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Ri|i COICTtf.ta Geaatasieii MI a Plans Beach 

D.A. Suriamihardja1 and YoshitoTsuchiya2, Member, ASCE 

ABSTRACT: In order to establish a wave-current interaction model for rip currents, a 
set of first-order linearized governing equations describing the 2-D nearshore 
circulation is derived from the equations of nearshore currents by the perturbation 
method. Wave refraction induced by the generated currents is fully considered. The 
solutions to the field equations of rip currents both in the surf zone and shoaling zone 
are obtained, and expressed in the form of Gaussian hypergeometric functions and 
modified Bessel functions, respectively. The matching condition of the solutions at the 
breaking point determines the sparing of the tip currants. Comparison of the computed 
rip current spacing, circulation pattern, and rip current discharge, with laboratory and 
field data shows a satisfactory agreement especially in the so-called instability region of 
tiae surf similarityparameter. 

INTRODUCTION 

The change in momentum flux of incoming waves can be described by the offshore 
and longshore gradients of the radiation stresses which act as the driving forces in the 
nearshore circulation system. Therefore to formulate the driving forces in the 
momentum equations for the generation of nearshore currents is of importance 
(Dingemans, Radder and De Vriend, 1987). Two main causes of the driving forces 
are the so-called wave-current interaction, and structural interaction (Dalrymple and 
Lozano, 1978). 

The first investigation of nearshore currents as 2-D horizontal circulationgenerated 
by the interaction between the incoming waves and the resulting rip currents was by 
Le Blond and Tang (1974), whose theory applies to a plane beach and normally 
incidentwaves. Similar to their work, Iwata(1976) developed a theory which assumed 
the nonuniformity of bottom friction between surf and shoaling zones. However, 
these two theories still failed in obtaining the nondimensional alongshore spacing of rip 
currents as an eigenvalue of the governing equations. Iwata further attempted to find 
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currents as an eigenvalue: of die govetiiir^ siquAtia&s. Iwi£a further &Ketnpted to find 
an asymptotic solution for both the surf and shoaling zones. Finally, he obtained the 
real eigenvalue from the characteristic equation which is derived by matching 
conditions at the breaking point, and found that its value is a function of a parameter 
determined by the bottom friction coefficient, the surf zone width and the breaker 
Jfc eight. 

MizugucM (1976) also attempted to obtain the eigenvalues from the characteristic 
equation without using any approximation such as asymptotic solution as in Iwata's 
work, by considering both the uniformity and nonuniformity of the bottom friction. 
However, no eigenvalue was obtained, 
the exclusion of lateral mixing in the governing equation, and because the contribution 
of the bottom friction was not sufficient to represent the dissipative effect in the 
j&earshore current. Consequently, he reformulated the bottom friction term to be a 
function of the distance from the shoreline, similar to the lateral mixing. Dalrymple and 
Lozano(1978) argued that no reason exists to justify this formulation, so thattbereal 
eigenvalue obtained as a function of a parameter proportional to the so-called surf zone 
similarity parameter and inversely proposdonal to the bottom friction was invalid. 

Dalrymple and Lozano(1978) presented two wave-current interaction models. One 
was similar to the theory of Le Blond and Tang (1974), in which changes in local 
wave length due to currents were considered. However, their assumption of an 
extremely small refraction angle, trhicb implied thitnc longshore variation in wave 
orthogonals was allowed, resulted in no rip-current formation. In the second model, 
the wave-current interaction effect was considered through wave refraction due to 
current, and the formation of longshore periodic nearshore circulation cells was 
calculated numerically. The obtained eigenvalue was a function of a parameter 
expressed by the ratio of beach slope to bottom-friction coefficient. The relationship 
between the eigenvalue and this parameter showed that the rip-current spacing 
increases as the parameter increases and vice-versa. Comparison with the rip current 
spacing of BalsilJie (1975) obtained by field measurement showed a good agreement 
in the region of small values of the parameter, which implied that the theoretical 
eigenvalue of Dalrymple and Lozano was partly suitable for the prediction of rip- 
current spacings generated by the incidence of infragravity waves, as it was stated by 
Etalsilliethat almost all of the data are catagorizedinto this type of waves. However, 
when compared with the field measurements collectedby Sasaki (1977), which were 
made in wider regions such as the regions of instability and edge waves, the theoretical 
spacing showed a lower value than that of field measurements. 

