where S stands for the delta Kronecker symbol. 
Rn2 is a coupling coefficient depending on the physics of the interacting waves. For 
surface gravity waves in intermediate water depth, the expression is given by (Stiassnie 
and Shemer, 1984; Eldeberky et al, 1996): 

+\k,.ki 

{[£,.£,-(«30,/,g2)](i 

-(co,co2/g
2)]{col/(a2co,) 

co21 a>,&)3 

(19) 

)-[£,.£, +(co2«, /g2)](ffl31(o^co2)
in\ 

A statistical formulation of the three-wave interaction process, expressed in term of the 
correlation functions of the wave field, can be obtained from (18) (Zakharov et al., 1992). 
Because of non-linearities, the statistical description consists in a series of interconnected 
equations where each moment evolves according to the next higher-order moment. The 
problem is closed by assuming that the fourth-order moments can be expressed as a 
function of the lower order moments. For resonant wave-wave interactions, Zakharov et 
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al. (1992) used the quasi-gaussian hypothesis. A broadening of the resonance condition is 
included in the model by the assumption that the fourth-order cumulant depends on the 
third-order moment through a coupling coefficient Q which represents a frequency 
uncertainty among the three interacting waves (Holloway, 1980). A small (but finite) 
value for Q is used (Eldeberky et al., 1996). Defining the wave action density w^-by: 

{a-a'l,) = 4K2nlS(k~k') (20) 

the wave action evolution equation can be expressed as (Zakharov et al., 1992): 
dn- 

\\\dk,dk2[R 312"312 ^3-1-2^3-1-2 ~-^132** 132 M3-I+2" 3-1+2 "3-1+2 (21) 
dt 

where N3I2 depends on the spectral action density functions {nj) of the interacting waves 
according to: 

N312 =n]n2-n3nl-n^n2 (22) 
In Holloway's approach, |t3_,_2 acts as a spectral filter through the frequency mismatch 
(o3 -o, -a>2) and through the parameter Q characterising non-resonant interactions: 

Q. 
M3-1-2 —" 

(o3 -ft), -a>2) +Q.2 

For the resonant conditions:  k, -k, -£, =0  and ft). 

(23) 

-ft), -ft), =0, the weak wave 

theory of Zakharov et al. (1992) assumes that £2—>0, implying: 
M3-1-2 =7tS(co, -co, -co2) (24) 

Eldeberky et al. (1996) showed by numerical simulations that the spectral source term for 
triad interactions results in an artificial energy decay/gain. This non-conservative feature 
was explained by the specification of the filter bandwidth Q. As done by Hasselmann and 
Hasselmann (1985) for quadruplets interactions, we exploited the basic symmetry of the 
triplets interactions to study more accurately the problem of energy conservation. The 
interaction coefficient R3i2, as well as Nil2 and /j.ll2 are invariant with respect to 
permutations between waves 1 and 2. So, for the collision: 

£, - k, - k2 = 0 ( 25 ) 
the changes An,, in wave action per unit time for the three wavenumbers can be expressed 
by: 

An? 
"•1 

Atlr h 

An? 

— 1 f 312       312 r^312 ^\    3 2 1 J^'^1^'^2       3 

+1 

(26) 

leading to: 

^ [-/.) 
^ • = • -f^ 

.^ Vh\ 
' r^312 ^1^3       *^2 1 ("f'f'1^'^'2       3 (27) 

( 26 ) and ( 27 ) show that, for resonant three wave interactions f} = /, + f2, only the 
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conservation of energy applies, as expected (Komen et al, 1994). Non-conservation of 
energy occurs for near-resonant interactions when the linear dispersion relationship is 
used to link the wavenumber to the frequency since /'"'(£3 )</'"'(£,)+/''"(£,)• The 
outcome is a decay of energy during the generation of bound super-harmonics and an 
increase in energy during the generation of bound sub-harmonics. 
For its implementation in a spectral wave model, the SPZ source term is expressed in 
terms of frequency-directional variance density function F(f,9) (Eldeberky et al., 1996): 

ciCg2 

co,col 
where 

S(co3,03)=lGn2g['F-^&-(T311-2T131)da1de1 (28) 
Jo Jo      CO,COi 

*V2  ~ "312  M 312  i"312 
CO, CO, co„ 
„        •rlr2 _       r3r2 „        rl*3 
Cg-i Cg] Cg2 

(29) 

r312 and Tln represent the sum (£3=£,+£2) and difference (£,=£,-£,) interactions. 
The formulation is directionally coupled and allows for both collinear and non-collinear 
interactions. 

