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Abstract 

In this paper we shall study and model the nonlinear transformation of frequency wave 
spectra using two different types of stochastic models. The nonlinear processes 
considered include triad wave interaction and dissipation due to depth-induced wave 
breaking. The two stochastic models are the two-equation model proposed by Kofoed- 
Hansen and Rasmussen (1998) and the one-equation Lumped Triad Approximation (LTA) 
originally proposed by Eldeberky and Battjes (1995). Model results are compared with 
laboratory experiments and results obtained by the underlying deterministic time-domain 
Boussinesq model. The two stochastic models are found in good agreement with 
measurements of wave height (Hmo) and wave period (Toi). In case of wave 
transformation on a horizontal bottom, the LTA model fails as the rapid oscillations are 
neglected. The two-equation model predicts the energy transfer to sub-harmonics and 
non-resonant interaction excellently. In the inner surf zone and where the nonlinearity is 
strong, only the underlying deterministic model predicts the spectra and higher order 
wave statistics accurately. 

Introduction 

In recent years, considerable effort has been put on modelling of shallow water 
phenomena such as quadratic nonlinear wave interaction and depth-induced wave 
breaking using stochastic models. One of the major objective is to extend third generation 
wind-wave models, like the well-known WAM model developed for oceanic waters and 
shelf seas, to coastal waters where triad interaction and wave breaking are the dominating 
phenomena, see eg Cavaleri and Holthuijsen (1998). The starting point is typically 
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deterministic evolution equations for the complex amplitudes of a weakly nonlinear wave 
field using either Boussinesq type equations (eg Freilich and Guza, 1984; Madsen and 
S0rensen, 1993) or the Laplace equation with leading order nonlinearity in the surface 
boundary conditions (eg Agnon and Sheremet, 1997; Madsen and Eldeberky, 1998). 

In this study we have adopted the Boussinesq type equations with enhanced linear 
dispersion characteristics derived by Madsen and S0rensen (1993). Eldeberky and Battjes 
(1996) extended their equations by including energy dissipation due to depth-induced wave 
breaking. Based on these deterministic formulations, coupled stochastic evolution equations 
for the power spectrum and bispectrum have been derived recently by Eldeberky (1996) and 
Kofoed-Hansen and Rasmussen (1998) assuming that the trispectrum may be formulated as 
products of the power spectrum. The stochastic evolution equations suggested by Herbers 
and Burton (1997) are derived on basis of an extension of Freilich and Guza's (1984) 
deterministic model with lowest order dispersion and nonlinearity. Kofoed-Hansen and 
Rasmussen (1998) solved numerically the coupled evolution equations in order to calculate 
the wave spectrum and higher order nonlinear measures such as skewness and asymmetry 
(integral measures of the wave shape). For application in coastal energy-based wave 
models, Eldeberky and Battjes (1995) introduced a series of simplifications in order to 
avoid solving the evolution equation for the bispectrum. This resulted in a simple source 
function accounting for the effect of triad wave interaction, which can be used in 
conventional phase-averaged transport equations for the wave energy spectrum. 

Stochastic Nonlinear Models 

Time-domain Boussinesq type equations 
The stochastic models considered in this paper are based on Boussinesq type equations 
derived by Madsen et al (1991) and Madsen and S0rensen (1992). These equations 
incorporate enhanced linear dispersion characteristics and shoaling properties, which are 
important for an accurate representation of the nonlinear energy transfer. This paper 
considers unidirectional waves propagating normally to the bottom contours (one 
horizontal dimension). The depth-integrated equations of continuity and momentum can 
then be formulated as 
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where 7/ is the surface elevation, P the depth-integrated horizontal velocity, h the still 
water depth, g the acceleration due to gravity, d the instantaneous total water depth, and B 
the dispersion coefficient. Variable x is the horizontal space coordinate and t denotes 
time. The inclusion of wave breaking is based on the surface roller concept, see Madsen 
et al (1997). The effect of the roller on the wave motion is taken into account by the 
excess momentum term (term Rxx in Eq. 2) originating from a non-uniform velocity 
profile due to the presence of the roller. The equations have lowest order nonlinearity as 
the classical Boussinesq equations. For a dispersion coefficient of fi=l/15, accurate 
dispersion characteristics are obtained for kh less than about 3.2. 