The present study investigates the steady-state nearshore circulation on a plane 
beach based on the interaction between normally-incident waves and the resulting rip 
currents. A mathematical formulation of the governing field equations for rip currents 
on a plane beach is made by means of the wave-current interaction model, including 
the formulation of the driving forces. The governing equations of 2-D nearshore 
currents on the plane beach are first established by employing the conservation laws 
for mass, momentum and wave action. The so-called mild slope equation (MSE), 
which is able to calculate wave transformation due to interaction with the nearshore 
currents, such as wave refraction, is applied to formulate the driving forces in the 
momentum equations. Nevertheless, to simplify the analysis without sacrificing the 
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generality of the cheery, the ialetai imiog ternis are oi&iixed. Using, a perturbation 
method for a small parameter of beach slope, the field equations of rip currents are 
formulated. At the first order of approximation, the field equations of rip currents are 
obtained in both the surf and shoaling zones, where the wave refraction due to currents 
is fully considered. With some additional assumptions, solutions to the field equations 
are obtained both in the surf and shoaling zones in terms of the Gaussian 
bypergeometric function and the modified Bessel function, respectively. The matching 
condition for these solutions at the breaking point makes it possible to determine the 
eigenvalues of the characteristic equation of the derived field equations. 

The theoretical results of the rip current characteristics such as the rip current 
spacing and flow patterns, are compared with both the previous theoretical results, 
laboratory and field data. The comparison of the theoretical rip current spacings and 
those of field data showed a satisfactory agreement. Current patterns in a nearshore 
circulation cell are also calculated numerically through the determination of integration 
constants in the stream function based on energy budgeting at the breaking point, 
which resulted in a reasonable value of rip discharge, both at laboratory and field 
scales. 

THE BASIC EQUATIONS OF NEARSHORE CURRENTS 

The MSE derived by Kirby (1984) which includes an additional wave energy 
dissipation term, A», W4>, is employed to formulate the driving forces. The terms in 
the MSE of Kirby are as follows: Wis the ratio of the wave energy dissipation rate 
D to the total wave energy E, C is the wave celerity, Cg is the group velocity, 
where both values are assumed to be nearly equal due to the shallow water 
approximation, and D/Dt is the Lagrangian derivative. By introducing velocity 
potential of linear wave theory, 4> = (f> wp(-i(Dt), and (j> = (g& /icor) exp (iS), 
where S is the phase function, into the MSE of Kirby in the steady state condition, 
tie MSE is written as: 
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Following lengthy algebraic procedures using the expressions for the radiation 
stresses by Dingemans, Radder and De Wend (1987), and for the depth-integrated 
mass transport by Crapper (1984) (see Tsuchiya and Suriamihardja, 1989), the driving 
force Fj can be obtained as: 
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where <p* is the camples caajegaie of <p. Tie flmteniiuiiheiigte side of (2) is 
the rotational term, and is the contribution from the dissipation of wave energy. The 
second is the irrotational term, and the third term describes the interaction between 
wave-induced mass transport and currents. The fourth term represents the additional 
effect resulting from the diffraction of waves. Dingemans, Radder and De Vriend 
(1987) demonstrated that only these rotational terms are able to generate non-zero 
depth-averaged current velocities. For simplicity, the horizontal components of the 
uearshore current are assumed to be independent of depth. Therefore the conservation 
1 aws to be employed in this study are presented in depth-integrated form (For example, 
Phillips, 1966; Dclataand Rosenthal, 1984; and Crapper, 1384). Neglecting the wave 
ciiffraction effect and assuming the shallow water condition, the steady state mass and 
momentum equations can finally be reduced to 

d V,,    n Bff       D   dS 
U^^R^-gS^*- 

d x. " d Xj     po)rd d xt 

E 

lod 
E   dS 

prj)d 3 x 

where       R, 
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E = -pg(Ori 

itt which U{ are the vertically-averaged horizontal current velocity components, T^ are 
the lateral mixing terms, r\ isthe mean water level, p is the density of water, (/is the 
water depth, g is the acceleration of gravity, t is time, xs are the horizontal 
coordinates x and y for /' = 1 and 2, and ftj are the bottom friction coefficients 
following Iwata's (1976) formulation in the case of normal incidence and are written as 
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where AT* =1.41 (y / k ke /
M in which kei% the bottom roughness, k is the wave 

