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Abstract 

Numerical computations using a fully nonlinear potential flow solver are carried out 
on water of intermediate depth. Properties of single and multiple wave groups are 
examined on horizontal and sloping beaches. Comparisons are made with linear and 
weakly nonlinear theories. An important result is that the increase in wave amplitude 
due to wave shoaling is likely to be much less than the linear theory result for short 
steep wave groups because of the tendency for the group to spread. 

Introduction 

This paper is part of a series of studies of waves on a beach, which aims to learn 
more of finite amplitude effects on irregular waves. It follows Bird & Peregrine (1997) 
where attention is directed towards the long waves associated with and generated by 
a single wave group. Here the waves within one or more wave groups are studied in 
water of intermediate depth, that is for 1.36 > kh >ss 0.7, where h is the water depth 
and k is the wavenumber. 

The characteristic behaviour of wave groups on deep water differs greatly from that 
on shallow water. On deep water the waves are dispersive, and thus their energy 
travels at a speed different from that of the individual waves. Typically the group 
and its energy travel at half the speed of the individual waves in that group (the 
group velocity concept). In wave groups where the wave number is constant, the 
individual waves do not meet, and their interaction is in the form of energy 'slipping' 
back through the group relative to the wave crests. 
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In shallow water, energy flows with the wave crests. In the Boussinesq region, which 
often occurs before the waves break, the waves are typically solitary type waves, and 
as is described by two-soliton solutions of the Korteweg-de-Vries equation, they may 
merge temporarily if a wave of high amplitude catches up a smaller one ahead of it. 
However, unless the waves break at the point at which they merge, they separate 
again, suffering only a change of phase. The case of two waves of almost equal 
amplitude is slightly different; the solution of the KdV equation indicates if such waves 
are close, then they do not merge, but exchange amplitudes and shift phases as if they 
had. Figure 1 shows an example of the first case, computed using a fully nonlinear 
potential flow solver (described in a later section). Successive surface elevation profiles 
are plotted, shifted with time. The initial conditions consist of a single group of 5 
modulated solitary waves, a large central one and much smaller outer waves. A small 
amount of set down is added, but not enough to balance the mass of the waves. They 
are propagated on a beach of slope 1:60. It is clear to see that the largest wave merges 
with the one ahead of it. The waves have almost passed through each other when the 
largest one breaks. 

Figure 1: Surface elevation profiles of a single wave group progressing up a 1:60 beach. 

After breaking, waves can be modelled by bores (discontinuites of the shallow water 
equations). Bores frequently catch up one another and merge. This has been observed 
in the field study carried out by Packwood and Peregrine in 1980; some details are 
given in Peregrine (1998). Unlike solitary waves however, a merged bore retains its 
unity. Peregrine (1974) uses invariants of the nonlinear shallow water equations to 
show that in this situation, a small backward travelling wave of depression is formed 
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at the merger. 

However, the present topic of interest is the region between deep water and the 
Boussinesq regime, ie. intermediate depth water. Barnes & Peregrine (1995) used a 
fully nonlinear potential flow model to study the progress of individual wave groups 
travelling up a plane beach in the context of low frequency waves. Instead of the 
converging type behaviour seen in figure 1, they noted that the group and its energy 
appeared to spread significantly, and also that the waves shoaled far less than is 
predicted by (regular wave) linear theory. We address these last points by carrying 
out computations using the same nonlinear potential flow solver. Both single and 
multiple wave groups are considered, on horizontal and sloping beaches. It is useful 
to examine the behaviour of groups over a horizontal bed in order to clarify the 
processes at work since then the effect of the slope is separated out. But first we 
briefly review the relevant theory for wave groups. 

Brief review of applicable linear and weakly nonlinear theory 

To model modulated waves it is useful to consider the wave elevation to be described 
by 

r){x,t) = A{X,T)e%(kx-ut)   +  complex conjugate (1) 

(eg. see Mei, 1983). Here X and T represent the 'slow' space and time coordinates, 
and UJ and k are related by the dispersion equation 

u2 = gkt&nh(kh) (2) 

The water depth h is a function of the slow space variable, ie. h(X), and g is the 
gravitational acceleration. 