LTA model: 
The parametrized LTA model proposed by Eldeberky and Battjes (1995) and Eldeberky 
(1996) is based on the evolution equation for complex Fourier amplitudes presented by 
Madsen and Sorensen (1993). The statistical nature of a wave field allows to transform 
the equation in term of discrete spectrum of energy. The result is a set of interconnected 
equations where each moment evolves in terms of the next higher order moment. 
Assumptions are made on the third-order moment (bispectrum) to close the system. The 
magnitude of bispectrum (bicoherence) is expressed only in terms of second-order 
moment (quasi-gaussian hypothesis) whereas a parametrical formulation is given for the 
phase ji (biphase). In order to reduce the computational effort, the triad interactions 
phenomenon is restricted to self-self interactions. Finally, the net source term is given by 
(Eldeberky, 1996): 

S;,(fP) = acp Cgp Rl,%pl2) sin|/Jp/2,;7/2|[F
2(/p/2)-2F(/;j)F(/p/2)] ( 30 ) 

W,)=-2s;,(/2,) 
S*( represents the positive and negative contributions to the self-interactions; cp and Cgp 

are the phase and group velocities for the p harmonic, R is the sum interaction coefficient 
derived from the deterministic evolution equation and a is a tuning parameter. 

Stochastic Parametrized Boussinesq (SPB) model: 
By using the statistical closure hypothesis proposed by Holloway (1980), we built up a 
stochastic model based on the 2D evolution equation for complex Fourier amplitudes 
presented in §2. We define the complex wave amplitude Cp as: 

Cp=Ape^ (31) 

So, the evolution equation for C  reads, from (10): 
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/  f '^m.p-rtS'm" p- 

(32) 

+ -?*- 
i,P m= 

Since: 

d\C„C")     I     dC'\    I     dC \ H^-^Wit) (33) 
and, 

v(cPc;)=(cpvc;)+(c;vcp) (34) 

by defining the discrete variance density Fp as: 

the evolution equation for F writes: 

^^NF^n^J^F^f-t^^MB^)      (36) 
dt KP A

UP lVm=-~ 

where B m = (C*CmC ) is the bispectrum. When B=l/15, Madsen et Sorensen 
(1992) have shown that the shoaling term corresponding to their extended Boussinesq 
equations fits quite satisfactorily the shoaling term of the first order Stokes theory 
(percentage errors less than 6% for hlXQ< 0.3). So, we write (36) in the following form: 

~\  J-< BO 

-f^{cSpFp) = ~J-YJ
R^~MB^) (3?) 

\,p  m=-°° 

where Cg refers here to the group celerity of the first order Stokes theory. 
To derive an expression for the bispectrum, we assume stationary conditions. In the limit 
hx —> 0, (32) is reduced to: 

*,.V(C,) + «•(*,.*,) Cp = ^- X*-.P-
C

-
C

P- ( 38 ) 

The complex amplitudes, C , are expanded in a perturbation series with respect toe : 

C„=£C<1)+e2Cf+... (39) 

and (38) has a simple steady solution: 

2,p  m=-w 

~i\i.dx 

with A(k,x)=^z—r- (41) 

and  k=kp-kp„m-km (42) 
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At lowest order, the bispectrum vanishes (gaussian wave field): 

r*(V<i) r(1A-n (43) 

Here, \C',Cp_mCm) is decomposed as: 

(c;cp_mcm) = (c;wcw,q(j)) + (c;«c(ic<:>) + {c^cf^) 
Substitution of the steady contribution of (40) into (44) leads to: 

'g 
(C C     C  ) = • 2> W')f 0) r*0)r(i) 

m-q,q \     q       m-q     p     ^ p-m 
ilk  — k     —k\ 1 ,vm m-q ^q\ 

(44) 

ig 

9 ? £• 
ED /r(l)rW        r*0)r(l) 

1Kp-m-<i,ti\-'q    ^p-m-q^p      "-m 
j A:      — A: — A: /;-«J p-m-q q\ 

(45) 

2S2 A 
Z^np-q,q\^q    ^p-q^p-m^m / ,1- 

TP     
kp-i     ki\ 

where {C^C^lqCP
mCp

x]ln) is the fourth order moment, often referred as the trispectrum. 
We assume that the sum over the quadruple correlations gives a contribution on the triple 
correlations (Holloway, 1980). So, (45) transforms to: 

