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ABSTRACT: The paper describes results with a breaking wave model 

based on an extended set of Boussinesq equations. The wave breaking is 

described by accounting for the effect of vorticity generated by the breaking 

process. The vorticity field in the domain is obtained by solving the vortic- 

ity transport equation, which is based entirely on the Reynold's equations. 

In addition to the wave height decay and profile deformation predicted by 

earlier breaker models, the present model also provides information about 

the velocity profiles. The model results give good agreement with experi- 

mental data for wave height, setup and the velocity profiles. The cross- 

shore variation of the radiation stress calculated from the model results 

gives a good representation of the results from experimental data. 

1. Introduction. 
Recently, there has been an increased need for time-domain modelling of break- 

ing waves. This stems from a need to accurately model the nearshore wave 

motion and circulation. Simulations of breaking waves have been performed 

by Lin and Liu (1998a, 1998b). They solved the Reynolds equations for the 

mean flow and the k — e equation for turbulent kinetic energy using the VOF 

method. The model results and experimental data were found to be in good 

agreement. The advantage of this type of modelling is that the flow details such 

as the turbulent intensities and the shear stresses can be directly evaluated from 

the model results. However, it takes about 48 hours of CPU time on a super- 

computer to simulate one minute of real time for a two-dimensional case. As a 
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result, applications to practical cases are limited. 

Hence, modelling of breaking waves using shallow water theories such as the non- 

linear shallow water equations or the Boussinesq equations remain of practical 

importance. To incorporate breaking in such models, a wave breaking criterion 

and an energy dissipation mechanism is necessary. The wave breaking criteria 

used in all models are semi-empirical in nature, as there are no general theoretical 

bases on which a wave can be assumed to start breaking. 

There are several ways in which the energy dissipation can be included in the 

models. One method is based on the concept of an artificial eddy viscosity term 

which is introduced in the momentum equations (see for example Zelt 1991; 

Karambas and Koutitas 1992; Wei and Kirby 1995). The value of the eddy 

viscosity is calibrated with experimental data. With suitable choices for the 

eddy viscosity, very good approximations to the wave height data is obtained. 

The problem with this approach is that the velocity profile is not changed from 

the standard quadratic profile (or a higher order polynomial depending upon 

the order of the terms retained in the Boussinesq theory) because the flow is 

modelled as a potential flow. The eddy viscosity term is also not physically 

justified. 

Another method uses the concept of a roller model first used by Svendsen (1984a, 

1984b). In these breaking models, the roller rides on the front face of the wave at 

the speed of the wave (Brocchini et al. 1991; Schaffer et al. 1992; Schaffer et al. 

1993). This introduces a change in the velocity profile once the waves break. 

The velocity is assumed to have a constant value in the roller region equal to 

about 1.3 times the wave speed. Associated with this change in velocity profile 

is an excess momentum flux, which simulates wave breaking. As before, com- 

parisons with experimental data show that the results for the wave heights and 

setup can be modeled quite accurately although the flow is essentially modelled 

as a potential flow. However, physically, the velocity profile assumed in such 

models is unrealistic. 

Svendsen et al. (1996) presented a model for surf zone waves by accounting for 

the vorticity present in the breaking waves. The vertical distribution of the vor- 

ticity was obtained by solving the vorticity transport equation. The boundary 

condition was prescribed at the mean water level and a finite-difference scheme 

was used to solve the vorticity equation. However, though consistent with clas- 

sical Boussinesq theory, this approach misses the significant contributions of the 

vorticity generated in the roller region. Also, by using a finite-difference scheme, 

it turns out that the small water depths in the surf zone resulted in significant 

numerical errors while resolving the vorticity distribution.  The model used in 
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this paper is based on the same general principles. However, the boundary con- 

dition for vorticity is prescribed at the lower edge of the roller which is physically 

much more accurate. Furthermore, the vorticity equation is solved analytically, 

thus avoiding the problems associated with numerical modelling. Also, enhanced 

dispersion characteristics have been used. 

2. Governing Equations. 

The governing equations are derived from the basic equations for conservation 

of mass and momentum. The derivation, which is an extension of the classical 

Boussinesq theory with the Ursell number U = 0(1), was given in Svendsen 

et al. (1996). The Ursell number is defined as the ratio between the two param- 

eters 5 = ao/ho and fi = k0h0 where a0, ho and ko are the characteristic wave 

amplitude, water depth and wave number respectively. 

Then, the nondimensional depth integrated countinuity equation is 

at     dx ' 
where £ is the instantaneous water surface elevation and Q is the volume flux. 

The model uses the direct depth integrated version of the momentum equations, 

with the enhancement of the frequency dispersion suggested by Madsen et al. 

