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Abstract 

This paper presents a numerical study of nearshore wave dynamics including the surf 
zone. Two different time-domain Boussinesq type formulations are applied for this 
purpose. The first model incoporates Pade [2,2] dispersion characteristics and lowest 
order nonlinearity. The second and more sophisticated model incorporates Pade [4,4] 
characteristics and higher-order nonlinearity in the dispersive terms. The models are 
validated on the shoaling and breaking of regular and irregular waves with and 
without an ambient current. 

1. INTRODUCTION 

Numerical models of nearshore wave hydrodynamics have developed rapidly in 
complexity over the last decade. Today, the most advanced Boussinesq type models 
offer an accurate representation of complicated processes such as triad wave 
interactions and wave-current interaction, while wave breaking of irregular waves and 
the resulting dissipation processes can be approximated by fairly simple but 
reasonably accurate descriptions. This allows for a study of a variety of complicated 
phenomena in the surf zone and in the swash zone. 

In previous publications (e.g. Schaffer et al., 1993; Madsen et al., 1997a,b; 
Sorensen et al., 1998) we have studied and modelled surf zone dynamics such as the 
shoaling, breaking and runup of regular and irregular waves, the generation and 
release of low frequency waves, wave-induced rip-currents and circulation cells 
behind detached breakwaters. For this purpose we have until recently applied a time- 
domain Boussinesq model (I) in terms of the depth-integrated velocity and including 
lowest order nonlinearity and Pade [2,2] dispersion characteristics. The results 
obtained with this model have been satisfactory with a few exceptions. However, it 
has been clear for some time that this model underestimates the nonlinear shoaling 
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near the break point. This shortcoming shows up in the wave height or wave crest 
variations and even more clearly in the evolution of nonlinear measures such as the 
skewness and asymmetry. 

In this work we introduce a more sophisticated Boussinesq model (II) which 
includes higher-order nonlinearity in the dispersive terms as well as more accurate 
linear dispersion characteristics (Pade [4,4]-type). Both models (I and II) are applied 
in this study to investigate shoaling and breaking of regular and irregular waves on 
different bathymetries. The emphasis is on the evolution of higher-order statistics in 
terms of the skewness and asymmetry. Comparisons with physical experiments are 
presented for three cases. The effect of an opposing current on the shoaling and 
breaking of regular waves on a sloping plane beach is also investigated. Here we 
concentrate on validating the ability of the breaking model to predict the breaker 
depth and breaker height. 

2. MODEL DESCRIPTION 

The two different time-domain Boussinesq formulations considered in this work are 
described below. For simplicity we shall list the equations for a constant depth 
althrough the variable-depth terms were included in all computations. Both models 
are extended into the surf zone by the use of the so-called roller concept as 
summarized in Section 2.2. 

2.1 Boussinesq formulations 

Model I is formulated in terms of the depth-integrated horizontal velocity and it 
retains terms of order 0(^2,e), where e is a measure of the nonlinearity and /x is a 
measure of linear dispersion. The general two-dimensional equations valid on a 
sloping bottom were originally derived by Madsen & Serensen (1992) and later 
extended to the surf zone by Madsen et al. (1997a,b). In one dimension and on a 
constant depth the equations read 

%• + & = 0 (la) 
dt        dx 

«•*•! \h + er\) 
+ eR   + (h + ex))r]x + 

11 lri_3'* <?«",'ViA T1~i = °^vL'^ 
(ib) 

where Q is the depth integrated velocity, h is the still water depth, r\ is the surface 
elevation and c1=-l/15. This formulation is superior to the classical Boussinesq 
equations as it incorporates Pade [2,2] dispersion characteristics for pure waves, i.e. 
in the absence of current. We note that the R-X&rm in (lb) represents the roller 
dynamics as described in Section 2.2. 
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Model II is formulated in terms of the horizontal velocity at a certain z/h- 
location and it retains terms of order 0(n2,e3fx2). The general two-dimensional 
equations valid on a sloping bottom can be found in Madsen & Schaffer (1998a), and 
they have previously been solved in one-dimension by Madsen et al. (1996). In one 
dimension and on a constant depth the equations read 

ij, + hux + lW(a+j-P^^-P^riJ + e(n*)x 
+ 

e\i2h2— (np 
5xv PiM)* 

2    2 h   O  I    2 '    \ (2a) 
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2 d ejr— 
dx «*2"„ " yWL + ^2(»,f - *n«ia 

