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Abstract 

This paper presents a new and more accurate set of deterministic evolution equations for 
three-wave interactions involving fully dispersive, weakly nonlinear, irregular, uni- 
directional waves. The equations are derived directly from the Laplace equation with 
leading order nonlinearity in the surface boundary conditions. It is demonstrated that 
previous fully dispersive formulations from the literature have used an inconsistent linear 
relation between the velocity potential and the surface elevation. As a consequence these 
formulations are accurate only in shallow water, while nonlinear transfer of energy is 
significantly underestimated for larger wave numbers. In the present work we correct this 
inconsistency. In addition to the improved deterministic formulation, we present improved 
stochastic evolution equations in terms of the energy spectrum and the bispectrum for 
unidirectional waves. 

1. Introduction 

Three-wave interactions (or triad interactions) generally play an important role in the 
nonlinear transformation of irregular waves in shallow or intermediate depth waters. Very 
often these phenomena can be described quite accurately by Boussinesq-type formulations 
either in terms of time-domain equations (see e.g. Madsen & S0rensen, 1993) or in terms 
of evolution equations for the spatial variation of the complex amplitudes at discrete 
frequencies (see e.g. Freilich & Guza, 1984; Madsen & S0rensen, 1993). In both cases the 
phase information is retained and we talk about deterministic formulations. 

Recently, Herbers & Burton (1997) and Kofoed-Hansen & Rasmussen (1998) 
presented stochastic formulations derived from deterministic Boussinesq-type evolution 
equations. In their formulations the second- and third-order statistics of random, shoaling 
waves are described by a coupled set of evolution equations for the energy spectrum and 
the bispectrum. 
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While Boussinesq-type formulations are generally more or less restricted by weak 
dispersion, the approach by Agnon et al. (1993) and Kaihatu & Kirby (1995) retains full 
dispersion. They presented deterministic evolution equations derived directly from the 
Laplace equation with leading order nonlinearity in the surface boundary conditions. On 
this basis Agnon & Sheremet (1997) derived stochastic evolution equations for the energy 
spectrum and the bispectrum. 

One of the key arguments by Agnon et al. (1993) and Kaihatu & Kirby (1995) for 
deriving equations with full dispersion was the need for a nonlinear evolution equation 
describing the interaction processes all the way from deep to shallow water. Indeed, triad 
interaction models based on fully dispersive equations can be expected to be superior to 
those based on Boussinesq-type formulations for large wave numbers not only in terms of 
improved dispersion but also in terms of a higher accuracy in nonlinear transfer functions. 
This should generally result in more accurate estimates of higher-order statistics such as 
skewness and asymmetry. 

On the other hand, this expectation of a superior accuracy relative to existing 
Boussinesq formulations, has not yet been demonstrated in the literature. In fact, Kaihatu & 
Kirby (1995, 1996) concluded that "the lowest order Boussinesq model, despite its shallow 
water formalism, yields skewness and asymmetry values closer to those of the 
experimental data than those of the fully dispersive model". This conclusion was indeed 
disappointing. 

In the present work we shall demonstrate that while the previous formulations by 
Agnon et al. (1993), Kaihatu & Kirby (1995, 1996), and Agnon & Sheremet (1997) 
presented consistent nonlinear equations for the velocity potential, they invoked an 
inconsistent linear relation to obtain the corresponding equations for the surface elevation. 
We shall show that high accuracy for larger wave numbers is achieved only if a nonlinear 
transformation is invoked, and we shall derive a new set of fully dispersive evolution 
equations for the surface elevation. Section 2 contains a brief review of the derivation of 
deterministic evolution equations in terms of the velocity potential. In Section 3 these 
equations are converted into equations for the surface elevation using: 1) a linear 
transformation; 2) a second order transformation. In section 4, a coupled set of stochastic 
evolution equations for the energy spectrum and the bispectrum is presented. Model 
validation is given in Section 5, while summary and conclusions can be found in Section 6. 