(1991), which is 

^XXX 

+ S(AM)x + ^(AP)xxt = 0 (2) 

where 

AM=  /    {u2-ur
2)dz, (3) 

J-h 

are the momentum signatures of breaking.   In (3) and (4), the velocities are 

given by 

_ h _ u? (h2 \ _ 
u = up + fi2(-- z)(hup)xx + — f — - z2 \ uPxx + ur + 0{fJ,4) (5) 

ur =  I    LO dz — JJ,    I     I     I    ioxx dz dz dz (6) 
J-h J-h J-h J-h 

where up is the depth-averaged velocity corresponding to the potential part of 

the flow (i.e.  terms that do not include the vorticity) and ur is the rotational 
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part of the velocity which essentially represents the effect of breaking, LO is the 

vorticity. 

Assuming a constant eddy viscosity, the vorticity transport equation and the 

boundary conditions read 

du> d2w      _,,-    ,, ._. 

Tt=^ + 0^ (7) 

UJ{z = Ce,t)=UJa(x,t) (8) 

w(z = -h,t) = 0 (9) 

u>{z,t = 0) = 0 (10) 

where (c is the lower edge of the roller and u>s(x,t) is as yet unspecified. Noting 

that the terms involving breaking in (2) are 0(8) and 0(fi2), we keep only terms 

of 0(1) in the vorticity transport equation. 

The bottom boundary condition of zero vorticity is consistent with the assump- 

tion that breaking is the most important source of vorticity. At the free surface 

we can expect zero vorticity along the part of the surface which does not in- 

clude the roller region. In the roller region, measurements from hydraulic jumps 

(Svendsen et al. 1998) show that the free surface vorticity will also be close 

to zero. However, strong vorticity is generated inside the roller region with a 

maximum occuring near the lower limit of the roller. We approximate the vor- 

ticity generated in this region by the vorticity between the surface roller and the 

region beneath. 

In the Svendsen et al. (1996) version of of the model, w„ was specified along 

the mean water level rather than the lower limit of the roller. Though this is 

consistent with the Boussinesq assumptions, this turns out to be a major source 

of inaccuracy. Also, in the previous version of the model, the vorticity equations 

were solved using a Crank-Nicholson method. With the small water depths 

in the surf-zone, the numerical error due to the finite difference methods were 

also very large due to the necessity of a very fine discretization in z, unless a 

very fine discretization in x and t was also used. These deficiencies have been 

eliminated in the present version by introducing the coordinate transformation 

a = (h + z)j(h + Ce) where (e is 0(8). To 0(5, fi2) this gives (7) with a instead 

of z. Solving (7)-(10) analytically gives 

, — 2 2, Gn sin mra, (11) 
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where 

Gn = (-1)" 

Jo dt 
e"V"<!-T» dr. (12) 

Using (11), the expressions for AM and AP are obtained. 

3. Boundary conditions for vorticity. 

Measurements of velocity in the roller region for breaking waves are not yet 

available inside the surf-zone. However, velocity measurements are available for 

hydraulic jumps with for the range of Froude numbers 1 ~ Fr < 2 (Svendsen 

et al. 1998; Lin and Rockwell 1994; Bakunin 1995) which is similar to Froude 

numbers for breaking waves. Breaking waves viewed in a coordinate system 

which moves at the wave speed have flow patterns around the roller region that 

are very similar to that observed in hydraulic jumps. The absolute velocities and 

the bottom boundary layer would of course be different under this coordinate 

transformation but the turbulent stresses, the surface profile and especially the 

vorticity are the same in a moving coordinate system. 
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Figure 1: Velocity profiles in three hydraulic jumps with Froude numbers 1.38, 1.46 
and 1.56. Data is '•', vorticity is ' ' and the fit to the velocity is ' '. The 
total water depth at each location is '+' and the location of the lower edge of the 
streamline is 'o'(from  Svendsen et al. 1998) 

Velocity measurements by Bakunin (1995) were available for Froude numbers 

of 1.38, 1.46 and 1.56, from which the vorticity distribution could be calculated. 

The details of the analysis of the data can be found in Veeramony and Svendsen 
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(1997) and Svendsen et al. (1998). Figure 1 shows the variation of the horizontal 

velocity and the vorticity in the three jumps. The volume flux is also known for 

each jump condition from which the thickness of the roller is calculated, since 

the net volume flux through the roller region is zero. Figure 2a shows that the 

non-dimensional roller thickness is similar for all three cases. Therefore, the 

dimensionless roller thickness can be represented by the curve, obtained using a 

least squares fit to the data, shown in figure 2a. 

^•^"Grir (13) 
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Figure 2:   (a) The non-dimensional thickness of the roller for the hydraulic jumps: 
Data for Froude numbers 1.38 (o), 1.46 (x), 1.56(*) and least-squares fit (13).   (b) 
Non-dimensional vorticity at the lower edge of the roller with the linear fit ( ) 
and according to (14) ( ). 