2..2   ^L.1^   +  hT\[u2
x-UU    II   + 6'li 

3x1    2 

eV^f-Vu*    + i(r,«x)
2|   =   o(u^ 

cbcl   2 

(2b) 

where u is the velocity in a specific z/h-location and 

-3-/23/35-2/19/7     28-2/133     105-3/805 
(«.Pi'«i) = 18 126 1890     ) 

(3) 

Again the /?-term in (2b) represents the roller dynamics as described in Section 2.2. 
Madsen & Schaffer (1998a,b) demonstrated that (2a-b) is Galilean invariant and that 
it incorporates Pade [4,4] dispersion characteristics for pure waves as well as for 
waves in currents. Furthermore, the characteristics for shoaling and wave-wave 
interaction are generally superior to the ones obtained by Model I. 

Fig. 1 shows the accuracy of the second order transfer functions derived 
from the two different Boussinesq formulations. The individual transfer functions are 
scaled with the target solution of Stokes. We notice that Model II obviously contains 
the best nonlinear performance, while Model I significantly underestimates the 
transfer function for larger kh-values. 
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Figure 1   Transfer function for the second harmonic as function of kh for the two 
Boussinesq-type models. Results scaled by Stokes solution. ( ) Model 
I and ( ) Model II. 

2.2 Breaker model based on the roller concept 

Wave breaking is introduced in the Boussinesq equations on the basis of the surface 
roller concept for spilling breakers as described by Schaffer et al. (1993) and Madsen 
et al. (1997a, 1997b). The basic principle is that the surface roller is considered as 
a volume of water carried by the wave with the wave celerity. The influence of 
breaking on the governing equations is modelled by an additional momentum term 
orginating from a non-uniform velocity profile due to the presence of the roller. This 
momentum term can be expressed as 

1 - bid 
(c -«) 

(4) 

Here d is the total water depth, 5 is the roller thickness, c is the roller celerity, while 
u is the depth-averaged velocity (Q/d) in eq. (lb) and the velocity at a specific z/h- 
location in eq. (2b). 

The instantaneous roller thickness at each point is determined based on a 
heuristic geometrical approach. Incipent breaking is assumed to occur when the local 
slope of the surface elevation exceeds an initial critical value, tan<£B. During the 
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transition from initial breaking to a bore-like stage in the inner surf zone the critical 
angle is assumed to gradually change from <£B to a smaller terminal angle <j>0. Hence 
the instantaneous value of <j> defining the toe of the roller depends on the age of the 
roller and is assumed to follow an exponential time-variation with a half time t1/2. 
Locally, the roller is defined as the water above the tangent of slope tan<£. Prior to 
inclusion in the governing equations the roller thickness is multiplied by a shape 
factor. In Model I a constant factor of 1.5 is applied, while a shape factor which has 
a linear variation from 2 at the toe of the roller to zero at the back of the roller is 
applied in Model II. The latter modification of the shape factor was introduced 
because the previous formulation had a tendency to give small spurious oscillations 
near the back of the roller, when applied to the peaked wave profiles appearing with 
Model II. 

For Model I all test cases in the present paper are modelled with a default set 
of breaking parameters (<f>B, 4>0, t]/2) = (20 deg, 10 deg, 175), where T is a 
characteristic wave period. These parameters were given by Madsen et al. (1997a). 
However, the calibration of <t>B and to some extent t1/2 is related to the accuracy of 
the computed surface elevation before the breaking occurs. As Model II incorporates 
more nonlinearity, the wave profiles computed by this model will generally contain 
a higher level of skewness and this will show up in particular near the breaking point. 
Therefore, the breaking parameters, which have been calibrated on the basis of 
Model I, have to be revised. In the present paper all simulations with Model II are 
performed with (</>B, 4>0, t,/2) = (32 deg, 10 deg, T/10). 

The wave celerity, which is an important part of (4), is determined interactively 
from the instantaneous wave field using 

n, (5) 

determined at the steepest point of each wave front. 