From the assumption of slow variations of the wave amplitude A, linear theory gives 
a first approximation: 

dA        dA     n dui .„, 
dT+C°dX=°> °^dk (3) 

This result corresponds to geometrical ray theory if extended to two dimensions. It 
gives the usual linear shoaling theory for varying depth, and indicates that a wave 
group simply translates with the group velocity cg. As already noted, unless kh is 
small, the wave speed c = w/k ^ cg. 

Including the next linear terms in the slow modulation approximation gives 

dA        0A      A     *2A fl2 

df + Cf>dX ~ 2~ dX2' ~       dk2 ^+CJw = nWi^; W   = 7^ (4) 

which is a Schrodinger equation, or a linear parabolic wave equation. The extra term 
on the right hand side gives an extra dispersion to the wave groups. 
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Including weakly nonlinear terms in the above approximation gives 

.dA     .   dA     1   „d2A      x..,2. /tr, 
l&r+lc°lw + r8X>=mA (5) 

a nonlinear Schrodinger (NLS) equation. Here A is a function of kh. In deep water, 
ui" < 0 and the equation has soliton solutions corresponding to special groups that 
propagate unchanged. This equation then gives the Benjamin-Feir modulational in- 
stability, which can also be described as 'self-focussing' of the waves. However for 
intermediate water depths, kh < 1.36, UJ" has the opposite sign, and the equation has 
a more stable 'defocussing' character. This aspect of wave modulations can be seen 
in the following computations with an accurate flow solver. 

The numerical model 

The computations were carried out using an accurate fully nonlinear irrotational flow 
solver. This is able to solve from deep water up to the first occurrence of wave 
breaking. The spatial domain is of finite length, bounded by uniform conditions. 

The fluid is considered to be two-dimensional, inviscid, incompressible and irrota- 
tional, and surface tension is neglected. Defining points (x, y) on the free surface by 
{X(s, t),Y(s, £)) = R(s,i), where s is a particle-following (Lagrangian) coordinate, 
we have: 

V24> = 0    in fluid body (6) 

-=-— = V^>    on free surface (7) 

—- = -|V0|2 - gY    on free surface (8) 

with the appropriate bed boundary conditions. The velocity potential is represented 
by (j>{x,y,t). 

If the spatial domain is a plane sloping beach, then the model first transforms this 
into a horizontal plane using a conformal mapping. The above system of equations 
is solved using a Cauchy theorem boundary integral, and hence the velocity at the 
free surface is computed. The surface is then stepped in time using a Taylor series 
truncated at the sixth order. Further details may be found in Tanaka et al. (1987) 
and Cooker (1990). 

A single wave group propagated on a horizontal bed 

Once one departs from considering a regular periodic wave train there is a huge range 
of incident waves that may be considered.   For simplicity and uniformity we have 
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chosen initial conditions in the form of a wave group with the surface properties of 
the deep water soliton of the same steepness, ie. to linear approximation 

r)(x, 0)   =   -[a sech (V2ak2x} eilcx + c.c.^j 

(f)(x,0)   =   —^-(iasedi(y2ak2x)eikx + c.c.). 

(9) 

(10) 

The subsurface velocities adjust appropriately in the computation when the frequency 
u) comes from the linear dispersion relation given above (equation 2), chosen to be 
appropriate to the depth. 

In the initial conditions the higher order corrections to equations (9) and (10) were not 
fully included. Usually only the second harmonic terms were added, thus generation 
of associated long waves occurs. See Bird & Peregrine (1997) for discussion of this 
feature. 

ected   surface  prof 0.7,  ak = 0.1 

Figure 2: Selected surface profiles for single wave group progressing over a horizontal 
bed, in a frame of reference moving with the group velocity. 

Results from a typical computation over a horizontal bed are given in figure 2. Se- 
lected surface profiles illustrate the progress of the free surface with time. Time in 
non-dimensionalised units (t* = t/Jh/g) is shown on the relevant axes. We summa- 
rize results from several such computations. 

