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Abstract 

The differences between the full and shallow-water wave theories for edge waves 

are reviewed. Detailed comparisons between the solutions of the second-order mass 
transport velocities within the laminar boundary layer obtained through the two theories 
are carried out for the first three edge-wave modes. The results clearly show that the 

error of the shallow-water approximation is larger as the mode number gels larger, 

and/or the beach slope gets steeper. It is also found that the magnitude of shallow-water 

approximation error increases in the offshore direction first, then it decreases as the 

distance approaches further offshore due to the energy decay in that direction. The 

affecting area of the shallow water approximation is relatively larger for the longshore 

transport than for the cross-shore transport in higher-mode edge waves. The significant 

differences between the full and shallow water-wave solutions in the near shore region 

identified in the present study issue a warning to the modellers of coastal hydrodynamics 
and nearshore topography, who utilize the shallow water approximation. 

Introduction 

Edge waves, the waves trapped near the shoreline on a uniformly sloping beach 

due to wave refraction, were discovered by Stokes (1846). The crest of Stokes1 edge 
wave on a plane beach is perpendicular to the shoreline, it propagates along the shore 
with the wave amplitude decaying exponentially offshore. Other edge wave modes, 
besides the Stokes mode, were found by Eckart (1951) through the shallow water-wave 
theory and Ursell (1952) through the full water wave theory. 
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The assumptions associated with the full water wave theory are inviscid and 
homogeneous fluid, irrotational fluid motion, constant pressure on the free surface, 
negligible surface tension effect, and only gravity as the restoring force. For the shallow- 
water wave theory, the assumptions are the same as the full water theory with further 
simplification; the vertical fluid acceleration is neglected which means that the pressure 
variation with depth within the fluid domain is hydrostatic, and the horizontal component 
of the velocity field is uniform over the whole depth. With these assumptions, the 
problem formulated with the shallow water approximation is reduced to two-dimensional 
by the depth-integration. The mathematical descriptions of a mode-n progressive edge 
wave through the shallow water theory (Eckart, 1951) are 

<t>s =^exp(-kny')Ln(2kny')sin(knx-cot) 

T)s = an(3exp(-kny')Ln(2kny')cos(knx-cot) ^ 

with the dispersion relation, 

co2 = gkn(2n + l)pi (3) 

where n is a non-negative integer (n = 0, 1, 2, 3, ...) representing the offshore mode 
number, (x, y', z) are the Cartesian coordinates of the alongshore, horizontally offshore 
and vertically upward directions (the shoreline is at y' = 0 and z = 0), <j> is the velocity 
potential, r| is the displacement of the water surface from the equilibrium position, an is 
the wave run-up amplitude on the beach, (3 is the beach sloping angle from the horizontal, 
co (= 2rc/wave period) is the angular frequency and k (= 27t/wavelength) is the 
wavenumber in the longshore direction, and Ln(») is the Laguerre polynomial of order n, 
which is defined as 

•••(•)-^rt"). 
The counter parts of (1) to (3) by the full water wave theory (Ursell 1952) are 

cp = —^fexpf-kny'cos(3 + knzsin|3) 
co  L      ^ ' 

+ Z AmJexp[-kny'cos(2m-l)p-knzsin(2m~r)p| 
m=l 

+ exp[-kny'cos(2m + l)p + knzsin(2m + l)pl| sin(knx-cot) 

ri = cxn[exp(-kny'cosp)+ £ Amniexp[-kny'cos(2m-l)p] 
m=l 

+ exp|-k ny'cos(2m + l)P [ cos(knx - cot) 

A      _/   wn°>tan(n-j+l)p 

where j=i  tan(n + JJ(3 (7) 
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and ocn is a constant. The corresponding dispersion relation is given by 

co2 = gknsin(2n + l)p (8) 

Ursell (1952) further showed that the number of possible trapped modes depends upon 
the beach sloping angle p with the maximum mode number n (a non-negative integer) 
satisfying 

