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Abstract 

A numerical model for wave refraction and diffraction has been used to 
compute irregular waves. The model is based on the parabolic approximation, but, 
by combining with the perfect boundary condition, it is suitable for waves 
propagating with large incident angles. The irregular waves are modelled through 
linear superposition of wave components. In order to apply the model to field cases, 
however, the numerical computations were carried out with one representative 
frequency while retaining spectral representation of the directionality of waves. This 
approximation has been examined by the laboratory conditions of Vincent & Briggs; 
The model's performances in the field cases were also investigated. 

Introduction 

Recently, two distinct wave models have been used to determine wave 
properties in two-dimensional near shore zones. One is the so-called parabolic wave 
model based upon the mild-slope equation, the other is the phase averaged model 
based on the balance equation for wave energy or wave action. Both models are 
implemented according to Eulerian approach of wave propagation and wave 
information is available at the mesh-points of a regular grid. The phase averaged 
model (for example see Holthuijsen et al. 1989, Holthuijsen et al. 1993), if fully 
discretized in frequency and direction domain, can trustworthy account for various 
physical processes such as wave generation, dissipation and nonlinear wave-wave 
interaction. While this greatly improves representation of the random, short-crested 
waves, the absence of diffraction in the governing equation can lead to inaccuracy in 
the case of waves with small directional spreading. The parabolic model (see, for 
example, Radder, 1979, Kirby & Dalrymple, 1983) not only contains the processes of 
wave transformation such as shoaling, refraction and diffraction, but also can include 
various other physical influences such as wave growth and dissipation (see Vogel et 
al. 1988 ), and the model can be easily implemented on nearshore area. However, the 
parabolic model has its inherent shortcomings:  waves must propagate in one 
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principal direction, say x-direction, since the diffraction effect is restricted to y- 
direction; and the model deals only with regular waves. A numerical model for 
irregular waves has been developed which is based on the parabolic approximation 
and which is suitable for waves with large incident angle (see Gao et al. 1993). In the 
model a careful treatment of the lateral boundary condition was introduced to prevent 
the contamination from undesirable side effects (see also Dalrymple & Martin, 
1992), it not only makes computation very efficient, but also leads the physical 
interpretation of the computed results straightforward. 

The model has been applied to the laboratory cases with fully spectral form. 
The results compare well with the experiment of wave transformation over the 
elliptical shoal carried out by Vincent & Briggs(1989), which usually can not be 
handled properly by a phase averaged model. When the model is applied to the field 
cases, the computer effort will be very excessive. We will define a representative 
frequency, mean frequency of waves, instead of full discretizationin frequency domain, 
while the spectral representation of the directionality of waves is still retained as we 
consider on the coastal area the directional spreading of waves more important than the 
spectral representation in the frequency domain. The improvement of the model has 
been found when it was applied to estuary Haringvliet (a closed branch of the Rhine 
estuary). The model has also been applied to the tidal area of Friesche Zeegat. 

Model Equations 

In case of an irregular wave field we consider wave components which make 
fairly large angle 0 with the x-direction. The wide angle equation, that describes the 
transformation of wave potential §(x, y), can be derived 

e2   s2 d2 

2    2k2dy2 dx 
= ik^jl-e l+iP + 

7+s2 82 

2k2 dP (l.a) 

with P&~2k2 
r      2dk       dk    a> r 

dx      ay    cc • u) (l.b) 

where e=sinQ; yd is the dissipation coefficient of waves and U is the horizontally 
varying current; c, cg and co, are respectively wave phase velocity, group velocity and 
relative frequency; wave number k can be calculated according to the linear 
dispersion relation. The relative frequency is related to the absolute frequency co by 

(O=G> r + k*U, 0),  = ^Jgk tanhkh 

and the local effective depth 

Kx,y) = d(x,y)+pa»H(x,y),    0<pa<\     (l.e) 

(l.c,d) 
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with d(x,y) indicating water depth and H{x,y) wave height. The dissipation coefficient 
y,, can be easily represented, as formulated by Dingemans(1985) and Vogel et al. 
(1988). If the incident angle 9=0 and if there are no dissipation and current, eq.(l) is 
then reduced to the eq.(17) of Radder(1979). 