In every case the expected defocussing, or spreading out of the group is evident. 
Such behaviour might be expected to scale with the Ursell number, Ur = a/k2h3 , 
but it depends most strongly on wave steepness ak, and less so on Ur or kh. As 
Peregrine (1983) notes, all NLS equations can be transformed to the same canonical 
form, with either a + or — sign for the nonlinear terms. The canonical equation can 
then have any solution transformed in the wave amplitude, space and time to give a 
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whole family of solutions, depending on amplitude as a parameter. Here, because of 
the dependence of ui and A on kh such transformations do not give any particularly 
simple result. However, they do show that if the waves are not too steep or long, e.g. 
Ur < 0.3 then this defocussing behaviour is to be expected from our knowledge of 
solutions of NLS equations. 

Linear theory is appropriate for small waves at the margins of a wave group, and 
hence, as we can expect, for a lengthening group the waves at the front of each group 
are longer than those at the rear. The additional trailing group of very short waves 
comes from the waves' requirement for bound high harmonics that were not included 
in the initial conditions. Corresponding short free waves are emitted. Similarly, the 
long set-down wave was not included and a free long wave can be seen emerging from 
the front of the group, see Bird & Peregrine (1997) for more details. 

Figure 3: Maximum wave amplitude of a single wave group progressing over a hori- 
zontal bed; solid = fully nonlinear method, dash dot = basic linear theory, dash dot 
dot dot = linear theory including higher order dispersion, dash = weakly nonlinear 
theory (NLS). 

The maximum surface height as computed by the fully nonlinear potential flow solver, 
is compared with the the theories described in the previous section (linear, linear 
with higher order dispersion, weakly nonlinear) in figure 3. A method by Taha & 
Ablowitz (1984) is used to compute solutions of the nonlinear Schrodinger equation; 
this is easily adjusted to compute the solutions to the linear equations. Since no 
higher order correction terms were added to the initial conditions when computing 
the solutions to the approximate theories, there is a difference in the initial heights 
of the surfaces. 

A more accurate description of the value plotted for the fully nonlinear method is 
that it is of the highest grid point, and since no interpolation is carried out, this 
differs slightly from the maximum height of the surface.   This results in the small 
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oscillations evident on this plot. The larger oscillations are due to the difference in 
the phase and group velocities of the waves. Individual waves still pass through the 
group in the manner described above for deep water (although they no longer travel 
at twice the speed of the group), and thus the largest wave persists only for a limited 
time, marked by the length of these oscillations. These oscillations are not seen in 
the solutions to the theories since these give only details of the wave envelope rather 
than the individual waves. 

We can see that the NLS equation gives a good approximation after the initial tran- 
sients whereas the linear theories are poor. From consideration of other examples we 
find that the basic linear theory is adequate only for very gentle waves which, because 
of our special choice of initial conditions, also corresponds to very long groups. The 
linear theory with higher-order dispersion is noticeably better, and in a number of 
cases is almost as good as the NLS. 

Three wave groups propagated on a horizontal bed 

Here the initial conditions consist of three envelope soliton groups alongside each 
other, centred a distance of 6 or more wavelengths apart. These distances were 
chosen to ensure that the groups were sufficiently far enough apart to have initial 
identities, but not so far apart as to prevent significant interaction between them. 
The example presented has the same initial wave steepness and depth as that in the 
section on single groups above. Again terms of the second harmonics are added. This 
example is illustrated in figures 4 and 5. 

 selected   surface   profiles,   kh = 0.7,   ak=*Q.1  

; AAAAAAJIAAAAAJIAAAAAA---- 

 'VyAAAA/vWVAAAAAAAyv—— 

 AAAAAMAAAMAAAT-  

;  (shifted  with   group  * 

Figure 4: Selected surface profiles for three wave groups progressing over a horizontal 
bed in a reference frame moving with the group velocity. 