2n •1)M? 2. (9) 
Stokes mode which is also called the mode 0 corresponds to n = 0, and edge waves with n 
> 1 are termed higher-mode edge waves. It is noted that Eckart's (1951) solution does 
not give any limitation to the value of the mode number n for a given beach slope; i.e. 
one cannot distinguish between the trapped modes and those that radiate energy offshore; 
as n -> co, the shallow-water wave solution corresponds to the perfectly reflected cross- 
shore wave (Whitham, 1976) which is obviously not a (trapped) edge-wave mode. To 
show the discrepancies between the full water-wave solution and the shallow-water wave 
approximation, Yeh (1986) plotted the surface profiles obtained by the two theories for 
the first three modes (n= 0, 1, 2) on a beach of 15° (p = TC/12) slope as shown in figure 1. 
He showed that the full water-wave and the shallow-water wave solutions have good 
agreement for the mode-0 edge wave, but the two solutions deviate from each other as 
either n ory' increases; these deviations reflect the failure of the shallow-water wave 

TV, 
0.6 

0.2 

rk,y' 

(c) 

Figure 1. Offshore surface profiles of various edge-wave modes with p = jt/12; (a) n = 0, 
(b) n = 1, (c) n = 2,  full theory; shallow-water approximation. 
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approximation as y' -» oo (in deep water). A more general comparison of the water- 
surface profiles predicted by the full water-wave solution and the shallow water-wave 

approximation can be demonstrated qualitatively by plotting the normalized difference e 
for a range of beach slope and offshore distance; 

ris,y^o      Tiy.=o_ (10) 

Figure 2 shows the difference £ for the mode-0, mode-1 and mode-2 edge waves. It is 
noted that the plot range of the beach slope p" is determined by (9). The e = 0 plane 
represents the perfect agreement between the two theories. It is clearly shown that the 
deviation of e from the zero plane increases both with the beach slope and the mode 
number. These deviations indicate the failure of the shallow water approximation in deep 
water. Quantitative comparison of the water surface as shown in figure 2 is given by 
Mok (1995b) who plotted the contour maps of the difference e for the mode-0, 1, and 2 
edge waves. 

Figure 2. Differences on the water-surface elevation between the full water-wave theory 
and the shallow-water wave approximation for the (a) mode-0, (b) mode-1, (c) mode-2 
edge waves. 
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In the natural beach environment, various field observations show that edge 
waves with the mode number less than 5 could be significant nearshore (Munk, 
Snodgrass & Gilbert, 1964; Huntley & Bowen, 1973; Huntley, 1976; Huntley, Guza & 
Thornton, 1981; Oltman-Shay & Guza, 1986). Due to the rhythmic characteristics of 
edge waves in the longshore direction, they can be related to many nearshore 
morphological features such as the formation of systematically spaced rip currents, 
nearshore circulation (Bowen & Inman, 1969), crescentic bars, some rhythmic 
topographical patterns nearshore (Bowen & Inman, 1971; Holman & Bowen, 1982), and 
beach cusps (Bowen & Inman, 1971; Guza & Inman, 1975; Huntley & Bowen, 1978; 
Guza & Bowen, 1981). The effects of edge wave on the coastal topography are due to its 
time-averaged Lagrangian mass-transport velocities (wave induced currents). Even if the 
magnitude of the induced current might be small, incipience of sediment detachments 
from the bottom might be caused by the disturbance such as turbulence induced by wave 
breaking. Then, the fate of the detached sediments might be controlled by the minute- 
but-persistent time-averaged wave induced currents, and eventually change the sea-bed 
topography. 

Due to simplicity, many of the previous edge-wave mass-transport models (e.g. 
Bowen & Inman (1971) and Holman & Bowen (1982)) are based on the shallow-water 
wave theory and the transport velocity is evaluated only at the outer edge of the boundary 
layer. The question remained is "How much error will the shallow-water approximation 
introduce to the mass-transport velocity?". In the present study, the second-order mass- 
transport velocity at the outer edge of the bottom laminar boundary layer derived based 
on the full water-wave theory is compared with that obtained by the shallow-water-wave 
theory to identify the differences. 