Deterministic evolution equations 
Now the surface elevation is represented as a Fourier series 

ri(x,t)= JT APWA'-^' (3) 

where Ap is a complex amplitude, a>p is the angular frequency, y/p(x) is a phase function 
and i denotes the imaginary unit. Following Madsen and S0rensen (1993), the spatial 
evolution of the complex amplitude, APi is to leading order given by the differential 
equation 

dx     K p dx    7p>   "      LiJ^-nAmAP.Me (4) 

which describes the spatial evolution of a weakly nonlinear wave field on a mildly sloping 
bottom. In the derivation it has been assumed that the amplitudes are slowly varying in 
space. The first term on the right-hand side of Eq. (4) represents the linear shoaling and the 
dissipation due to wave breaking (yp), whereas the second term describes the nonlinear triad 
wave interaction (bound waves as well modulated free waves). Here 

Sy/(x) - f (fe, •, - km - kP)dx is the phase-mismatch and may be considered as a measure of 

the departure from exact resonance. Variable kp denotes the wave number. The detailed 
expression for Lp and Jm,m-P is given in Kofoed-Hansen and Rasmussen (1998). Eq. (4) is 
identical to Eq. (7.1) in Madsen and S0rensen (1993) when yp= 0, and is the starting point 
for the derivation of the stochastic models suggested by Eldeberky and Battjes (1995), 
Eldeberky (1996) and Kofoed-Hansen and Rasmussen (1998). 

Two-equation stochastic model 
Stochastic evolution equations for the various order of spectra are derived by 
manipulating the deterministic evolution equations for the complex amplitude followed 
by ensemble-averaging. At lowest order, this procedure leads to an evolution equation for 
the power or wave energy spectrum including terms involving the next order spectrum, ie 
the bispectrum. An evolution equation for the bispectrum is derived at the following order, 
where terms including the trispectrum appear. In order to close the system of equations we 
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write the trispectrum as products of the power spectrum, the well-known Gaussian closure 
approximation. Hence, the evolution equation for the power spectrum and bispectrum 
constitutes the two-equation stochastic model describing the spatial evolution of a weakly 
nonlinear unidirectional wave field propagating on a mildly sloping bottom, see Kofoed- 
Hansen and Rasmussen (1998) for a thorough derivation. The coupled evolution equations 
are written as 
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where Fp and B^p.m denote the discrete power and bispectrum, respectively. The bispectrum 
describes the degree of coupling and phase relationship in triads of nonlinearly interacting 
wave components. It describes statistically the shape of shoaling waves, ie skewness ~ 
9?(Bm,P-m) and asymmetry ~ 3(Bmp.m)t see Elgar and Guza (1985). if and 3 denote the real 
and imaginary part, respectively. The discrete spectrum is converted into a continuous 
spectrum by dividing the power spectrum by the frequency resolution and the bispectrum by 
the frequency resolution squared, respectively. 

One-equation model 
Based on the evolution Equations (5) and (6), Eldeberky and Battjes (1995) derived a 
parameterised model for application in conventional phase-averaged models, the Lumped 
Triad Approximation, LTA. They introduced a series of simplifying assumptions in order to 
avoid the computation of the evolution equation for the bispectrum. First, they integrated 
this equation, then they neglected the rapid oscillations involving the wave number 
mismatch. Finally, they restricted the formulation to self-self interaction and parameterised 
the biphase in terms of the local Ursell number as originally suggested by Doering and 
Bowen (1995). The evolution equation for a continuous wave spectrum can be written as 

£-»L£-r.Vw,-S; r p   IT p 

J 
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where the quadratic term, Sp, is expressed by 
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The relation between the biphase, fip>p, and the Ursell number is given by 

it    it     A§.1\    T, g B    = + — tanh\  \,Ur = —£— 
LI       f 

•"mOJQl (9-10) 

where H„u)= 4^/mo and T0i= ntofmi. The moments are calculated as mn — J f"Fdf and the 
o 

tuning parameter a appearing in Eq. (8) is of order 1. The variable, cp, denotes the phase 
speed. 

Dissipation due to wave breaking 
The dissipation rate, yPt incorporated in the stochastic models is either taken as frequency 
independent as suggested by Eldeberky and Battjes (1996) or as a frequency squared 
dependent dissipation term as suggested by Chen et al (1997). In general the dissipation 
rate, yp, should be treated as a complex quantity. Here we restrict ourselves to consider the 
dissipation as purely real. 

The coupled set of stochastic evolution equations for the power spectrum and 
bispectrum are solved numerically using standard numerical integration techniques and 
with linear upwind boundary conditions, ie Bnp.m= 0. 

Numerical Results and Comparison with Experimental Data 

Results of numerical simulations using the two stochastic models are compared with 
experimental data and results obtained by the underlying phase-resolving time-domain 
deterministic model. 