Figure 2(b) shows the vorticity at the lower edge of the roller. Again, the non- 

dimensional values for all three cases are very similar, and the dimensionless LOS 

can be represented by 

«. = 15.75 (l - I 

which is shown as the solid line in the figure. However, though physically real- 

istic, the step discontinuity at x/lr = 0 causes instabilities during the numerical 

evaluation of (12).  To avoid this, we represent the vorticity by the expression 
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which is shown as the dashed line in figure 2b. 

= 15.75(1 ABx/lr\ X 
(14) 

The expressions of (e and UJS from (13) and (14) are used in the solution (11) to 

the vorticity equation. 

4 Comparison between model results and data. 

The results from the model described in the previous section was compared to 

two sets of experiments with monochromatic waves. Wave heights and setup 

measurements for monochromatic waves are available from set of experiments 

by Hansen and Svendsen (1979). Wave shape and the velocity profiles below the 

wave trough are available from the measurements by Cox et al. (1995). Both 

experiments were conducted in wave flumes with plane beaches. The compu- 

tational domain, shown in figure 3, is similar to the experimental domain.   A 

Figure 3: Schematic figure showing the computational domain. The shaded area 
represents the sponge layer and and the slope is l:m. 

fourth-order ABM method is used to solve the equations numerically. Perma- 

nent form waves corresponding to (2) is used as input to the model. At the 

offshore boundary, an absorbing-generating boundary condition similar to that 

developed by Van Dongeren and Svendsen (1997) is used. A sponge layer is 

used to absorb the waves in the constant depth section which represents the 

shoreline. The wave is assumed to start breaking once the steepness at any 

point on the wave front is larger than 20°. Once the waves start breaking on 

a plane beach, it does not stop until it reaches the shoreline. The value of the 

eddy viscosity (ut) used in the model is 0.05hyfgh for all comparisons. 

4-1 Wave height and set-up comparisons. 

The first set of comparisons is to the data from Hansen and Svendsen (1979). 

The experiments were conducted in a wave flume with a plain beach of slope 

1:34.26. The water depth at the start of the slope was h0 = 0.36 m. Seven tests 
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Case No. T [sees) H (cm) Ty/g/h 
1 3.3333 4.3 17.4 
2 2.5 3.9 13.0 
3 2.0 3.6 10.44 

Table 1: Wave parameters from (Hansen and Svendsen 1979) at the toe of the beach, 

were conducted in all. The wave heights and set-up for each case was measured 

at a number of locations. In this paper, comparisons will only be shown for 

three cases. Table 1 presents the wave period and the wave height at the start 

of the slope for each of the cases. 

Figure 4 shows the comparison between the model results and the data for Case 

1. The wave heights in the initial part of the shoaling region is represented well. 

As the waves get closer to breaking, the agreement between the model and data 

deteriorates. At the point of wave breaking, the difference between the two is 

very obvious. The reason for this discrepancy is that the present version of the 

potential part of the model is based on weakly nonlinear theory as in Madsen 

et al.   (1997a, 1997b) 

Though that can be improved, the emphasis of this study, however, is the mod- 

elling of the phenomena after breaking. A short while after the breaking has 

been initiated in the model, it is seen that the agreement is very good. 

Figure 4:  Comparison between model results ( ) and data (o) from   (Hansen 
and Svendsen 1979) of wave heights (a) and setup (b) for Case 1 in table 1. 
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An important gauge of the model performance is obtained from looking at the 

prediction of the set-up (figure 4b), which show good agreement between the 

model results and the experimental data. This suggests that the evaluation of 

such terms as the radiation stresses will also be accurate. 
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Figure 5: Comparison between model results and data from   (Hansen and Svendsen 
1979) of wave heights (a) and setup (b) for Case 2 ( is model, o is data) and 

Case 3 ( is model, x is data) in table 1. 

Figure 5 shows the comparisons for Cases 2 and 3. Again, the model under- 

estimates the wave height near the breaking region. On the other hand, the 

prediction of the set-up is consistently good. All this indicates that the flow 

properties in the surf-zone are being modelled correctly. To illustrate this fur- 

ther, the results from the model are compared to velocity data from breaking 

waves in the next section. 

4-2 Velocity and surface elevation comparisons to data. 

Velocity and surface elevation data were gathered by Cox et al. (1995). The 

experiments were conducted in a wave flume with a plain beach slope of 1:35. 

The wave height at the wavemaker was Ho = 11.5 cm and the water depth at 

the start of the beach was ho = 0.40 m. The wave period was To = 2.2 sees. 

Measurements of velocity in the vertical were taken at six locations given in 

table 2. 