Mass Transport at the Outer Edge of the Bottom Boundary Layer 

According to the thin laminar boundary layer theory, the flow field within the 
bottom viscous layer is driven by the outer irrotational oscillatory flow which is 
described by the velocity potential. A comparison between (1) and (5) shows that the 
shallow water solution has the vertical (z-direction) structure of the irrotational flow field 
removed due to the depth integration operation. This approximation is acceptable when 
the beach slope or the mode number is small as the vertical structure of the flow field 
depends on the sine of these two parameters (see (5)). Nevertheless, when the beach 
slope or the mode number becomes large, the failure of the shallow water approximation 
is apparent. When the shallow water approximation introduces error into the forcing (the 
outer irrotational flow field) of the bottom boundary layer, it will pass the error down to 
the induced second-order mass transport velocity. 

Using the full water-wave solution of the velocity potential (5) with the 
coordinates rotated by the beach slope p, 
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* = ^{exp(-kny) 
CO    l 

+2X Amn exp[-kny cos(2m|3)]cosh[knzsin(2m|3)|}sin(knx- cot) 
m=l ' ;    (11) 

Mok & Yeh (1998) and Mok (1992) derived the second-order mass-transport velocity 
within the thin laminar bottom boundary layer for all modes of progressive edge waves 
propagating along a uniformly sloping beach. Their solutions are evaluated at the outer 
edge of the boundary layer here to give the longshore and cross-shore mass-transport 

velocities ( UL  VL), 

*2(03f3r uL = («ng) MM l2[exP(~kny)+2 £Amnexp[-knycos(2mP)]]- 

[ SAmn sin2(2mP)exp[-kny cos(2m(3)]] 
m=l 

+-[(exp(-kny )+ 2 X Amn exp[-kny cos(2mP)])2 

1 m=l 

+(exp(-kny) + 2 iAmncos(2mP)exp[-knycos(2mP)])2] 
m=l J^       (12) 

— 2fk    |f n 
vL = -(ang)   —   {exP(_kny) + 2 XAmncos(2mP)exp[-knycos(2mP)]}- 

VfflJ m=l 

{--[exp(-kny)+ IAmn[l+ cos2(2mp)]exp[-kny cos(2mP)]] 
2 m=l 

+[ I Am„ sin2(2mP)exp[-kny cos(2mp)]]} 
m=l , (13) 

where, the coordinates (x, y, z) are measured longshore, offshore along the bottom and 
perpendicular to the beach. Based on the mass-transport velocity solutions at the outer 
edge of the boundary layer given by Hunt & Johns (1963) and the velocity potential 
given in (1), the second-order mass-transport velocity for progressive edge waves can 
also be estimated by the shallow-water wave theory. The mass-transport velocities in the 
longshore and cross-shore directions are, respectively, 

u^ = (angP)2f^j |{5exp(-kny')[Ln(2kny1)]2. 

3 d2 

-4-exp(-kny')Ln(2kny')—-[exp(-kny')Ln(2kny')] 
k2 dy'2 
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2 ' d   Kcp(-kny')Ln(2kny')])2> 

3 

+77(x^[exp(-kny')Ln(2kny')])2} 
n 

'k„ r   1    d 

k2„dy' (14) 

vLs = (angP)2 -JL    ——[exp(-kny')Ln(2kny')]- b V. co )  4k n dy 

3    d2 

{eXp(-kny')Ln(2kny,)--T—-[exp(-kny')Ln(2kny')]} 
k2

ndy'2 (15) 