3. Shoaling and breaking of regular and irregular waves 

3.1 Regular waves on a plane sloping beach 

Ting and Kirby (1994) presented measurements for spilling breakers on a plane 
sloping beach with a slope of 1/35 starting in a depth of 0.40 m. As input they 
generated regular waves with a wave period of 2.0 s and a wave height of 0.125 m. 
Fig. 2 shows the spatial variation of the crest and trough elevations and of the mean 
water level computed by the two different Boussinesq models. It is obvious that 
model II, which contains higher-order nonlinear terms, significantly improves the 
nonlinear shoaling up to the vicinity of the breaking point. This result is in 
accordance with the analysis from Fig. 1. The difference between the two model 
results is emphasized in Fig. 3, which shows the spatial variation of the skewness and 
asymmetry, and in Fig 4, which shows the computed wave profiles at the point of 
wave breaking. Again model II is seen to predict a much higher level of nonlinearity. 
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Figure 2   Spatial variation of wave crest elevation, wave trough elevation and mean 
water level for the test of Ting and Kirby (1994). ( ) Model I; ( ) 
Model II; (o) experimental data. 
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Figure 3   Spatial variation of the skewness and asymmetry for the test of Ting and 
Kirby (1994), (- - -) Model I and ( ) Model II. 
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Figure 4   Timeseries of surface elevations at a location near the break point (x = ll 
m). (- - -) Model I and ( ) Model II. 

3.2 Irregular waves on a plane sloping beach 

This test case is based on the laboratory measurements reported by Cox et al. (1991). 
Fig. 5 illustrates the experimental setup. The flume consists of a 10 m horizontal 
section with a water depth of 0.47 m and a 12 m section with a constant slope of 
1/20. Measurements of the surface elevation are available at eleven locations (denoted 
WG1 to WG11) in still water depths of 47, 35, 30, 25, 20, 17.5, 15, 12.5, 10, 7.5 
and 5 cm. The input waves are generated on the basis of a target spectrum of 
Pierson-Moskowitz type with a peak frequency of 1.0 Hz and a significant wave 
height of 6.45 cm. 

Based on the peak frequency we find that h/Lo=0.30 (LQ being the deep water 
wave length) at the offshore boundary and this makes the test very demanding for 
weakly dispersive Boussinesq models. Model I, which incorporates Pade [2,2] 
dispersion characteristics, is resticted to h/L,, values less than approximately 0.5 and 
beyond this limit errors in the linear dispersion relation will exceed 5% (see Madsen 
et al., 1991). Hence an accurate representation of free waves at 2.0 Hz (two times 

WAVE PADDLE WAVE GAUGES 

Figure 5   Sketch of physical wave flume (Cox et al. (1991). 
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the peak frequency) requires the water depth to be less than 0.25 m. For this reason 
model I does not cover the full domain of the experimental flume, but it is started at 
station WG4 in a depth of 0.25 m. Model II, on the other hand, incorporates Pade 
[4,4] dispersion characteristics, which are accurate for h/Lo as high as 1.0. Hence 
this model is started at WG1 at a depth of 0.47 m. In both cases the following 
procedure is used to obtain the incoming wave conditions: First, the measured surface 
elevation at WG4 (model I) and WG1 (model II) is analysed by FFT. Second, a 
bandpass filter is applied to remove the energy on frequencies lower than f=0.4 Hz, 
and higher than f=3.0 Hz. Third, the remaining energy is synthesized back into a 
flux or a velocity boundary condition by the use of a second order pertubation theory 
corresponding to each of the model equations. 

Fig. 6a-c show the measured and computed spatial variations of the significant 
wave height, the skewness and the asymmetry. For both models the predicted wave 
heights are in fairly good agreement with the measurements. From Fig. 6b we notice 
that the skewness computed by model I is seen to be significantly underestimated 
everywhere in the flume, while model II picks up the correct variation of this 
quantity. The skewness is a measure of the nonlinearity in the wave profile and we 
notice that the results obtained in Fig. 6b confirm the analysis of the transfer function 
to second harmonics as shown in Fig. 1. Fig. 6c shows the spatial variation of the 
measured and computed asymmetry. This quantity, which measures the forward 
pitching of the wave profiles, is almost zero up to the break point beyond which the 
value decreases drastically. The results obtained by model II are seen to be in almost 
perfect agreement with the measurements. This result is remarkable and it confirms 
that the time-domain surf zone Boussinesq model can provide an accurate prediction 
of the statistics of the wave shape under the combined influence of triad interactions 
and wave breaking. 

Fig 7 shows the measured and computed energy spectra at three locations (WG7, 
WG9, WG11). Model II is seen to be in very good agreement with the 
measurements, while model I tends to underestimate the high frequency tail of the 
spectrum. As mentioned above, the input spectrum used for model I, did not contain 
energy for frequencies higher than 3.0 Hz. Hence, whatever is present beyond this 
frequency limit in more shallow water is generated by triad interactions. It is 
therefore not surprising that the high frequency tail is underestimated by model I. 