number and/ is the ratio of wave amplitude to local water depth, and suffix B 
stands for the position of wave breaking and indices x and y represent the seaward x 
and alongshore y directions. The conservation of wave action, which can be derived 
directly from (1), and wave number conservation which is equivalent to the 
iirotationality condition for wave number, are written as: 

l/A,   (U>r   •     • •)        Ul OX, OX, 
(6) 
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THE FIELD EQUATION OF RIP CURRENT 

Perturbation Scheme 
Before ordering the equations using the perturbation method, it is convenient to 
n.ondimensionalizethem. The water depth dg at the breaking point is selected as the 
representative length to facilitate the nondimensionalization. The process is defined as: 

(x,y,Tt,d) = dB(x',f,f}\d*)     (u,V,c) = J^(U*,V',C')} 

((O.oi.) ~ Jet cL ibi" .(a'l) (k.k..k..\-d^ik\kl.k*)      I 

where an asterisk represents the dimensionless quantities. 
The beach slope s is selected as a parameter of perturbation in ordering the 

equations, and the series expansion, in which asterisks have been dropped for 
convenience, are given as: 

d = .s(4> +sC,x + s2£2 +...)    ;     a-s(,a0 + sai+s2a2+...) 

l/ = s^(0+sl/1 + s2[/2+..)     ;     V = s^{0+sVl+s\+..) 

k = (*o* + sKx -i- 5'^ 4-..) i -I- (G-\- sk,y + s\y +..)} 

(or = sHk0xC0 + s(ktxCQ + k0xCl) + ..}\ S =(50 + sS, + s2S2 +..) 

C = si(d0 + s£, + s%2 + ...J^{\znh.kdB)l{kdB) 

(8a) 

(8b) 

(8c) 

(8d) 

(8e) 
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Figure-1 The coordinate system and geometry for nearshore current vectors 
U, V, and wave number k. 

The Conservation of Wave Number 
The normally-incident waves refract due to their interaction with rip currents. This may 
mean thatthe wave number direction intersects the beach obliquely. Therefore, based 
on Figure 1 the wave number can be given as: 

k=-<Wcos01)   i-dklsinfl.)   j (9) 
where jk| is the magnitude of vector k. Equation (9) can be expanded with respect to 
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the perturbation parameter s, and as was: mentioned vbovi ilustuiie group velocity is 
to be nearly equal to the wave celerity in the surf zone, it was assumed to be in the 
same direction as the wave number vector. Consequently, it can also be expanded by 
the perturbation parameter. The conservation equation for the wave number is finally 
formulated for each order of the perturbation parameter (see Tsuchiya and 
Siuriamihardja, 1989) as: 

,,>    tfi,    ii,        d   i \        d  i   i    i 
dy      dx       dy dx~ 

(\0i\ 

where       x = m(x + xs) = d0;       y = my;        m=(l + d£0/dx) 

m is the slope of mean water level, and x, is the maximum run-up position. 
Zeroth-order equations and their solutions 

The leading terms of the governing equations produced by the perturbation expansion 
are given for the surf zone and shoaling zone, respectively. In the surf zone, the zeroth 
order equations of mom enDiru and Tvave action conservation are given respectively as: 

dx a)0r dx 
-d 

°dx 12/ 
O 
•«y 

— (^C0)+D0=0 (11) 

In order to solve the above equations, the wave amplitude^, in the surf zone is 
assumed to be proportional to the local depth to leading order: C^ = y of, where y is 
an empirical constant. This formulation is employed in surf zone models. The wave 
energy dissipation term D is hypothesized as: 

D={5y2/4){md!+S(3md^1/2+dl(d£l/dx)+  ]} (12) 

where D0 in (11) is equal to <Sy2m/A)d0
3a 

The wave amplitude in the shoaling zone is obtained from the leading order of the 
equation of wave action conservation as ^,=B0 

iad^m,where B0 is an integration 
constant. The wave set-up is obtained from (11)  (see Tsuchiya and Suriamihardja, 
1989) as: 

&<*) = -{(ir2 )*+*,}« (13) 

wherem=(l + f72r1;^=72{f-i(l + #y2)/(l-fyB
2)}^,and yB=B0^ 

and xB is the distance from the shoreline to the breaking point. 