Numerical representation of eq.(l) is the discretization of wave potential § in 
spatial domain (x,y), with x>0 and 0<y<yb. The discretization in a computational 
region forms M+l rows in x-direction, with xm=m»Ax (m=0, 1, ...M), and N-l 
columns in ^-direction, with ym=n»Ay (n=l,2, ....N-l). The equations for lateral 
boundaries have to be applied at n~0 and n=N, to provide enough equations to solve 
for unknown (|),„ „. The solution of <j>„, „ is using the Crank-Nicolson method, which is 
an implicit scheme with second-order accuracy in both Ax and Ay. The details can be 
found in Gaoetal. (1993). 

The model has no difficulty to compute two-dimensional spectral waves, with 
four independent variables x, y, 0 and / The only one dependent variable is wave 
potential §(xm, y„ 6, fj). The computation is as follows: one starts computation at up- 
wave boundary where x=0 and processes in x-direction, the computation in 0-/domain 
is that one first solves the linear system of one component on a line in v-direction, then 
processes to next component. The computation can proceed to the next line only after 
that all wave components in Q^domain of a line have been determined. 

As mentioned, a parabolic wave model requires lateral boundary conditions. 
An improper treatment of boundary can cause contamination in the computational 
domain. Therefore, a parabolic model requires a very large computational domain to 
avoid the contamination of the interesting area from the lateral boundaries, which 
leads to inefficiency in computation. A perfect transmitting boundary condition (see 
also Gao et al. 1993; Dalrymple & Martin, 1992) has been established to allow 
waves to transmit out or into the computational domain without reflection regardless 
its direction, crest curvature and the strength of the scattering. 

The basis for such a boundary condition is that an exact description of waves 
in the shadow regions (outside of the computational domain) has to be obtained. To 
this end we assume in these regions that bottom has straight and parallel contour 
lines to y-direction and that wave dissipation depends only on x, then eq.(l) can be 
solved analytically for wave potential if. In practice, we use the differential form of 
wave potential at the lateral boundaries rather than an analytical one in order that it 
can be combined with the discretized form of eq. (1). The following equation, which 
is discretized in x-direction, can be derived 

ay +te^=  ^+"a*': + i§P,(*'"t)e (2) 

which is consistent with the discretized form of eq. (1) at the boundaries. Eq.(2) is 
the so-called perfect transmitting boundary condition, where <j>„„. is the incident wave 
which can be obtained numerically, coefficients a, p and S are given as follows: 
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(l + iPz),        a = -i 7S e*[j0(li)- U,(\i)] (2.a,b) 

P = r_^4-/2 >    po=-'--^p [eM-eCO*-^)] (2.c,d> 

P, = -/-- TC [2g((m-i)n)- 6((m-i + l)n)- Q{{m-x -l)u)] (2.e) 
nVP 

with 

_l-e2/2vl-s2 

^" T2/T '"'4 " AxU+J^ofc] (2.f) 

Q(z) = z^[j„{.z)-U,{z)] (2.g) 

in which 7=+i for left hand side boundary where y=yb and 1= -1 for right hand side 
one where y=0, J0 and J, being respectively the zero- and first-order Bessel function. 
Combining the discretized form of eq.(l) with eq.(2) results a linear system with 
tridiagonal matrix, which can be solved very efficiently. 

To illustrate the performance of the perfect transmitting boundary condition, 
we compared the numerical results of eq.(2) with a simple absorbing boundary 
condition, given by 

cosB -?- + sinG J- = ikp$ (3) 
o x o y y ' 

where 9 is the angle at which the plane waves propagate and ps is taken to be 1. A 
test was carried out for monochromatic waves in water a basis of 500mx500m, with 
water depth decreasing from 10m at x=0 to 5m at x=500m. The incident waves have 
height 1 meter, period 8s and an angle 30° with x axis. The spatial resolution is 
Ax=5m, Ay=7.5m. In figure (la) the computation was carried out with eq. (2) to be 
applied at both boundaries. The robustness of eq.(2) can easily be seen in left panel 
of figure 1, where waves are reasonably calculated across the whole computational 
line. Whereas in figure (l.b) we apply eq.(3) to y=0, the boundary of outgoing 
waves, the distortion in wave field can be easily found. 
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(a) (b) 

Figure 1. The plane waves propagate at 30° angle over a shoaling bottom, where 
arrows indicate the angle at which the waves propagate, and solid line is the iso-line 
of wave height. 