3.3 Irregular waves on a barred beach 

This case is based on the Delta Flume '93 laboratory experiment (Arcilla et al., 
1994) which was conducted on a barred beach (Fig. 8d) using a Pierson-Moskowitz 
spectrum with peak frequency of 0.122 Hz and a significant wave height of 0.58 m. 
The procedure described in section 3.2 to obtain the incoming wave conditions is also 
applied here. Fig. 8a-c shows the computed spatial variation of the significant wave 
height, skewness and asymmetry for the two Boussinesq models. Again the two 
models predict almost the same variation of the wave heights while significant 
differences appear in the measures of the nonlinearity: Model I clearly underpredicts 
the skewness (as well as the asymmetry) while model II is in very good agreement 
with the measurements. 
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Figure 6  Irregular wave on a plane beach. Spatial variation of (a) the significant 
wave height, (b) skewness, (c) asymmetry. ( ) Model I; ( ) Model 
II; (o) Experimental data by Cox et al. (1991). 
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Figure 7   Surface elevation spectra at three locations. ( ) Model I; ( ) Model 
II; ( ) Experimental data by Cox et al. (1991). 
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Figure 8  Irregular waves on a barred beach. Spatial variation of (a) the significant 
wave height, (b) skewness, (c) asymmetry and (d) bathymetry. ( ) 
Model I; ( ) Model II; (o) Experimental data by Arcilla et al. (1994). 
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4. Waves in an opposing current 

Boussinesq model II is Galilean invariant in contrast to model I, and it provides Pade 
[4,4] dispersion characteristics with the correct Doppler shift in connection with 
ambient uniform currents (see e.g. Madsen & Schaffer, 1998a,b). In this work we 
have applied model II to study the phenomenon of wave breaking in adverse currents. 
We have focused on the experiments by Sakai et al.(1981) who investigated breaker 
types and breaker depth indices for a variety of opposing currents, beach slopes and 
deep water wave stepnesses. The experiments were performed in a 24 m long, 0.36 
m wide and 0.80 m deep wave flume as shown in Fig. 9. In this paper we present 
results for the following cases: A beach slope of s = 1/30, regular waves with wave 
period of T = 1.2 s, wave heights in the interval between 0.009 m and 0.180 m and 
the current discharges of q = 0, 0.0169 m2/s and 0.0297 m2/s. 

Fig. 10 shows the calculated breaker depth index hB/L0 as a function of the deep 
water wave steepness H0/L0. Here hB is the still water depth at the break point, H„ 
is the wave height in deep water and L0 is the deep water wave length. We notice 
that the breaker depth clearly increases for increasing currents and that the model 
results are in good agreement with the measurements. 

Sakai et al. (1988) presented emperical formulas for breaking conditions of 
shoaling waves on opposing currents. These were based on the extensive flume 
experiments by Sakai et al. (1981, 1984) and they give the ratio of the breaker depth, 
Rh, with and without current and likewise for the breaker height, RH. Both ratios are 
given as function of a new parameter 7 which accounts for the combined effect of the 
discharge, the incident wave steepness and the slope of the bed 

Y  = q'sl'\HJL0) (6) 

where 

1   = qg~ (7) 

In Fig. 11 the calculated values of R,, and RH are compared with the emperical 
formulas by Sakai et al. (1988). It is seen that for the relative breaker depth the 
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3 

Figure 9   Experiment setup by Sakai et al. (1981). 
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Figure 10   Breaker depth index, lyLj, as funtion of the deep water wave steepness 
H0/Lo. Lines show calculations with Model II ( ) q=0, (- - -) 
q=0.0169 m2/s, (....) q=0.0297 m2/s; Markers show measurements by 
Sakai et al. (1981), (o) q=0, (D) q=0.0169 m2/s, (A) q=0.0297 m2/s. 
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Figure 11   Relative breaker depth and relative breaker height as function of the 
parameter y. Lines show formulas by Sakai et al. (1988), ( ) Rh and 

q=0.0169 m7s, (A) Rh for q=0.0297 m2/s; (x) RH for q; 
and (D) RH for q=0.0297 m2/s. 
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=0.0169 m2/s 
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agreement with measurements are quite good, while the relative breaker height seems 
to be overestimated. 
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