Submerged bar 
The measurements of Beji and Battjes (1993) are used to evaluate the two stochastic 
models for propagation of non-breaking waves over a trapezoidal submerged bar. Figure 
1 illustrates their experimental setup. We consider the case with a very narrow-banded 
target spectrum. At WG1 this spectrum has a peak frequency of fp= 0.4 Hz and a 
significant wave height of Hm0= 0.023 m, see Figure 2. A spatial resolution of 0.1 m is 
used and the frequency resolution is 0.03906 Hz. The tuning parameter a used in LTA is 
set to 1. 
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Figure 1. Layout of experiment of Beji and Battjes (1993). All lengths are given in meter. 
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Figure 2 presents a comparison of simulated and measured frequency spectra at 
locations WG1 and WG5. It has previously been shown (eg Kofoed-Hansen and 
Rasmussen, 1998 and Eldeberky, 1996) that the power spectrum is very accurately 
modelled on the uphill slope of the bar using the two stochastic models. On the top of the 
bar (see Figure 2) the two-equation model shows too much energy transfer to particularly 
the second harmonic components. The reason for the discrepancies is due to violation of 
the basic assumption of quasi-Gaussianity. At the crest section of the bar, the medium is 
almost non-dispersive for the primary waves (kph ~ 0.26). The LTA model 
underestimates the energy transfer towards higher harmonics (/> 2fp ) as well as to lower 
frequencies (f<V2fp) as a consequence of the introduced simplifications. 

The spatial evolution of quantities such as the significant wave height, Hmo, and 
the characteristic mean wave period, Toi, determined by the two stochastic models is 
compared measured data and the results obtained with the time-domain Boussinesq 
model in Figure 3. 
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Figure 2. Comparison of frequency spectra from numerical simulations and measure- 
ments. (—) two-equation stochastic model, (—) LTA model and (ooo) 
experimental data by Beji and Battjes (1993). 
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Figure 3. Spatial evolution of characteristic integral measures. (— and •) Deterministic 
model, (—) two-equation stochastic model, (—) LTA model and (ooo) 
experimental data by Beji and Battjes (1993). The bathymetry is sketched on 
the right panel. 
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From Figure 3 it appears that all three types of model result in similar growth of 
the wave height up-slope. Here the generated bound waves are phase-locked to the 
primary free waves and thus having almost the same group velocity. On the horizontal bar 
crest, two-way exchange of energy between free and bound waves takes place, which 
results in spatial inhomogeneity. This phenomena is only included in the deterministic as 
well as in the two-equation stochastic model. As LTA model neglects the rapid 
oscillations involving the wave number mismatch, the significant wave height will here 
remain constant. The reduction of the mean wave period over the bar is well predicted by all 
three types of model. Kofoed-Hansen and Rasmussen (1998) have shown that higher order 
statistical quantities (ie skewness and asymmetry) can be predicted reasonably well using 
the two-equation model for this non-breaking bar test. The results will not be shown here. 

Barred beach 
In this case, we consider the spatial evolution of an incident Pierson-Moskowitz type 
spectrum over a barred sandy beach (test no LIP 11D, Case C, Arcilla et al, 1994) as 
illustrated in Figure 4. This figure also indicates the location of the wave gauges. The 
power spectrum of the measured surface elevation at WG1 yields a significant wave 
height of Hmij= 0.58 m and a peak frequency offp= 0.125 Hz. This spectrum is applied as 
boundary condition for the stochastic models at the boundary 20 m seawards of WG1. 
The most energetic waves are characterised by having very weak dispersion as kph= 0.53. 
The spatial resolution is again set to 0.1 m and the frequency resolution is 0.0097 Hz. The 
tuning parameter used in LTA is set to a= 0.5, which results in best agreement with the 
measured data. 
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Figure 4.    Layout of the large-scale laboratory flume experiment of Arcilla et al (1994). 

In Figure 5 the predicted frequency spectrum is compared to the measured 
spectrum at the four locations WG1, WG3, WG6 and WG11. In this case, the frequency- 
independent wave breaking dissipation model (suggested by Eldeberky and Battjes, 1996) 
is used. At WG3 is seen that the two stochastic models predict accurately the measured 
spectrum until a frequency of approximately 3fp. Here mainly one way of energy transfer 
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occurs (as was the case for the bar test). At WG6 and WG11 there is an increasing 
tendency of too strong transfer rates in both models, which is probably due to violation of 
the basic assumption of a quasi-Gaussian sea state. Although some discrepancies appear 
between the model results and measurements, the overall performance is reasonable. 
Particularly the energy transfer towards low-frequency wave components is excellently 
predicted by the two-equation model. 