Comparison between the Full and Shallow-Water Wave Solutions 

Since the coordinate y' for the shallow-water wave solution is measured 
horizontally offshore and the coordinate y for the full water-wave solution is along the 
beach bottom, the mass-transport velocities calculated by the shallow-water wave 
solution are evaluated at position y' but plotted against the corresponding y location (y = 
y'/cos (3) in order to be compared with the full water-wave solution. To show the 
characteristics of the longshore and cross-shore mass transport velocities of progressive 
edge waves and to be consistent with Yeh's (1986) comparison, the mass-transport 
velocity profiles obtained by the two theories on a beach of Tt/12 slope is plotted to view 
the differences. The (3 = TC/12 selection restricts the discussions only on the mode-0, 
mode-1 and mode-2 edge waves according to (9). For both longshore and cross-shore 
mass-transport velocities of a mode-0 edge wave, the full and shallow-water wave 
solutions agree with each other (the differences are indistinguishable so that the results 
are not presented). However, as the mode number becomes larger, the differences 
appear. Figure 3 shows the longshore and cross-shore mass-transport velocities of a 
mode-1 edge wave, respectively. It is shown that the differences between the full and 
shallow-water wave solutions are small. For the longshore transport (figure 3a), the 
shallow-water wave solution is slightly larger at kiy < 1.68 and smaller at kjy > 1.68 than 
the full water-wave solution. For the cross-shore transport (figure 3b), the two solutions 
agrees qualitatively. The main differences between them are the locations of the zero 
mass-transport (zero-crossing) and the offshore locations of the local minimum and 
maximum. In general, the locations of the zero-transport, local minimum and local 
maximum predicted by the shallow-water wave theory occur closer to the shore than 
those predicted by the full water-wave theory. Figure 4 shows the longshore and cross- 
shore mass-transport velocities of a mode-2 edge wave, respectively. The differences 
between the full and shallow-water wave solutions are evident. The main differences are 
the offshore locations of the local minima, local maxima and zero crossings; the shallow- 
water wave theory still predicts those locations closer to the shore than the full water- 
wave theory does. 

Further general comparisons between the two theories are carried out for the 
longshore and cross-shore mass transport velocities by plotting the normalized difference 
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kiy 

(a) 

kiy 

(b) 

Figure 3.  Mass-transport velocity at the outer edge of the boundary layer of a mode-1 

progressive edge wave with P = ft/12. is the full water-wave solution; is 
the shallow-water wave solution, (a) Longshore component, (b) Cross-shore component. 

k2y 

(a) 
k2y 

(b) 

Figure 4. Mass-transport velocity at the outer edge of the boundary layer of a mode-2 

progressive edge wave with (3 = ft/12. is the full water-wave solution; is 
the shallow-water wave solution, (a) Longshore component, (b) Cross-shore component. 
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AuL and AvL for a range of beach slope and offshore distance; 

Auj = 

AVT = 

UL 
UI Ls ,y=0 

UL,y=0 

VL 

Ls ,y=0 
VL,y=0 

(16) 

(17) 
The comparison scheme is to assume that both of the solutions have the same magnitude 
at the shoreline and see how they deviate from each other as the beach slope and the 
offshore distance increase. Figure 5 shows the differences AUL and AvLfor a mode-0 edge 
wave. It is noted that the error chart is valid for both the longshore and cross-shore 
transports due to the similar offshore structure that they possess. Each line in figure 5 
represents the longshore (or cross-shore) transport difference between the two solutions 
(full and shallow) on beaches of various slope fS. For a given beach slope, the magnitude 
of the error increases offshore from zero to a local maximum then it decreases. The 
increase of error in the offshore direction at location near the shore reflects the failure of 
the shallow water approximation due to the increasing water depth. The maximum error 
of a mode-0 edge wave occurs at koy < 0.5 for the entire range of beach slope (p < 7t/2). 
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Figure 5. Error chart of the longshore (or cross-shore) transport between the full and 
shallow-water wave theories for a mode-0 edge wave on various beach slopes. 
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The decrease of the relative error at further offshore location is due to energy decay in 
that direction; i.e. the magnitude of the mass-transport velocity is small at location far 
offshore due to the exponential decay and therefore the relative error between the two 
solutions becomes small there. On the other hand, the relative error between the two 
solutions increases with the increasing beach slope for a given offshore location koy. 
This characteristic clearly indicates the effects of the water depth. As the water depth at a 
fixed offshore location becomes larger with the larger beach slope, the error of the 
shallow water approximation becomes larger. In fact, this behaviour is expected to be the 
same for the other edge-wave mode and will not be addressed again in the following 
discussions for the higher-mode edge waves. 