The first-order equations of rip currents in the surf zone 
The mass conservation equation is given from the first equation of (3), considering (8) 
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for its expansion and using variables defined from mass conservation, of which the 
stream function can be defined as follows: 

.L^Ul)+fr(xVl) = 0^(x~U1) = ^)and{xVi) = ~-lF{^)       (14) 

The approximation may be made to the wave dispersion relation, to evaluate Cv It is 
necessary, of course, to obtain a simplerelationbetween C, and ft in order to reduce 
iigher-order differentation terms. The simple relation can be derived from the 
established set of four squauoas. Li order :o appicadmatothe reluiioii along with the 
four equations, however, the x-direction of the first order of momentum equation (4) 
can be used by considering the most effective terms, thus: 

Q = qx\;       q = -J{tanh kdB)/{kdB) (15) 

if the other non-leading terms are neglected, q may equal to 1/2 which is equivalent to 
that of Darlymple and Lozanos approximation. However, based on this 
approximation, the value of q might be somewhat less than 1/2. 

When the horizontal mixing terms remain in (4), the field equation of rip currents 
may become a fourth-order partial differential equation. Without loss of generality in 
the formation of rip cua-ents, as previously treated in theoretical approaches to the 
formation of rip currents, the horizontal mixing terms are neglected, but the bottom 
faction terms are included. By use of the four equations using (15) to replace C, the 

first-order equation of momentum can finally be obtained (see Tsuchiya and 
Suriamihardja, 1989 for the detailed reduction) as: 
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By eHminating C, fr°m (1^)» the first-order field equation of rip currents can finally 

be obtained as: 
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The first-order equation of rip currents in the shoaling zone 
In the shoaling zone the governing equations differ from the surf zone equations 
principally in the wave energy dissipation term and in the formulation of the bottom- 
friction stresses. In this zone, the driving forces are presented in irrotational form, 
which may be incapable of generating currents of the first order. The remaining terms 
in the cross-differentiated equations ctigi&iBAi from the friction terms. Consequently, 
the momentum equations in the shoaling zone play an important role in the decay of 
currents produced in the surf zone. As was previously indicated in (14), a stream 
function in the shoaling zone can be equally defined. The momentum equations in the x 
and y directions and cross-differentiated momentum equations are given respectively 
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(19) 

THE SOLUTIONS OF THE FIELD EQUATIONS OF RIP CURRENTS 

The solution in the surf zone 
The solutions to (17) for the surf zone and (19) for the shoaling zone can be obtained 
by means of the method of separation of variables. The stream function   f to be 
solved for can be expressed by  • ^ 00= - (x )Y v). Substituting this expression into 

(17), the equation can be transformed into two equations as 

PV      ' }dx2     \PK      '      P\xdx    P 
3(H) = 0 

Uy" 
• + A2  K0O = O 

(20) 
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•where A   is the separation constant wlvldi is tie eigenvalue corresponding to the 
number of rip currents. Introducing the new variable 

^{l + QihcflP}'1 (21) 

into the first equation of (20) yields 

f(l-|')^r-{(« + ^-l)l + (2-^r}^ + ^j3(|) = 0 (22) 

where      (a,b) = \(§IQ ~\)±^{siQ-\f + 477(2 j/4; c = (s/Q + RIP) 

The general solution of this equation can be expressed as a Gaussian hypergeometric 
function in the form 

Ss„rf =AZ%a* + a-cl + a-b-4) + A,{bF(b} + b-c-,l + b-a-4) (23) 

•where A, and A? are the integration constants to be determined, and the suffix "surf" 
rspresents thesurfzone.To solve for regular rip-current spacing as an eigenvalue 
problem of the equation, a maximum pjitil for (23) most exist in the surf zone. The 

solutions   should have a flnits valus   •s.ai s £\«rimum point -within 0<'<1. 
This behaviour can be examined through the following conditions: 

*)U-° ; **)U*>-° ; **AL«.<0 <24) 

where B   indicates the breaking point. It is also confirmed by numerical calculation, 
that for -42=0, the conditions will be fulfilled. 