1,m   m 

Sl.p-nfip-m 

(c;"c<»)(c:»c,(») 
(46) 

5     p~m,m   I     *| 

S2,pkp 

c'mcm )(c"mcm) p-m     p-m I \    m m   I 

+ iK{CpCp_mCm) 

where K is the tuning parameter of the model (fixed value). Only the imaginary part of 
the bispectrum is required to close the evolution equation for the variance density, so: 

Im(B—) = F^b m-P>p F F     + 
V     k      p   p~m       V        k 

-m,p F F p-m,m   p       p 
p    m ^       i p-m    m 

2, p-m    p-m 2,p    p 

(47) 

with Ak2 = \kp - kp_m - km | 

Substitution of equation (47) into (37) leads to: 

M2 'R",-^m ^F„F     +- r      t    - p~ P-m   •    c r, ' P 
°2,mKm Jl,p-mKp-m 

F„F„ 
m-P~m   p       p 

c      h        p-i"   • 

(48) 
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For its implementation in the TOMAWAC spectral wave model, the SPB source term 
(right hand side of (48)) is expressed in terms of the continuous frequency-directional 
variance density function F(f ,9). The source term may be written as: 

sV»eO = f f f fdM^dej• 8(eh -^+J«s(/3 -/, -f2) 
(49 1 J— e2" r~ fix , . v ^ ' 

o I I )0
dm2dexdej^8{eh -e^jsfa-fi +/2) 

where 7^'• and 7^• represent respectively the sum and difference triad interactions. 
The formulation is directionally coupled and allows for both collinear and non-collinear 
interactions. 

4.  NUMERICAL SIMULATIONS: 
The three non-linear source terms presented in §3 have been implemented in the spectral 
wave model TOMAWAC, developed at the Laboratoire National d'Hydraulique (Benoit 
et al., 1996). Numerical simulations are compared to the experimental laboratory results 
presented by Nwogu (1994), for the propagation of crossing seas over a constant slope. 

Laboratory Basin description (Nwogu, 1994; Nwogu, 1993) 
The three-dimensional wave basin (30 m wide, 20 m long and 3 m deep) is located at the 
Hydraulics Laboratory, National Research Council of Canada. It is equipped with a 
segmented directional wave generator. Reflections at the basin sidewalls are reduced by 
wave energy absorbers made of perforated metal sheets. A bathymetric profile was 
constructed in the basin. It consists in a constant slope beach (1:25) with an impermeable 
concrete cover. The free surface elevation was measured along the centreline of the basin 
with a linear array of 23 water level gauges. 

Wave conditions imposed at the wave generator 
The incident laboratory wave spectrum at the wave generator (h = 0.56 m) is bimodal: it is 
composed of two sea states characterising local sea and swell components (figure 1). The 
frequency distributions of the sea states are described by a JONSWAP spectrum 
characterised by the peak period T , the significant wave height Hm0 and the peak 
enhancement factor y . The directional distributions are given by the cosine function: 

D{8)=cos2'(9-6 0) (50) 

Table 1 sums up the wave parameters of the target spectrum. 

Swell Local sea 

Hm0(m) 2>) y J o0o HM(.m) ?>) r s 0o o 
0.068 2.5 10 22 22.5 0.062 1.5 3.3 6 -22.5 

Table 1. Spectral wave parameters characterising the initial spectrum. 
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variance density 
(m2/Hz/deg) 

X10 

1.8 *,..-••""" 

frequency 0   direction (deg) 

Figure 1 : Directional wave spectrum imposed at the wave generator. 