The first measuring line was outside the breaking region, the second was close 

to the breaking point and the last four were inside the surf zone. Comparisons 
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Line No. LI L2 L3 L4 L5 L6 
h (cm) 28.0 21.14 17.71 14.29 10.86 7.43 

Table 2: Location of measuring lines for the data of  (Cox, Kobayashi, and Okayasu 
1995) 

will be shown again for three cases inside the surf-zone. 

Figure 6 show the comparisons at the still water depths of h = 17.71cm (6a), h = 

14.29 cm (6b) and h = 10.86 cm (6c). The ai-axis in the figure is normalized by 

the wave period. The wave shape according to the model ( ) does not have 

the saw-tooth shape seen in the data ( ) at any location in the surf zone. To 

obtain a saw-tooth profile for the wave in the surf-zone it is necessary to have full 

non-linearity at least up to the order of dispersion that is retained. As a result, 

the weakly non-linear Boussinesq model will perform significantly worse in this 

regard than, say, the non-linear shallow water (NSW) model, although the NSW 

equations retain less terms than the Boussinesq equations.    The comparison 

between the velocity profiles predicted by the model ( ) and that obtained 

from measurements (o) are also shown in figure 6. For the most part, the 

agreement between the two are excellent. An exception is near the toe of the 

wave face (t/T = 0.2) where the model tends to predict a positive velocity 

whereas the data shows negative velocities. The differences are clearly due to 

the differences in the predicted and measured surface profiles. 

Figure 7 shows the vorticity field in a breaking wave. The contour lines of vor- 

ticity (7a) show that the vorticity produced in the roller region is convected 

downward and towards the back of the wave. The maximum value of the vortic- 

ity in the wave is close to the toe of the roller as is expected. On the other hand, 

along each vertical cross-section, it is only in the initial region of the roller that 

the maximum of the vorticity is close to the lower edge of the roller. Behind 

approximately the halfway point between the start of the roller and the end, the 

maximum of the voriticty is below the lower limit of the roller. This result is 

similar to that observed in the hydraulic jumps (Figure 1). Thus, this important 

feature of the vorticity distribution is captured by the model, even though only 

terms upto 0(1) are retained in (7)-(10). 

The results of the model for u and ( are used to compute the radiation stress. 

The radiation stress in the cross shore direction is defined as 

^.T;: 

J-h 

1 
{pu2 - pD) dz + -p(( - C)2 

h 2 
(15) 

where the () denotes averaging over a wave period and pD is the dynamic 

pressure.  To the lowest order of approximation that has been retained so far, 
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Figure 6:   Comparison between model predictions and data from   Cox et al.   1995 
at h = 17.71 era (a), h — 14.29 era (b) and h = 10.86 cm (c) showing water surface 
elevations from model ( ) and data ( ) and velocity profiles from model 
( ) and data (o).  The vertical lines ( ) show the locations at which the 
velocities are compared. 

Figure 7: (a) Contours of vorticity at LA. (b) Vertical profiles of vorticity under the 

roller and behind the crest. 
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pn ~ pw2 where w is the vertical velocity. 

Figure 8 shows the spatial variation of the dimensionless radiation stress defined 

as 
T-)         ^XX 

Linear theory predicts a constant value of P = 0.1875. Wave breaking in the 

model starts at x a 9.6 m. The value of P at the start of breaking is relatively 

low due to the peaky shape of the waves (see Svendsen 1984b for a detailed 

discussion). Svendsen and Putrevu (1993) presented results from experimental 

data for the normalized radiation stress, which shows considerable variation 

from one data set to another. However, all results have the same feature that 

the value of P starts at the breaker point with fairly low values, increases to 

a maximum and then decreases towards the shoreline. Although the results of 

the model do not show that P quite reaches the value predicted by linear wave 

theory, the same trend is observed. 

Figure 8:   Spatial variation of the dimensionless radiation stress P = Sxx/(pgH2). 

Wave breaking starts at x = 9.6 m. The sponge layer starts at x = 15 m. 

5 Conclusions. 

The breaking model is an extension of the classical Boussinesq equations. The 

vorticity field in the domain is obtained by solving the lowest order vortic- 

ity transport equation, which is based entirely on the Reynold's equations. 

The boundary conditions for the solution for vorticity is parameterized using 

measurements from hydraulic jump.   Comparisons with experimental data for 
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monochromatic waves show that the model performs well in the surf-zone. The 

wave heights are predicted reasonably accurately within the limitations of the 

form of the Boussinesq equations. The comparisons to the velocity profiles are 

especially good. The vorticity distribution calculated by the model agrees qual- 

itatively with the results shown for hydraulic jump. The radiation stress in the 

cross-shore direction is calculated directly from the velocity field given by the 

model. The result is seen to agree qualitatively with that observed from other 

experiments. 
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