The solution in the shoaling zone 
The solution in the shoaling zone can be obtained by solving (19) using the method of 
separation of variables. Introducing the new variables 

(dx^-x"1 six)   ;   x=Xx~-Jl (25) 

Equation (19) is reduced to 

{^+757-(1 + ^l^) = 0   ;    (^F+A2)(^ = °   (26) 

The solution to (26) can be expressed using modified Bessel functions of the first 
and second kinds. By use of (25) the solution can finally be written as 

&<J,x) = Bl£l{kx4l)+Bl$l{kx4i) (27) 

vrhere B{ and B^ are integration constants to be determined, and the suffix "shoal" 
represents the shoaling zone. To fulfill  the condition that £shoal -* 0 far offshore, 
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The boundary conditions and characteristic equation 
The eigenvalues can be determined by the matching condition at the breaking point, 
that is: 

_d 

dx 
-rrSsurf(x~) -d;c~-shoal (*) ;     Bsurf(x)l      =HshoalU~)l (28) 

where B   indicates the breaking point. 
The real and positive eigenvalues X which satisfy the matching conditions (28) can 

be determined if the strenm functions in botii the surf stud shoalinor zones 2re 
decreasing monotonicaliy in the offshore direction, the characteristic equation is given 
by 

F{\-S,c-H + d-S;Q 

rf\ 

{aQ 

(1-&V& 
1 + JZP(I -fB)/e|B. 

(29) 

By numerical solution of this characteristic equation, the eigenvalues A can be 
determined. The eigenvalues A directly correspond to rip spacing along the shore line. 

Determination of the integration constants in die stream functions 
The integration constant of the stream function   A,.^     in the surf zone can be 

determined from the steady-state wave power conservation in the shoaling and surf 
zones. The wave energy dissipation rate immediately after breaking is different from 
that in the inner region. This is revealed by the different wave-elevation decay rates. 
Therefore, the ratio of wave amplitude to local water depth should be taken into 
consideration in wave energy budgeting. This difference in the rate of wave energy 
dissipation is responsible for the structure of the nearshore current. Consequently, the 
wave power contribution to the generation of the nearshore current initiates at the 
breaking point. The change in wave power occurring in the region from just before to 
j ust after the breaking point can be expressed by: 

J_ 
IK 

(A   \ 

WoB J 

ftjmura, Goto, and Seyama's (1988) experimental work suggests the condition y, 
EJased on this fact, the first-order approximation of (30) is reduced to: 

,-y-i k s{y- + -(c1B -u1B)x, if i 
^7B-2l2tf 

(30) 

B>r- 

(31) 

Using (31), the integration constant A^A canimmediatelybe evaluated, and the stream 
function*!' can finally be expressed as 

^^{(-1)-•}^) } <*> 



3704 COASTAL ENGINEERING 1996 

Tl lie ue^ui-iiucg'.iauncijp f.iyi'riii vcnOCiiy at Ijr'st-Oi'wr is iiOv* i'riwJy w us ^jtpiesseu dyu 
tumericauy as: 

Q(x~,y~) = i dU(x~ ,y~) = i (si" )s" {o + s Ul (x ,y )+ s2U2 (*f,y~ )+.-} (33) 

Theoretical Results And Comparison With Field Data 
A theory of the steady nearshore horizontal circulation cells induced by normally- 
i acident waves on a plane beach has been proposed in this paper. The theoretical 
results predict two main characteristics of rip currents, i.e. the alongshore spacing and 
tiic depth-integrated velocity distribution in the seaward direction. The obtained rip 
c urrent spacing is compared with the theoretical curve of Dalrymple and Lozano (1978) 
and the field data of Sasaki (1977) and other investigators where the surf similarity of 
t tie waves are categorized into instability region. To compare the theoretical results with 
the field data of Sasaki (1977) and other investigators, their values of the parameter g 
at the breaking point should be evaluated using their wave characteristics data, and 
their values of K" should be evaluated using bottom roughness ke, bottom slope s, and 
wave length data at the breaking point, then the results are plotted over the theoretical 
curves. In the evaluation of K, Kajiura's expression for bottom friction coefficient was 
used, as Dalrymple and Lc-zsino used and assumed the eoUom roughness as ke = 0.4 
mm. 