2. Deterministic evolution equations in terms of the velocity potential 

In this section we give a brief outline of the derivation of deterministic evolution equations 
in terms of the velocity potential at the still water level. The equations include leading 
order nonlinearity and full dispersion. The derivation follows the work by Agnon et al. 
(1993) and Kaihatu & Kirby (1995). 

We adopt a Cartesian co-ordinate system (x, z) with z measured upwards from the 
still water level. The fluid domain is bounded by the sea bed at z = -h(x) and the free 

surface z = 7](x,t). The fluid is assumed incompressible and inviscid, and the flow is 
assumed to be irrotational. Dimensional quantities are retained with the understanding that 
leading order nonlinearity is O(^), where the nonlinearity parameter s is defined by kA (k 
being the wave number and A the wave amplitude). After expanding the nonlinear free 
surface boundary conditions in Taylor series about z=0 and retaining terms to (?(£*), the 
truncated boundary value problem in terms of the velocity potential 0 reads, 
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V2<t+<fczz=0;    -h<z<0, (1) 

Oz + Vh- V<P=0;    2 = -h, (2) 

//,-0^+V•(^V<E))=(9(£',);   z = 0, (3) 

4»,+^ + 7<Dte + i(v<D)2+{(<I>z)
2=o(f3);        z = 0, (4) 

where V is the horizontal gradient operator. We note that the linearized dynamic free 
surface boundary condition, i.e., 

®,+gt? =0{s2);        z = 0, (5) 

can consistently be applied to eliminate i] in the nonlinear terms in (3) and (4) by which 
we get 

m-®z-\v\<S>tV<S>) = 0{si);    z = 0, (6) 

0(+^--O,Ofe + i(v<I>)2+i(<I>z)
2=0(*3);    z = 0. (7) 

Substituting (7) into (6) yields 

1 
®tt+g®z <D,cJ,fe-i(v<I>)2-i(cDz)

2 + V-(<D,Vd>) = C(ff3);  z = 0 (8) 

The system of equations (1), (2) and (8) is the starting point for the derivation of evolution 
equations for weakly nonlinear and fully dispersive water waves. 

First, we express the surface elevation and the velocity potential as a linear 
superposition of unidirectional waves, 

f?(x,t)=-'ZAp(x)exp[i(copt- \kpdx)]+   c.c. (9a) 

Mx,z,t) = \i,f„(z) ®„{x)exp \ (o)p t - \kpdx\ +   c.c. (9b) 

where a)p=pAa> is the frequency, A&> is the band-width in the Fourier representation, kp is 

the wave-number satisfying the linear dispersion relation, Ap and <S>p are the complex 

spatially varying Fourier amplitudes, fp represents the vertical structure of the velocity 
potential and c.c. indicates the complex conjugate. 

The specification of the vertical structure fp is one of the key elements in the 
derivation of evolution equations for fully dispersive waves. Agnon et al. (1993) initially 
considered the influence of bound waves as well as free waves on the vertical structure of 
the potential, but eventually they ignored the effect of the bound wave structure on their 
equations. Here we simply adopt the procedure of Kaihatu & Kirby (1995) and assume a 
vertical structure dictated by linear theory, i.e. 
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cosh kn(h + z) 
/,(*)= ~~- (10) 

cosh kph 

where kp is obtained from 

°>P   = gkpiwhkph (11) 

The spatial variations of water depth, wave numbers and complex amplitudes are assumed 
to be weak, and consequently the formulation will include only first derivatives of these 
quantities, while no derivatives will be included in connection with nonlinear terms. The 
resulting evolution equations derived by Agnon et al. (1993) and by Kaihatu & Kirby 
(1995) can be expressed by 

d<bp ^      cpp   dcg>p 

dx 2c       dx 
+ I/^A-•^ + 2E>8"*«*^e'Ar" (12a> 

where 

l\, 
— (<°PTX, ± 0)mk%.„)±   2g2kmk^m +  6)2n,G)2pTm  + <02

pCQmG> pT„l (12b) 

Ap* = _[<?*dx    , 6*= {kp + k„, - kpTm) (12c) 

and where cg is the group velocity. The first term in the right-hand-side of (12a) represents 
linear shoaling, while the second/third terms represent the nonlinear super/sub-harmonic 
interactions. 