Numerical results 
The SPZ source term was activated in the TOM AW AC simulation, with i2=0.05. The 
directional wave spectrum obtained in the shallow water area (h = 0.18 m) is presented on 
figure 2. It shows that the variance density spectrum is affected by refraction, shoaling 
and non-linear triad interactions. Non-linear wave-wave interactions strongly affect the 
frequency-directional shape of the spectrum. By collinear wave-wave interactions, energy 
is transferred from the swell spectral peak towards its two higher harmonics and by non- 
collinear interactions, energy is transferred from the two primary spectral peaks (swell 
and local sea) towards the component corresponding to the vector sum of the primary 
peak wavenumbers. Figure 3 shows a comparison between the non-linear SPZ simulation 
and measurements for the frequency spectrum. The results obtained with a linear 
simulation are also presented to point-up the effects of wave-wave interactions on the 
spectral shape. Figure 3 clearly demonstrates that the non-linear triads interactions cannot 
be neglected in the shoaling zone. As shown by Eldeberky et al. (1996), the new spectral 
peaks generated using the SPZ model are shifted towards lower frequencies as compared 
to measurements. Since the interaction condition between the three interacting waves is 
imposed through £>(£, — £, - £,), the negative curvature of the linear relationship implies 
that if £, = £, + £2, then /,</,+ f2 (Eldeberky et al., 1996). 
The simulation using the LTA source term was performed with oc=0.5. The numerically 
simulated shallow water spectrum is presented on figure 4. Since the LTA model is 
restricted to self-self (collinear) interactions, the simulated shallow water spectrum only 
shows two new spectral peaks at frequencies 2/, and 2/2, where /, and f2 refer here to 
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variance density 
(m2/Hz/deg) 

x10'" 

frequency 
•50 

direction (deg) 

Figure 2: Directional wave spectrum in shallow water (ft=0.18m). 
Non-linear simulation using the SPZ source term. 

£j     0.004- 

5? 

non-linear simulation SPZ 
linear simulation 
measurements 

2f,+f2   2f2 

u u.tt u.a i.^ J..D        f ,TT * ^ 
t (HZ) 

Figure 3: Frequency wave spectrum in shallow water (h=0.18m). 

the peak frequencies of the swell and local sea respectively. Figure 5 shows the frequency 
wave spectrum in shallow water. The energy at 2/, is strongly overestimated by the LTA 
model, when a=0.5. The transfer of energy towards super-harmonics decreases with a. 
But, since the LTA model is energy flux conservative and is restricted to self-self 
interaction, the choice of a requires a balance between an overestimation of the primary 
peaks or an overestimation of the harmonics. 
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variance density 
(m2/Hz/deg) 

X10'" 

frequency 
-50 

direction (deg) 

2.5       1Q0 

Figure 4: Directional wave spectrum in shallow water (h=0ASm). 
Non-linear simulation using the LTA source term. 

f-1 .003- 

non-Iinear simulation LTA 
linear simulation 
measurements 

t (HZJ 

Figure 5: Frequency wave spectrum in shallow water (/!=0.18«). 

The results obtained with the SPB model are presented on figure 6. Collinear and non- 
collinear wave-wave interactions are both modelled using the SPB source term. Energy is 
transferred from the swell spectral peak towards its first and second harmonics. The swell 
also interacts with the local sea and generates components at the vector sum of the local 
sea and swell components. A comparison of the model to measurements is presented on 
figure 7. A relatively good fit to measurements is obtained with the SPB source term. 
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variance density 
(m2/Hz/deg) 

x10"4 

frequency 
direction (deg) 

Figure 6: Directional wave spectrum in shallow water (h=018m). 
Non-linear simulation using the SPB source term. 

N      0.004 

non-linear simulation SPB 
linear simulation 
measurements 

f(Hz) 

Figure 7: Frequency wave spectrum in shallow water (/j=0.18ra). 

5.  CONCLUSIONS: 
The spectral deterministic model of Madsen and Sorensen (1993) has been extended to 
bidimensional situations where combined refraction, shoaling and triads interactions act 
simultaneously to modify the frequency and directional spreading of the ocean surface 
energy field. A stochastic source term (SPB) is developed from the deterministic 
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equations obtained. The model is directionally coupled and implies that the energy 
transfer among spectral components is governed by collinear and non-collinear near- 
resonant triad interactions. The consequences are not only distortions of the frequency 
spectrum, but also alterations of the directional spreading of wave energy. This source 
term has been compared to two other spectral source terms: the LTA and SPZ models. 
The LTA model is able to catch the main features of energy transfers from the main 
spectral peaks towards their higher harmonics. It cannot simulate all the new spectral 
peaks occurring in crossing seas, but it is characterised by a great computational 
efficiency. The SPZ model and the SPB are directionally coupled and are able to transfer 
energy to a third component at the sum vector of the primary waves. The SPB model 
gives the best results since the frequency of the new components corresponds exactly to 
the sum frequency of the primary waves, whereas with the SPZ model, a shift towards 
lower frequency is observed (Eldeberky et al., 1996). 
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