Comparison with The Results of Experiments by Vincent & Briggs 

Vincent & Briggs (1989) carried out experiments to simulate regular and 
irregular random waves in a hydraulic model, which consists of an elliptical shoal 
and an array of wave sensors. For details of the experiments the reader is referred to 
Vincent & Briggs. The incident waves which were generated by the spectral wave 
maker are described by TMA spectrum 

r* V--5, ./, (f-fpf 
E(ff=ag'(2n /*/'Jexp/-7.25f f / + ln Y •P[--~2ji ^d 

3 Jo  Jp 

with a =aa = 0.07   iff<fp,   o=ab = 0.09   iff>fp; 
(4.a) 

where a is the Phillip's constant, fp the peak frequency, y the peak enhancement factor, 

a the wave shape factor. The shallow water factor <|>d is given by 

f, = 0.5(0*,  if<od<\;       ifd = 1-0.5(2-codf,    if\<&d<2 
(4.b) 

<j>rf = 1, if&d>2;    with   cod = 2n f^h/g 

The directional spreading used in the experiments is the Fourier series representation 
for the wrapped normal function, which will be approximated in our computations by 
the following one 

, it/2 

Did^.-cosierQo),   with I,= \coss{Q)cB (5) 

where s is the directional spreading parameter, CT,„ =10 of the Fourier representation for 
the directional spreading will be approximated by s=20 of eq.(5) and a„, =30 by s=4. 
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A very high resolution in Q-f domain requires excessive computer effort when 
the model is applied to field cases. To this end, an approximation will be introduced and 
the accuracy of it will be examined. We are going to define a representative frequency, 
mean frequency, to approximate the full discretization in frequency domain, while the 
spectral representation of directionality of waves will be retained. This can not only 
save the computational cost by one order or more, but also allow us to employ the 
expressions for wave dissipation and wave growth in the model easily. The 
representative period is defined as follows 

/ = ~ \f E(f)df,   f = l/f with E0 = JE{f)df (6) 

To examine the performance of this approximation, we compare to the laboratory case 
Nl andBl of Vincent & Briggs, where case Nl andBl have respectively a narrow and 
broad directional spreading. For each case three computations were carried out with the 
numerical model. The first computation was carried out with fully spectral form; the 
frequencies vary from the minimum f,=0.5Rz to the maximum fls=1.5Hz, with 
A/=0.071; the directional sector is 12(f and angular resolution is A9=5° for all cases. 
The second and third computations were carried out with or without dissipation due to 
wave breaking; we employ the approximation form of eq.(6), but still keep the 
directionality of the spectral waves. There are total 15x25=375 wave components per 
mesh point in the first computation and only 25 in the second and third computation. 
The input parameters are listed in table 1. The parameters in column 2, 3, 4, 5, 7 and 
8 are those used in the first computation and those in column 2, 6 to 8 are used in the 
second or third computations. The computation consists an area of 20m by 23m and 
the numerical resolution in spatial domain is hx-O.lm, Ay=0.1m. 

case H(cm) T„(s) a Y T(s) s(eq. 5) Pa 
Nl 7.75 1.3 0.0144 2 1.07 20 0.5 
Bl 7.75 1.3 0.0044 2 1.07 4 0.5 

Table 1 The parameters used by the numerical model. 

From above computations the following points are to be worthily noted. 
1. The model computes the waves in fully spectral form (discretized in both 

frequency and directional domain) of the laboratory situation with reasonably 
accuracy and small cpu cost (about 15 minutes on Pentium 90). 

2. We find that the differences between the wave heights calculated by the fully 
spectral form and by the approximation form of eq.(6) are insignificant. 

3. Along section 3 discrepancies are found between the computed and measured 
wave heights in the divergence zones, but the differences decrease for waves with 
the broad directional spreading. 

4. Along section 7-9 of wave propagation direction, the computed and measured 
wave heights agree reasonably well. 

5. It is not conclusive that one can improve the computed results by including wave 
dissipation in the model. 
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y(m) 

Figure 2a. Comparison between the computed and measured wave heights along the 
section 3 for case Nl. The legends are given as follows: spetr: wave heights 
computed with fully spectral form; meas: measured heights; appr: computed with the 
approximation of eq. (6); break: computed with dissipation due to wave breaking. 

x{m) 

Figure 2b. Along section 7-9 for case Nl. 

Figure 2c. Along section 3 for case Bl. 
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Figure 2d. Along section 7-9 for case Bl. 