3. Deterministic evolution equations in terms of the surface elevation 

In comparison with the evolution equations derived from Boussinesq-type equations (e.g., 
Freilich and Guza, 1984; Madsen and S0rensen, 1993), the set given by (12a-c) has the 
potential of being applicable to a wider range of wave numbers as it incorporates full 
dispersion. However, in order to utilise this potential, it is important to make a consistent 
transformation from the velocity potential to the surface elevation. In the following we 
convert (12a-c) into evolution equations for the amplitudes of the surface elevation using 
two different approaches: a) A linear transformation (Section 3.1); b) A second order 
transformation (Section 3.2). 

3.1 Using the linear relation between the velocity potential and the surface elevation 

In this section we follow Kaihatu & Kirby (1995) and apply the linear approximation (5) in 
combination with the Fourier representation (9), which yields 

$ =Xi 
'      <o,   " (13) 

By substituting (13) into (12a) we obtain 
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dA^ 

dx 

A
P   

dcs.p     , 

2cgp    dx 

with 

a   =     + — 
®,„ <»„+,„ 

(14a) 

(14b) 

where fi± is given by (12b). These are the deterministic evolution equations derived by 

Agnon et al. (1993), and Kaihatu & Kirby (1995). Also Agnon & Sheremet (1997) used 
these equations as the basis for their stochastic formulation. 

It turns out that the use of the linear approximation (5) results in inaccuracies in the 
nonlinear transfer functions. This can easily be demonstrated by the following example: 
Let us consider a velocity potential (at z=0) determined from Stokes second-order theory 
for regular waves, i.e., 

<$>(x,t)= ®lsin(kx-a>t) + <t>2sin (2kx-2cot) (15) 

If we apply the linear approximation (5) on (15) we obtain as a consequence the second 
order surface elevation 

r/(x,t)= A cosikx - mi)+ G, —-cosilkx - loot) (16) 
l L h 

where 

3 , cosh2kh 
— Kfl r 
4 coshkh sinh kh 

G,=-kh — (17) 
'• A  i.i.r.   _!..i.3 i_l- v       > 

This obviously deviates from Stokes reference solution, which reads 

GSlllkes 
s\kh~^(2+ •sh2kh) (18) 

A Taylor expansion of (17) and (18) yields 

G,    ->    -l-{\ + k2h1-—k*h* + 0{kthi) 
'' 4k2h2{ 15 ^        . 

(19) 

G,„„ ->   j~[\ + \k2h2 + ±k%* + 0(k6h6) 

which shows that the two expressions converge in shallow water. For comparison we may 
also consider the transfer function corresponding to the Boussinesq formulation of Madsen 
&S0rensen(1993) i.e. 

3     (,     8    22 G- = 4WV + T5hh I (20) 
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Fig. 1 shows the variation with kh of G, and GBom relative to the target solution Gslokes. In 
both cases the nonlinearity is significantly underestimated for larger kh values. This lack of 
accuracy in nonlinear transfer shows up in the numerical calculations in Section 5. 