The spatial evolution of the significant wave height, the mean wave period, 
skewness and asymmetry determined by the stochastic models are compared to the 
measured data and the results obtained with the time-domain Boussinesq model in 
Figure 6. It is seen that the three models predict almost the same significant wave height 
and mean wave period in reasonably good agreement with measurements. The LTA model 
shows a slightly better agreement with the measured mean wave period than the 
deterministic and two-equation model at a distance of 100-130 m. The mean wave period 
decreases as the higher order spectral moments increase during the nonlinear shoaling. In a 
linear model the wave period will be almost constant. Figure 6 also shows that the skewness 
and asymmetry are in good agreement with the measurements for distances less than, say, 
100 m. For larger distances both measures deviate significantly from the measurements 
most likely as a consequence of too strong nonlinearity. 
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Figure 5. Comparison of frequency spectra from numerical simulations and 
measurements. (—) two-equation stochastic model, (—) LTA model and 
(ooo) experimental data by Arcilla et al (1994). 
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The assumption of using a wave breaking dissipation rate in proportion to the 
spectral density (ie independent of the frequency) is not found to be the major reason for the 
discrepancy between measured and simulated (by the two-equation stochastic model) 
skewness and asymmetry as suggested by Chen et al (1997). The results of simulations 
using a frequency-independent and frequency-dependent (f2) formulation are depicted in 
Figure 7. As seen from the figure the skewness and asymmetry were not improved by 
weighting the dissipation towards higher frequencies in this case. It is also seen that by 
setting F= 1 (frequency-independent formulation) in the model by Kaihatu and Kirby 
(1996), the third-order statistical quantities are almost identical to the results obtained using 
the model Eldeberky and Battjes (1996). As the basic assumption of Gaussianity is highly 
violated in the inner surf zone and the statistical closure is highly questionable, only a 
phase-resolving model (including an advanced wave breaking formulation) is applicable 
there. 
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Figure 6. Spatial evolution of characteristic integral measures. (—) Deterministic 
model, (—) two-equation stochastic model, (—) LTA model and (ooo) 
experimental data by Arcilla et al (1994). The bathymetry is sketched at the 
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Figure 7. Spatial evolution of skewness and asymmetry simulated by the two-equation 
model using different wave breaking dissipation models. (—) Kaihatu and 
Kirby (1996), F=0, (—) Kaihatu and Kirby (1996) model, F=\, (—) 
Eldeberky and Battjes (1996) model and (ooo) experimental data by Arcilla 
et al (1994). When F= 1 the dissipation is frequency-independent and for F=0 
the dissipation has a frequency squared dependency. 

Horizontal bottom 
The numerical results for the bar test show that the LTA model predicts no spatial 
variation of the total wave energy on the horizontal crest contrary to the measured data 
and the results of the two-equation stochastic model. In the following, we shall examine 
the long-term evolution of a narrow-banded spectrum at a constant depth a bit more using 
the two stochastic models. The simulations have been performed using similar parameters 
as used in Elgar et al (1990), see their Figure 6 p. 11552. The initial spectrum (x=0) 
consists of a single large primary peak at fp= 0.0625 Hz as illustrated in Figure 8. The 
water depth is 2.0 m. As the significant wave height is Hmo~ 0.169 m, the Ursell number 
Ur= (V2Hm0/h)/(kphf= 1.33, kph= 0.18. The frequency resolution is 0.0625 Hz, and the 
tuning parameter a used in the LTA model is set to 1. 

The spatial evolution of the primary spectrum is presented in Figure 8 at x= 0, x= 
1LP, x= 30 Lp, and x= 10LP, where Lp denotes the wave length corresponding to the initial 
peak frequency. The results obtained by the two-equation model shows that harmonics of 
the primary wave components grow during the initial stages of evolution. As the wave 
field evolves further, spectral valleys are filled in at the expense of spectral peaks. After 
about 70 wave lengths, the frequency spectrum is essentially featureless, and almost all 
traces of the initial spectrum and its harmonics are gone. In this case the beat length for 
the super-harmonic interaction between the primary peak and its second harmonic is 31- 
32Z,,, but as the nonlinear transfer is very strong no clear evidence of recurrence is found 
in this particular case. Test cases with recurrence is presented and discussed in 
Rasmussen (1998). The simulated results presented in Figure 8 are in quite good 
agreement with the results presented by Elgar et al (1990) based on integration of Freilich 
and Guza's (1984) evolution equations. 
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Figure 8. Evolution of a narrow-banded frequency spectrum on a horizontal bottom 
simulated by the two-equation model (left) and the LTA model (right). The 
power spectrum is presented at different distances a) x= 0, b) x= 1LP, c) x= 
30LP and d) x= 1QLP, where Lp= 70.5 m is the wave length corresponding to 
the initial {x=0) peak frequency of fp- 0.0625 Hz. The water depth is h= 
2.0 m. 
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The spectral evolution simulated with the LTA model (see Figure 8), shows 
initially energy transfer to the second and fourth harmonics. After a few wave lengths (< 
10), the wave spectrum remains almost unaltered. From Eq. (8), it is seen that an 
'equilibrium' spectrum is obtained, where Fp= ViFp/2, ie the spectral density at the second 
harmonic is half of the spectral density at the primary peak and so on. Thus, the LTA 
model is not applicable for simulation of recurrence and white-noise type spectra on 
constant or nearly constant water depth. This is a result of neglecting the phase-mismatch 
between free and bound wave components. 