Comparison with Field Measurements 

When approaching the shore region, the surface waves will be influenced by a 
number of factors. Except for wave shoaling and breaking, refraction and diffraction, 
wind will have a profound effect on waves in a region behind an island or breaker 
zone. In our model we adopt an empirical expression to account for wave growth due 
to wind effect(see also Vogel et al., 1988 ) 

Y„ = -"£*-^-coS(e.-e), 
(?) 

with      H    = b 
[\ ~ a v x w j 

and      H, g*» 

where Hs is the significant wave height, U„, 6W, 0 and x„ are respectively wind speed 
and direction, wave direction and fetch, coefficient b-0.30 and a=0.009 were used in 
the following computations. As mentioned in the previous section we will use a 
representative period, the mean period, but still keep the directionality of spectral 
waves in the field cases of the estuary Haringvliet and tidal area Friesche Zeegat. 

A. The estuary Haringvliet 
The area was chosen to test the model because the wave data in this area is 

well documented (for details see Andorka Gal, 1995), and because the data set has 
been extensively used to test the performance of various wave models (see, for 
example, Vogel et. al, 1988, Holthuijsen et. al,1989). The bathymetry of the estuary 
and the locations of the measurement are shown in figure 3. The computational area 
of the present model, which consists of an area of 13600m xl2400m, is considerably 
smaller than those mentioned; the directional sector is 120°. The spatial resolution is 
Ax=5m, ky=10m and the angular resolution is A9=75°, the directional spreading 
parameter is s=4 for all cases. There are total 9 wave components involved in one 
mesh point. The computations were carried out for the storm situation of 14-15 Oct. 
1982. The directional wave buoy WAVEC (see figure 3 at location WA) provides 
significant wave height, mean wave direction and mean period as up-boundary 
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conditions; these are listed in Table 2, along with wind and water level. The 
measured wave heights at other locations were used to check the accuracy of the 
model. The comparison between the computed and the measured wave heights are 
given in Table 3. Further the computed wave heights versus the measured ones are 
shown in figure 4. 

No.l No.2 No.3 No.4 No.5 No.6 
Date/Time 17:00, 14 20:00, 14 22:00, 14 23:00, 14 02:00, 15 04:00, 15 
Uv (m/s) 14 14 15 15 13 13 
6W (degree; 310 310 310 310 310 310 
Water leve 1 -0.1m 0.2m 0.85m 1.75m 1.50m 0.45m 
Him) 2.58 3.06 3.23 3.54 2.89 2.72 
T(s) 6.0 6.8 6.7 6.7 6.6 6.3 

Table 2. The input parameters of the model. 

No.l No.2 No.3 
"MEAS "CMP "MEAS "CMP "MEAS "CMP 

WA 2.58 - 3.06 - 3.23 - 
WR1 2.34 2.55 2.65 2.96 2.90 3.13 
WR2 2.21 2.17 2.38 2.34 2.53 2.58 
WR3 2.21 2.05 2.45 2.28 2.70 2.50 
WR4 0.40 0.43 0.48 0.49 0.62 0.56 
WR5 0.66 0.79 0.75 0.84 1.05 1.06 
WR6 1.16 1.09 1.20 1.28 1.60 1.61 
E-75 0.61 0.57 0.74 0.79 0.94 0.95 

No.4 No.5 No.6 
"MEAS "CMP "MEAS "CMP "MEAS "CMP 

WA 3.54 - 2.89 - 2.72 - 
WR1 3.10 3.40 2.68 2.84 2.49 2.66 
WR2 2.63 2.88 2.75 2.67 2.41 2.35 
WR3 2.72 2.70 2.68 2.47 2.56 2.24 
WR4 0.72 0.80 0.70 0.71 0.44 0.46 
WR5 1.45 1.36 1.15 1.26 0.70 0.93 
WR6 1.86 1.71 1.95 1.61 1.35 1.32 
E-75 1.08 1.08 0.88 0.90 0.63 0.72 

Table 3. Comparison of the measured and computed wave heights in Haringvliet. 

To measure the performance of the model, we employ the following two 
statistical expressions, by which the larger waves can not dominate the error 
quantities; the first one is the relative root-mean-square-error, the second is the 
performance rate of the model, defined as follows: 

1 y\ Ha€L__  \ = i_._... 
&•,   —-' -r/_il    TT '     >      rmdl        *        N 

ZJ\•CMP      "iMAS) 

Z(n f|+l HMEAS ~ HMEAS\) 

(8.a,b) 
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where HCMP is the computed wave height and HMKAS the measured one. HUMS is the 
measured mean wave height. For the data set listed in Table 3 we have E111IS=0.094 

and Pmd]=76%, these compare favourably to the model CREDIZ( Vogel et al., 1988), 
which has s,„ 
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Figure 3 Bathymetry of the estuary Haringvliet and locations of the measurement, 
where the rectangle indicates the computational area. 