3.2 Using the nonlinear relation between the potential and the surface elevation 

In the following we shall use (7) to establish the second-order relation between the surface 
elevation and the velocity potential. To a first approximation (9b) and (10) yield 

2 

V0=-ikO,        ®,= ic»<b,        $>z = —0>, z = 0 (21) 
g 

Hence by the use of (21), the Fourier transformation of (7) now yields 

— ico  ~ fP~
X
     -   ~ N~p     ~   ~ ^ 

A, = —'-*>, + 2 xro-v^'4"* + 2 £r<<v„<^ (22a) 

where 

/ * = r-r[ ± g2 k„, kpTm + ala>%m + <opa>ma>^m ] (22b) 
°g 

One possibility is to solve (22) along with the evolution equation (12) in order to 
calculate the local variation of the surface elevation (see e.g. Chen et al, 1997). A better 
option is, however, to invert (22a) by the use of successive approximations and to eliminate 
the velocity potential from the evolution equations. Thus, we apply the linear 
approximation (13) in the nonlinear terms of (22a) and obtain 

5>„ = iZ-A„ +   2 * {fiy
+AmAf_me'»'* + if^y'A'„, Ap^A (23a) 

<Op \m-\ i»=l ) 

where 

y± =     ± ^ p (23b) 

The next step is to differentiate (23a) with respect to x while retaining terms to O(^). 
Consistent with the derivation of (12a-c), we ignore, in connection with the nonlinear 
terms, spatial derivatives of the slowly varying amplitudes and of the group velocity. With 
this assumption the differentiation of (23a) yields 

where S± is defined by (12c). Finally after substituting (23a-b) and (24) into (12a), we get 
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dx 

with 

AP   dc
s,P 

2cg)P    dx 
+ i 

N-p 

^ AmAv_me^ +   2£a-,OW (25a) 

«*=     ±- g«„ P \r r* r* = 
20* c. 

(25b) 

which, by inserting /?* and y± from (12b) and (22b), can be expressed as 

2(Op [a^X, ±o)mk%m) 

± (2 - r*) s2k,„ kp„„ + (l - r*)(*>,2, <„, + «>,„«v„,)] 
(25c) 

The new deterministic evolution equation (25) is the main result of this work. The 
dispersion characteristics of the model are dictated by fully-dispersive linear theory. The 
present evolution equation insures, through the new complex interaction coefficient a* , a 
higher accuracy in the nonlinear transfer function. We emphasize that the nonlinear 
transformation between the velocity potential and the surface elevation is retained in the 
parameter r. The formulation (14a-b), as used by Agnon et al (1993), Kaihatu & Kirby 
(1995), and Agnon & Sheremet (1997), corresponds to setting T = 0 in (25). 

The importance of including the T-terms in (25) is illustrated in Fig. 2, which 

shows the ratio of a^=0 to a* as a function of a>m and «„+m. The upper triangle in Fig. 2 

illustrates the super-harmonic interactions while the lower triangle illustrates the sub- 
harmonic interactions. The second-harmonic interaction is represented by the diagonal line 
and this result agrees with Fig. 1. It can be concluded that neglecting F has a major effect 
on super-harmonics which are consequently significantly underestimated, while the sub- 
harmonics are less sensitive. 

4. Stochastic evolution equations for the energy spectrum and the bispectrum 

Stochastic evolution equations for the energy spectrum and for the complex bispectrum can 
be derived on the basis of the deterministic evolution equations given by (25). We follow 
the procedure as outlined e.g. by Agnon and Sheremet (1997), Herbers & Burton (1997), 
and Kofoed-Hansen & Rasmussen (1998): Firstly, we multiply equation (25a) by the 
conjugate of Ap; secondly, the conjugate of equation (25a) is multiplied by Ap ; thirdly, the 
former is added to the latter and finally the result is ensemble averaged. This leads to 

dEp =     Ep dcgp      ^ 

dx c„ „   dx 

P-\ N-p 

Z»+3fc^.)-2E«"3(^-) (26) 

where 

E„   = .44 Kr-,,s  4A4,-»e' /'Af* 
3    A^A^e" (27) 
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and where 3 denotes the imaginary part and (....) is the ensemble average operator. The 
right-hand-side contains the average of the third-order moment, the so-called bispectrum, 
B. In order to obtain a stochastic description of the effect of the nonlinear interactions one 
needs to go to higher-order moments, and evaluate the bispectrum. An evolution equation 
for the bispectrum is derived and the terms including the trispectrum, i.e., fourth-order 
statistical average, appear. In order to close this system of equations, the trispectrum is 
expressed as products of second-order averages (the socalled Gaussian closure), and we 
retain only products of terms with opposite-signed phases. The resulting evolution 
equations of the bispectrum can be written as follows 

dB*. 