For a mode-1 edge wave, the variation of the error for longshore and cross-shore 
transports differs. Figure 6 shows the longshore-transport difference AUL of a mode-1 
edge wave. For the shown beach-slope range, the errors increase offshore from zero to 
local maxima at 0.5 < kjy < 0.8, then it decreases offshore to local minima at 2.0 < kjy < 

2.7. The magnitudes of the local maxima are larger (about 1.7 times for the case of p = 

7t/6) than the local minima. Nevertheless the magnitude of the error decreases gradually 
at kiy >2.7. Again, the increase of error in the offshore direction at location near the 
shore reflects the failure of the shallow water approximation due to the increasing water 
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Figure 6. Error chart of the longshore transport between the full and shallow-water wave 
theories for a mode-1 edge wave on various beach slopes. 
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depth while the decrease of error at location further offshore (kiy > 2.7) is due to the 
energy decay as discussed earlier. For the cross-shore mass transport comparison, figure 
7 shows the difference AVL for a mode-1 wave. Similar to the longshore transport, the 
magnitudes of the cross-shore transport errors increase in the offshore direction with 
formation of local minima and maxima at 0.1 < kjy <0.2 and 2.2 < kiy < 3.0, 
respectively. However, the magnitudes of the local minima are much larger (about 7 

times for the case of (3 = 7t/6) than the local maxima. This significant magnitude 
difference is caused by the rapid decay of the cross-shore transport velocity in the 
offshore direction (see figure 3b), Comparing the longshore and cross-shore transport 
error variation (figures 6, 7), it is clear that the error introduced by the shallow water 
approximation has a relatively wider offshore coverage for the longshore transport than 
for the cross-shore transport. Again this is due to the different offshore energy decaying 
rates of the two transport velocities as shown in figure 3. Note that the complexity of the 
offshore variation and the existence of local maxima, minima and zero crossings are due 
to the intersection of the two solutions at various offshore locations (see figure 3). 

For the mode-2 edge wave, variation of the error is similar to that of a mode-1 
edge wave qualitatively but with more complexity. Detailed description of the 
comparison is not given for the mode-2 edge wave. Figures 8 and 9 show the longshore- 
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Figure 7.  Error chart of the cross-shore transport between the full and shallow-water 
wave theories for a mode-1 edge wave on various beach slopes. 
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transport difference AuL and the cross-shore transport difference AvL for a mode-2 edge 
wave, respectively. Generally, the error still increases with the beach slope and the 
offshore distance and forms local maxima and minima. The affecting area of the shallow 
water approximation is still larger for the longshore transport than for the cross-shore 
transport. 
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Figure 8. Error chart of the longshore transport between the full and shallow-water wave 
theories for a mode-2 edge wave on various beach slopes. 

Conclusions 

Due to its simplicity, many edge-wave mass-transport models are based on the 
shallow-water approximation. The use of the shallow-water approximation seems 
reasonable if the beach slope is mild, or only relatively low-mode edge waves are 
considered. The present study shows that the significant differences between the full and 
shallow water-wave solutions as the beach slope gets steeper, the distance is farther from 
the shoreline, or the mode number gets larger issue a warning to the modellers of coastal 
hydrodynamics and nearshore topography, who utilize the shallow water approximation. 
Even the present comparison of the two solutions are carried out for mass transport 
located at the outer part of the boundary layer, it should be noted that there may be major 
drawbacks on the usage of the mass transport velocity at this location to model the 
nearshore topography formation. According to Mok's (1995a) experimental verification 
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and discussions on Dore's (1975) mass transport solution for the Stokes progressive edge 
wave, the cross-shore transport is bidirectional; the transport is in the inshore direction 
near the bottom of the boundary layer, while it is in the offshore direction in the upper 
part of the boundary layer. Evidently, using only the mass-transport velocity at the outer 
edge of the boundary layer may give an incomplete picture or even misleading prediction 
of the edge waves' influences on the coastal regions. 
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Figure 9. Error chart of the cross-shore transport between the full and shallow-water 
wave theories for a mode-2 edge wave on various beach slopes. 
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