Discussion 

Having examined the performance of the two stochastic models, we may define the area 
of model application. As discussed in Kofoed-Hansen and Rasmussen (1998) the two- 
equation model can be used to predict the evolution of the frequency spectrum and 
bispectrum and associated characteristic integral measures in shallow water when the 
Ursell number (based on the peak frequency of the primary waves) is less than 1-2. 
Beyond that limit, the basic assumption of a quasi-Gaussian sea state is highly violated 
and the underlying phase-resolving model (including a proper description of the wave 
breaking process) is more accurate. In cases with a high degree of frequency dispersion, 
say, kph > 2, a more accurate description of the dispersion is required as shown in Madsen 
and Eldeberky (1998). 

The LTA model, which is presently used in the public domain third-generation 
wind-wave model SWAN, see eg Cavaleri and Holthuijsen (1998), shows excellent 
agreement with the measurement of the significant wave height, Hm0, and mean wave 
period, Toi, for the two cases considered in this paper. The tuning parameter a is set to 
1.0 for the bar test and 0.5 for the barred beach test. In case of a constant water depth the 
model predicts an unphysical long-term spectral evolution of the frequency spectrum, 
which is different from the expected featureless white-noise type spectrum. As a 
consequence of the introduced simplifications, the LTA model is mainly appropriate for 
relatively short evolution distances on sloping bathymetries, where the generation of 
bound super-harmonics is substantial. 

Further, as the LTA model only includes self-self interactions the approach can in 
general only be applied for uni-modal (and unidirectional) frequency spectra. In cases of 
sea states involving swells and wind-waves, the LTA model is not expected to model 
accurately the nonlinear energy exchange between the two frequency regimes. 

Although both types of stochastic models are of phase-averaged type, the 
required spatial resolution is different. Using the two-equation model, the wave number 
mismatch has to be resolved. Therefore the resolution is typically of the same order as for 
the underlying deterministic model. The spatial resolution used for solving the 
conventional phase-averaged energy transport equation including the LTA model (as 
source function for triad wave interaction) is usually at least 100 times larger. 
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Summary and Conclusions 

This paper compared results of numerical calculations obtained from phase-averaged one- 
and two-equation stochastic models as well as the underlying deterministic (phase- 
resolving) model with laboratory experiments in case of a submerged bar (Beji and 
Battjes, 1993) and on a barred beach (Arcilla et al, 1994). Also the long-term evolution of 
a narrow-banded frequency spectrum on a horizontal bottom has been examined. The 
sensitivity of wave breaking formulations on third-order wave statistics derived from the 
two-equation model has been studied as well. 

The simplified one-equation stochastic model (LTA) represents an average effect 
of triad wave interaction, transferring energy from lower to higher frequencies through 
self-self interaction. The model is in excellent agreement with measurements of Hmo and 
T0i in the two cases considered. The two-equation model also takes into account the 
energy transfer to sub-harmonics as well as the non-resonant wave interaction and 
provides third-order statistics too. In general, the agreement between the simulated results 
and measurements is found to be acceptable, even beyond the domain where Gaussianity 
may be justified. However, in the inner part of the surf zone, the stochastic model 
underestimate significantly the skewness and asymmetry. Results of simulations using 
frequency-dependent formulations did not improved the accuracy. As the basic assumption 
of Gaussianity is highly violated in the inner surf zone and the statistical closure is highly 
questionable, only a phase-resolving model is applicable there. 

The results of the simulations performed on a horizontal bottom indicate that the 
LTA model is not applicable for prediction of long-term evolution on a nearly horizontal 
bottom in shallow water. As the two-equation model retains the phase-mismatch between 
free and bound waves, the frequency spectrum considered here tends to evolve towards a 
white-noise type spectrum after several wave lengths. 
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