dx 
= (;<r+F+)5,;„_; •2i a pju,p-w     m     P i,p    P kp-m + ap-mjn,P    P    m (28) 

dB' 

dx 
= (iS-+F-)B;„-2i ^ p,m,p+m^m^' p+m^ C£m,p,p+i>i*!'p ^p+m + ^p+m,m,p^p^'ni (29) 

where we emphasise that the ak defined by (25c) is actually a short hand notation for 

p,m,p^m while F* denotes the shoaling term defined by 

F*=-- 
'. „   dx -„ „,   dx 

1    dce 

Cg,p*ni       dX 

(30) 

We note that (26), (28) and (29) comprise a coupled set of stochastic evolution equations 
for the energy spectrum and the bispectrum. The formulation is identical to Agnon and 
Sheremet (1997) except for the inclusion of the T-terms in a* . 

The stochastic model explicitly takes into account, via the bispectrum, the 
development of the phase correlation between wave triads due to nonlinearity. In this 
model, the bispectrum is required to calculate the effects of triad wave interactions on the 
wave spectrum evolution. It can also be used to calculate the overall third-order statistical 
parameters such as the skewness and asymmetry. 

5. Model verification 

In order to validate the models from Sections 3 and 4, we concentrate on the experimental 
data from Cox et al. (1991). This test case considers the shoaling (and breaking) of 
irregular waves on a plane beach. The water depth at the offshore boundary is 47 cm and 
the beach slope is 1:20. The surface elevations are measured at eleven locations (denoted 
WG1 to WG11) in still water depths of 47, 35, 30, 25, 20, 17.5, 15, 12.5, 10, 7.5, and 5 cm. 
The target spectrum is a Pierson-Moskowitz type with a peak frequency of 1.0 Hz and 
with a significant wave height of 6.5 cm. At the incoming boundary the peak frequency 
corresponds to fairly large wave numbers (kh=\.9), and in combination with the broad- 
banded spectral shape this allows significant energy on frequencies that are well into the 
deep water range. Hence this test is quite demanding for models incorporating only weak 
dispersion and it is well suited for checking the applicability of fully dispersive models. 
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First we apply the stochastic formulation (26)-(30) with T = 0, which is basically 
the model of Agnon & Sheremet (1997). We note that similar results (not shown here) can 
be obtained by using the deterministic evolution equations of Agnon et al. (1993) and 
Kaihatu & Kirby (1995). Fig. 3a shows the computed and measured values of the 
skewness, while the asymmetry is shown in Fig 4a. Two different simulations are shown 
corresponding to offshore boundary conditions based on the measured bispectrum and a 
zero bispectrum, respectively. With the zero bispectrum, the skewness starts off with a zero 
and stays at that level on most of the shoal. The computed skewness is clearly significantly 
underestimated in most of the model area. This is in agreement with the analysis shown in 
Figs. 1 and 2. On the other hand, using the measured bispectrum as input does not really 
improve the simulation. Although the skewness is now correct right at the boundary, the 
mismatch between this value and the nonlinearity sustained by the model equations 
introduces a local recurrence phenomenon with a sudden decrease in the skewness and an 
increase in the asymmetry. Further inshore the skewness values computed by the two 
different boundary conditions are not very different. The large discrepancies between the 
computed and measured values of the asymmetry (Fig 4a) further inshore are due the 
mechanism of wave breaking, which is absent in the models considered here. It is 
emphasised that it requires a rather sophisticated breaking formulation in order to capture 
the variation of the asymmetry in the surf zone. A few examples of frequency domain 
formulations of wave breaking are discussed by Chen et al. (1997). This topic is, however, 
outside the scope of the present work. 