Selected profiles illustrating the progression of the surface elevation in time are given 
in figure 4.   Again the groups spread to varying degrees depending on their initial 
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steepnesses, but the interactions between the waves slightly limit this effect. The 
individual waves interact with each other. Initially waves in each group are in phase, 
but the phase changes involved in the spreading out of the groups lead to significant 
irregularities as the groups overlap. 

Figure 5: Maximum wave amplitude of three wave groups progressing over a hori- 
zontal bed; solid = fully nonlinear method, dash dot = basic linear theory, dash dot 
dot dot = linear theory including higher order dispersion, dash = weakly nonlinear 
theory (NLS). 

The maximum surface height of the wave group as computed by the fully nonlin- 
ear potential flow solver is compared with the basic linear, linear with higher order 
dispersion and weakly nonlinear theories in figure 5. In the fully nonlinear plots we 
observe additional oscillations on different (and varying) lengthscales from the short 
and long ones discussed above for single wave groups. These are due to both the for- 
ward travelling free long waves passing through the groups and elevating individual 
waves for short periods of time, wave interference, and differing modulations giving 
the highest wave. This latter behaviour is the source of the large kink in each of the 
nonlinear curves in figure 5. 

The basic linear theory is slightly more successful in predicting the maximum wave 
amplitude, as it is generally slightly higher than for an isolated group. However, the 
envelopes of the steeper groups do not progress without change of form, thus basic 
linear theory is still not appropriate for changes on these length scales. Again the 
weakly nonlinear theory and the linear higher order dispersion theory perform better. 
One of the reasons for this is the inability of the theories to model the free long 
waves and harmonics which emerge from the group. We have already noted that the 
long waves computed in the fully nonlinear computation pass through the group and 
elevate individual waves, thus effectively increasing the maximum surface elevation. 
The long waves are higher for the steeper groups, and so it is for these groups that 
we see the greater difference in maximum amplitude. However, modulation equations 
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Figure 6:  Normalised maximum amplitude of single wave groups progressing on a 
plane beach (solid line), shoaling coefficient (dashed line). 

corresponding to the NLS level of approximation can model the long waves. Such 
free long waves and very short waves are also generated in real situations of depth 
variation. 

So in summary, the multiple groups spread out slightly less than isolated groups of the 
same steepness on the same depth. The maximum surface elevation is higher, due to 
the interactions between the waves. Basic linear theory is again the least appropriate 
for the steeper groups. Both linear theory which includes higher order dispersion and 
the weakly nonlinear theory are more successful, but the free long waves formed by 
the group are important. 

A single wave group propagated on a plane sloping beach 

In this section we repeat and extend some of the computations of Barnes & Peregrine 
(1985). The bed topography is a sloping beach leading onto a shelf of constant depth. 
The initial condition is a single deep water envelope soliton, with no added higher 
order terms. Beach slopes of 1:10 and 1:40 are used. The beach corners are located 
at x = 10 for the 1:10 beach and x = 20 for the 1:40 beach. The depth of the water 
at the centre of the group's initial position may be computed by adding the shelf 
depth h (indicated in figures 6 and 9) to either 1.0 for the 1:10 beaches or 0.5 for the 
1:40 beaches. This means that the groups start in a water depth of at least half a 
wavelength. 
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Figure 6 shows a comparison between the linear shoaling coefficient (dashed line) and 
the shoaling of the computed wave groups (solid line), calculated as the maximum 
surface elevation at each depth. The irregularity of the computational results is due 
both to the irregularities explained earlier, and to the finite intervals at which the 
computation is sampled. We note that the maximum surface elevation increases quite 
suddenly and significantly as the waves propagate on the constant depth shelf. It is 
easy to verify the conclusions of Barnes & Peregrine (1995), that shorter, steeper 
groups spread out and thus shoal much less than longer, less steep groups, and that 
this effect is more marked on gentle beaches. After considering the horizontal bed 
case, this conclusion is not surprising. The group does not encounter other waves 
around it as it spreads and thus cannot interact with any other waves. On a gentler 
beach the group spreads more since it has more time in which to spread. 