12 

8 

• Yr Ajigaura 
Q Yr Kashima 
A Yr Scripps 
A Yr Isle of Sylt 

Yr/xB 

0 
Dalrymple & Lozano 

AD 

Figure 2. Theoretical curves of dimensionless rip spacing (Yr /x^ in terms of 
Dalrymple number AQ for ^-values of 0.40, 0.45, and 0.50 including 
Dalrymple & Lozano's curve (1978) and rearranged field data of rip 
currents generated by waves having surf similarityparameter of the 
instability region. 
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in cGHipsniis: tiiC rcsiuts G\ tuis stu^y wim mose OI i^airyiupic and i_#czano, ui£ 
parameter K, which has been previously defined, is transformed into Dairympie and 
Ix>zano's number AD= 0.4 IK . Figure 2 shows the curve of dimensionless rip spacing 
as a function of Dairympie parameter AD. The present curves ( q=0.5,0.4, and 0.3) 
rapidly increase as AD becomes less than 1, while Dalrymple's curve decreases asAD 

goes to 0. The present theoretical results and those of Dairympie and Lozano differ 
particularly at small values of AD In the course of deriving the characteristics equation 
in the present eigenvalue problem, the dimensionless rip spacing depends on the values 
of K and q. It was defined thai q con'espoads to wave eliaxactsrislics and beach slope 
5, and K depends on the bottom roughness and wave length at the breaking point. 
Therefore, we conclude that the dimensionless rip spacing is determined by incoming 
wave characteristics, i.e.wave height H and wave length L, and morphological 
characteristics, i.e. beach slope s and bottom surface roughness ke. 

m?is 
m 

dU 

10 20 30 40 SO 60 

x  [m] 

Figure 3. Seaward distribution of rip discharge, where beach slope s = 0.05 
and dimensionless rip spacings of 3.12 ( K = 0.30), 4.21 (K = 0.45), 
and 7.70 ( K = 0.70) are used. 

Figures 3 illustrate the distribution of depth-integrated rip current velocity or 
seaward rip discharge as a function of seaward distance. The illustrations have 
dimensionless rip spacings of 7.70, 4.21, and 3.12, a beach slope of 0.05, and q of 
0.50.The breaking point is located at 20 meters from run-up line. By using yB of 0.50, 

the numerical value of Asurf  gives values of rip discharges with reasonable values at 
both laboratory and field scales. 
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CONCLUSIONS 

In this study a new mathematical model for steady-state horizontal nearshore 
circulation has been developed, in which the wave-current interaction is taken into 
consideration. The basic equations consist of the depth-integrated equations for 
conservation of mass, momentum, wave action, and wave number. The wave-current 
interaction includes not only wave refraction due to currents but also the work done by 
radiation stresses against the mean current. 

The basic equations are decomposed into the leading order and the instability order 
using the beach slope as a pertub&ueu parameter. The leading order gave the solution 
for wave set-up in the surf zone and wave set-down in the shoaling zone. The 
instability order gave linearized field equations of nearshore currents. It is found that 
the nearshore circulations were generated by the rotational driving forces in the 
momentum equation. The solutions were characterized by boundary conditions at a 
shore line, a breaking line, and far offshore. In the surf zone, the solution was 
represented by the Gaussian hypergeometric function. In the shoaling zone, the 
solution was represented by the modified Bessel function. The eigenvalues which 
correspond to the dimensionless rip spacing are obtained from the characteristics 
equation extracted from the matching condition at the breaking point. 

The present theoretical results for the dimensionless rip spacing were consistent 
with the scatter of the tieid data of Sasaki in terms of surf similarity parameter of the 
region of instsbility. The curves suddenly increase in the range AD < 1.0, and tend to 
tie a constant value for larger values of AD. The field data on dimensionless rip 
spacings caused by infragravity waves are difficult to predict by this theory. Outside 
of this range, the theory gives reasonable predictions for rip spacing caused by wave- 
current interactions. 

Rip discharge is illustrated with exact numerical values, using an integration 
constant which is obtained from energy budgeting at the breaking point. This 
budgeting was applied at the suggestion of Kimura et.al, that the wave energy 
dissipation rate immediately after breaking is larger than the dissipation rate in the 
inner region. The resulting value is within the range of data at both laboratory and 
field scales. 
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