For reference we have included the result of using the stochastic Boussinesq model 
of Kofoed-Hansen & Rasmussen (1998). As seen in Figs. 3b and 4b the computed 
skewness and asymmetry are quite similar to the ones obtained in Figs. 3a and 4a, and 
again the significant underestimate of the skewness is in agreement with the analysis in 
Fig. 1. 

Figs. 3c and 4c show the result of including the new F-terms in the stochastic 
formulation. From Fig. 3c we notice that the computed skewness is significantly improved. 
The best result is now obtained by using the measured bispectrum as input, but even with a 
zero initial bispectrum the skewness and asymmetry values quickly fall in line with the 
measurements after a short distance dominated by recurrence. 

Finally, Fig. 5 shows the energy spectra of the surface elevation computed by the 
stochastic model (26)-(30) including and excluding the new T-terms. In both cases the 
measured bispectrum is applied at the offshore boundary. The spectra are shown at three 
locations: WG2 (h=0.35m), WG5 (h=0.20m), and WG8 (h=0.125m). With T=0 we notice 
that the lack of nonlinearity in the model results in an artificial release of higher harmonics 
and an overestimation of the high-frequency tail of the spectrum. On the other hand, the 
model results obtained with the new T-terms are generally in good agreement with the 
measured spectra. 
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kh 

gure 1. Transfer function for second harmonics. Gi I Ggtokes '- ^Bonss I ^Stokes. 
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Figure 2. Isoline map of the ratio of oip=0 to a* (from eq. 25c) as a function of the interacting 

frequencies 0)m and con = a> Tm. Super-harmonic results shown above the diagonal; sub-harmonic 

results shown below it. 
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Figure 3. Spatial variations of the skewness during shoaling. Markers are measurements of Cox et 
al., 1991; Computed with zero bispectrum at the boundary; Computed with measured 
bispectrum at the boundary. A) Stochastic model of Agnon & Sheremet (1997); B) Stochastic 
Boussinesq model of Kofoed-Hansen & Rasmussen (1998); C) Stochastic model based on the 
present formulation i.e. eqs (26)-(30) incl. the new T-terms. 
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Figure 4. As Fig. 3, but for asymmetry instead of skewness. 
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Figure 5. Energy spectra of the sea surface elevation at three locations WG2, WG5 and WG8. 
Computations made with the measured bispectrum at the boundary. Stochastic model of 
Agnon & Sheremet (1997); Stochastic model based on the present formulation i.e. eqs (26)- 
(30) incl. the new T-terms; Dotted line indicates measurements of Cox et al. (1991). 
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6. Summary and conclusions 

This paper presents a new and more accurate set of deterministic evolution equations for 
triad interactions involving fully dispersive, weakly nonlinear, irregular waves. Previous 
formulations from the literature have included consistent nonlinear evolution equations for 
the velocity potential, while an inconsistent linear relation has been invoked to obtain the 
corresponding surface elevation. This approximation is only valid in shallow water and as a 
result, the previous formulations significantly underestimate nonlinear energy transfer for 
larger wave numbers. As a consequence bound higher harmonics and nonlinear statistical 
measures such as the skewness are typically underestimated in these formulations. 

In the present work we have corrected this inconsistency. Furthermore, in addition 
to the improved fully dispersive deterministic equations, we present a set of coupled 
stochastic evolution equations in terms of the energy spectrum and the bispectrum. 

The influence of the new terms is demonstrated on a test case involving irregular 
waves in intermediate water depths. This case requires a combination of dispersion and 
nonlinearity and it is shown that existing formulations from the literature fail to predict the 
evolution of the energy spectrum and of the third-order statistics. A considerable 
improvement is found by including the new terms presented in this work. Further details 
and results can be found in Eldeberky & Madsen (1998). 
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