1:10 beach, ak=0.05 1:40 beach, ak=0.15 
120 
100 

80 

|  60 
=  40 

20 

0 

-10      -5 0 5 10        15 -5 0 5 10 
space (shifted with  linear group velocity) space (shifted with linear group velocity) 

Figure 7: Selected surface profiles for single wave groups progressing on a plane beach. 
'x' marks the beach corner position. 

 NAAA/\AA^^^ X— 

Selected surface profiles from two of the examples are shown in figure 7. The space 
coordinate has been shifted with linear group velocity, and thus we mark the beach 
corner position (ie. that point where the slope changes to constant depth shelf) by 
crosses. It is easy to see the transformation of the sinusoidal waves to near solitary 
type waves in the shallowest water. 

Many of the features of the groups observed on the horizontal bed topography may 
be seen here too in our full range of examples. The steeper groups spread more than 
the shallower ones; again the wave groups formed of waves of steepness ak = 0.05 
barely spread at all. Higher-order harmonic corrections are emitted from the back of 
the group, as before, but there is no easily visible evidence of free long waves until the 
group passes onto the shelf. Longer waves are towards the front and shorter waves 
towards the back of the group while it is on the sloping section, and the envelope 
becomes asymmetric. However as the waves pass onto the shelf, their wavelength 
reduces (in addition to their amplitude suddenly increasing). This is quite dramatic 
in the cases of the wave groups of steepness ak = 0.05, due to particularly shallow 
depth chosen for those shelves. On a plane beach without a shelf, breaking would 
occur just after the point where the corner is placed. 
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Figure 8: Speed of single wave group progressing on a plane beach (squares), linear 
group velocity (solid line). 

It is easy to observe that the group does not always travel with the linear group 
velocity. The trend is for the group to travel a little slower than cg shortly before it 
reaches the shelf, and faster as it passes onto and travels along the shelf. This may be 
observed more clearly in figure 8, which compares the speed of the computed groups 
(squares) with the linear group velocity (solid line). The dotted line represents the 
start of the shelf; above it the depth is constant (the markings on the vertical axis 
are inappropriate there). 

The speed of the computed groups is estimated as follows: at each time, a Hilbert 
transform of the surface elevation is taken to give the group envelope. Since the waves 
are nonlinear, this envelope is very 'noisy', and so we use a Fourier filter to remove 
the higher harmonics. We denote the position at which this smoothed envelope has 
a maximum to be the centre of the group. Numerically differentiating the positions 
of the group centres with respect to time gives the group velocity. 

It is not very surprising that the comparison is poor at the shallower depths; with the 
waves being more nonlinear there (behaving more as individual solitary-type waves) 
we can expect the linear group velocity concept to fail. 

In summary, the maximum amplitude of a single wave group propagated up a sloping 
beach is almost always less than that predicted by the linear shoaling coefficient. This 
effect is most marked for steep groups on gentle beaches, but is not surprising, since 
the regular wave theory is least appropriate for short isolated wave groups. Many 
of the features of the groups observed on the horizontal beach are also seen on the 
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sloping beach. The group travels with the linear group velocity in deeper water, but 
not in shallower water where we may expect the group velocity concept to fail. 

Three wave groups propagated on a plane sloping beach 

Here the initial conditions were formed of 3 adjacent envelope soliton groups, again 
with no higher harmonic corrections added, spaced by either 10 wavelengths (ak = 
0.05) or 6 wavelengths (other steepnesses). We choose the same combinations of 
beach slopes and wave steepnesses as for the single groups, except that for the case 
of beach slope 1:10, initial wave steepness ak = 0.05, the beach corner is now located 
at x = 15.0. 