3 
Q. 
E 
o 

Hs, measured 

Figure 4 Computed wave heights versus measured ones. 

B. The tidal area Friesche Zeegat 

The aim is to test the model in a situation of strong tidal current, up which 
waves propagate. The area was chosen because the wave data from measurements is 
available (see Dunsbergen, 1995), and tidal currents were calculated with a fair 
degree of detail. The bathymetry of the area, along with locations of measurement, is 
shown in figure 5. A shoal, located in the centre of the tidal channel, will shelter most 
onshore area from the incoming waves. The tidal current, as shown in figure 6a (for 
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flood case) and figure 7a (for ebb case), will also contribute to deflect the 
propagation direction of the incoming waves. 

The weather situation was that a storm in the North Sea generated waves, 
which propagated into tidal area. The computations were carried out for the flood 
case at 06:00 M.E.T., Oct. 9, 1992 and the ebb case at 12:00 M.E.T. Oct. 9 1992 in a 
rectangular area of 22000mx 16000m, the directional sector was taken to be 90°. The 
waves measured by WAVEC buoy at location S is used to provide the model with 
the up-wave boundary. The input parameters are given in Table 4, where the mean 
wave direction is the same as wind and is in nautical convention. The wave heights 
measured at other locations were used to check the performance of the model. The 
resolution was Ax=5m, Ay=10m and A0=15°, the directional spreading parameter s=6 
is used for flood case and s=l0 for ebb case. In these computations only 7 wave 
components per mesh point are used. 

Figure 5 Bathymetry of tidal area Friesche Zeegat with the locations of observation 
(marked with •). 

Hs T Water level uw ew s 
Flood 2.24 5.6 1.13m 12.0m/s 320° 6 
Ebb 3.31 7.4 0.1m 11.5m/s 340° 10 

Table 4. The input parameters for the numerical model. 

location N                O P G              R 
Flood 

"MEAS 1.75 1.90 0.56 0.53 0.31 

"CMP 1.72 1.82 0.43 0.40 0.53 
Ebb 

"MEAS 1.65 2.62 0.39 0.52 0.43 

"CMP 1.94 1.93 0.58 0.59 0.42 

Table 5 The measured and computed wave heights for ebb and flood cases. 
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The comparison between the computed and measured waves is shown in table 
5. For the flood case the rms error e^ is 0.23, the performance rate Pmd| is 97% and 
for the ebb case zmj=021, Pmd]=69%. The computed wave fields are shown in figure 
6b for the flood case and figure 7b for the ebb case. The following remarks are added 
here according to the computed results: The varying depth in the area of the tidal 
inlet deflects the propagation'direction of the incoming waves, making them towards 
the shallow area. In such a situation it is hardly possible for monochromatic waves to 
penetrate through the channel and to arrive in the onshore region (south of tidal 
inlet). The computations also indicate that in the inlet region the tidal current has 
profound influence on the computed waves, whereas wind nearly dominates the 
waves in onshore region. 

Figure 6a. Tidal current for flood case at 06:00 M.E. T., Oct. 9, 1992 in the area of 
Friesche Zeegat, where the rectangular line indicates the computational area. 

Figure 6b. Computed waves for the flood case, where the iso-lines refer to the wave 
height and arrows indicate the mean wave direction. 
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Figure 7a. Tidal current ( ebb case) at 12:00 M.E.T. Oct. 9, 1992. 

Figure 7b. Computed waves for the ebb case, caption is the same as figure 6b. 

Conclusions 

The advantage of the parabolic model is that it can be used to compute wave 
transformation in a large horizontal domain, say, a region of several hundreds of wave 
length on one side. But when applied to field cases, the model often assumes the 
incoming waves to be monochromatic. The numerical model presented in this paper 
can be used to compute irregular waves and regular waves as well. The numerical 
results have been compared to a number of measurements from hydraulic models as 
well as field cases on coastal areas. We have the following conclusions: 1, The results 
show that the model is suitable for waves with large incident angle. 2, Through the 
linear superposition of regular waves, the model can be used to compute irregular 
waves; the performance of the model was reasonably good when it was applied to the 
laboratory cases of Vincent & Briggs. 3, The perfect boundary condition used in the 
numerical model can allow waves to transmit out or into the computational domain 
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without causing disturbances in the computational domain, which also makes the 
computation of waves very efficient. 4, The model can be used to compute waves in 
field cases and it performs quite well when compared to the observations. 
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