1:l0,ok=0.05,h=0.075 :10,ok=>0.1,h=0.1 

vV~V^AM/VVVV^A'pVVW«vWJv•v^yyw^A^v^^^t^^ 

i:10,ak=0.15,ri=0.1  (third wave group broke) 

I '•"I^>^Mv\rW«wvwA»vwrSVw*v»vw^^ i'"'W'^'^?WF'V*'X~3VC^^^ 

1:10.ok=0.2,h=0.1  (first w 

i:40,ok=0.05,h=0.075 l:40.ok^0.1,h°0.1 

•Wrf*W*»W^^WM^•W5^^ 

0.20 -0.10 -0.60 -O.50 -0.40 -0.30 -0.20 
-Depth 

k40,ak=0.15,h=0.1  1:40,ok=0.2,h=0.1  (second wave group broke) 

12 "WfMW<'MV'^^ ! I ^^^^^^ 

Figure 9:   Normalised maximum amplitude of three wave groups progressing on a 
plane beach (solid line), shoaling coefficient (dashed line). 

A comparison between the shoaling coefficient and the maximum height of the com- 
puted surface is shown in figure 9. The results are very similar to those for the isolated 
groups (see figure 6); the computed maximum amplitudes are generally slightly higher 
for 3 groups than for one, but the differences are quite small. 

Examining the surface profiles shown in figure 10, it is not difficult to see why the 
changes are small: there is not enough time for any significant interactions between 
the waves to occur, unlike the horizontal bed case. Also there are no significant 
long waves to raise the individual waves of the group, as there was on the horizontal 
bed. The tendency of the very short steep groups to spread is very strong, with the 
maximum amplitude below the shoaling coefficient, as before. 
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Figure 10:   Selected surface profiles for three wave groups progressing on a plane 
beach. V marks the beach corner position. 

Conclusions 

We have examined the behaviours of wave groups in water of intermediate depth. Fea- 
tures of both the deep water and Boussinesq type behaviours were evident; however 
the primary area of concern was the differences between the linear shoaling coefficient 
and the shoaling of the computed groups. It was noted that basic linear theory is 
the least appropriate for short, steep isolated groups and that on a horizontal bed, 
both linear theory including higher order dispersion and the weakly nonlinear theory 
give better results. The differences with the linear shoaling theory were explained by 
the tendency of the groups to spread and the lack of interaction with other waves; 
the differences are smaller when the initial conditions consisted of three wave groups 
instead of just one. An important result is that the increase in wave amplitude due 
to wave shoaling is likely to be much less than the linear theory result for short steep 
wave groups because of the tendency for the group to spread. 

Acknowledgements 

We are grateful for support from an EPSRC studentship, from the U.S Office of Naval 
Research, NICOP Grant N00014-97-1-0791 and European Commission research grant 
MAS3-CT97-0081 (SASME). 

References 

T.C.D. BARNES and D.H. PEREGRINE. Wave groups approaching a beach: 
irrotational flow computations. Proc. of Coastal Dynamics, 116-127, (1995). 

Full 

C.C. BIRD and D.H. PEREGRINE Wave groups from Deep to Shallow water. Proc. 
of Coastal Dynamics, 1013-1022, (1997). 



COASTAL ENGINEERING 1998 111 

M.J. COOKER. A boundary integral method for water wave motion over irregular 
beds. Engineering Analysis with Boundary Elements, 7(4): 178-195, (1990). 

C.C. MEL The Applied Dynamics of Ocean Surface Waves. John Wiley & Sons, 
(1983). 

D.H. PEREGRINE. Water-wave interaction in the surf zone. Proc. l\th Coastal Eng. 
Conf., 1: 500-517, (1974). 

D.H. PEREGRINE. Water waves, nonlinear Schrodinger equations and their solu- 
tions. J. Austral. Math. Soc. Ser. B, 25: 16-43, (1983). 

D.H. PEREGRINE. Surf Zone Currents. Theoretical and Computational Fluid Dy- 
namics, 10: 295-309, (1998). 

T.R. TAHA and M.J. ABLOWITZ. Analytical and numerical aspects of certain non- 
linear evolution equations II: Numerical, nonlinear Schrodinger equation. J. Comp. 
Phys., 55: 203-230, (1984). 

M. TANAKA, J.W. DOLD, M. LEWY and D.H. PEREGRINE. Instability and break- 
ing of a solitary wave. J. Fluid Mech., 185: 235-248, (1987). 




