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COASTAL MORPHODYNAMIC INSTABILITIES 

Albert Falques, Amadeu Montoto and Vicente Iranzo 1 

Abstract 

An initially plane beach is considered with waves incoming obliquely. 
For this basic steady state the Longuet-Higgins solution is used to give set-up 
and longshore current. The beach is assumed to be erodible. Then, a stability 
analysis is performed considering infinitesimal disturbances in the current, the 
free surface and the sea bottom. The basic undisturbed state is found to be 
unstable giving rise to topographic features similar to oblique or transverse 
bars and to a meandering in the longshore current. Some comparison with 
the erlier work by Christensen et al., 1994, is made. 

1. Introduction 

Beach topography often show tridimensional patterns with some kind of 
recurrence or rhythmicity in the alongshore direction. Typical examples are 
oblique/transverse bar systems, crescentic longshore bars, ridge and runnel 
systems, etc. The explanation for rhythmic topography has followed to 
main theoretical approaches: i) the infragravity wave influence on sediment 
transport and distribution (see for instance, Holman and Bowen, 1982) and 
ii) the morphodynamic instability of the surf-zone under the action of the 
incoming waves and the longshore current (see Hino, 1974 and Christensen 
et al., 1994). The basic idea in this latter approach is as follows. Given an 
initial beach topography, the incoming waves produce some currents. This 
currents carry sediments and this sediment transport can produce changes in 
the topography which in turn affects the incoming wave field and the current. 
In this way there is a feedback and if some perturbation within this loop 
produces a positive feedback the perturbation will start to grow. Then an 
instability arises leading to topographic features. In earlier works (Falques et 
al., 1996a, Falques et al., 1996b) the instability of the current-sea bed system 
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keeping fixed the incoming wave field was analyzed (bed-flow instability). The 
aim of the present contribution is to include the effect of the perturbations 
in the incoming wave field. In this way we reproduce and extend the results 
of Hino, 1974, and Christensen et al., 1994, with a different numerical model. 
Special attention is paid to the bar shape and orientation, the systematic 
trends with respect to bottom friction and other parameters and the influence 
of lateral momentum diffusion. 

2. Model equations 

Since our aim is to look at large 2D horizontal patterns in the near shore, 
a 2D shallow water model with time-average over incoming wave period is 
considered. As governing equations we take the momentum equations: 

^ + g.^ + gVzs-^:-V = ~V-S (1) 
ot p( p( 

the mass conservation equation 

f + V-(C«) = 0 (2) 

and the sediment conservation equation 

£ + V.J=0 (3) 

A cartesian coordinate system is assumed with x cross-shore, y alongshore and 
z vertical upwards (see Fig.l). £ = zs — zj is the total depth, T^ the bottom 
friction and S is the radiation stress tensor. The lateral momentum diffusion 
terms read: 

Hts^+ii" '-'•»      (4) 

Here, x\ = x and X2 = y- The sand transport is parametrized by the formula: 

g = i,|<7|m(^--7V/») (5) 

where h is any bottom perturbation with respect to equilibrium and where 
the term 7V/1 takes account of the tendency of the sand to move downslope. 
The exponent m has been set to 3 which is suitable for bed-load transport and 
7 ~ 1. Now we are going to perform a linear stability analysis for the system 
of equations 1, 2, 3. First, let us consider a basic steady equilibrium. In this 
state we assume waves incoming obliquely on the beach (see Fig. 2). The 
equilibrium consists of a set-up/down in the mean water level and a longshore 
current. For simplicity so that to be able to use analytical expressions, we 
will use the Longuet-Higgins solution (Horikawa, 1988). Thus, we assume a 
saturated surf zone, H = jb(, x < X^. The bottom friction (weak current and 
small angle) is given by 
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Z=Z„ 

Figure 1: coordinate system. 

vy=V(x) 

/?=tan 9 

Figure 2: basic steady equilibrium. 

Tbx = pCfUQVx 
7T 

Thy = --pCfUOVy (6) 

and the eddy viscosity reads vt = NxyfgC,. 

Consider now a small perturbation on the basic equilibrium of the form: 

v = (0,V(x)) + (u(x),v(x)) ^crt+iky 

zs = z°s(x) + fj{x)d at+iky 

,rrt-\-iky 
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where A = 2nxjk is the wavelength or the alongshore spacing of the growing 
bedforms. Then, by linearizing equations 1, 2, 3 we obtain: 

f + [V-3£ = 0 (10) 

These equations are too long to be written here in detail in such a way that 
we abbreviate 'linear part of by 

The perturbation in the radiation stress terms will be called bed-surf terms 
since they describe the perturbation in the incoming wave field due to growing 
bedforms. The perturbation in the wave refraction should be also included 
in the bed-surf terms but this has not been done in the present work. The 
remaining terms in the linearized equations if bed-surf effect is neglected will 
be called bed-flow terms since they describe the perturbation in the current 
due to the growing bedforms if the forcing by the waves is kept fixed. 

Before solving the linear problem, a scaling and some non-dimensional 
parameters will be introduced. As horizontal lengthscale, the width of the 
surf zone, LH = Xb, is choosen and Ly = (3Xb will be the vertical scale 
where j3 is the beach slope (see Fig. 3). The velocity scale is the scale for the 
Longuet-Higgins model, 

rr 57T7fc        r—    ,      . 
U = ——ygQbP smab 16 cf 

where /?' is the effective beach slope including set-up and at, is the wave 
angle with rescect to the cross-shore at breaking. Two time scales appear 
, Th = LH/U, Tm = LHLV/Q, where Q = vUm is the scale for sediment 
transport. The second one arises in a natural way from the sediment 
conservation equation (10) and will be called morphological time scale. It 
is the scale at which bedforms are expected to grow. The first one will be 
called hydrodynamical time scale and it is much shorter than the other one. 

The variables are made nondimensional by means of: 

U2 

(x,y) = LH(x',y')    ,    zb = Lvz'b    ,    zs = —z's 

{u,v) = U{u',v')    ,    t = Tmt' 
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Then, we deal with non-dimensional linear equations with the following 
dimensionless parameters. First a nondimensional wavenumber and growth 
rate, k' = kLn,o' — aTm. Also, the breaking index, 75, the wave angle at 
breaking, a;, and the viscosity parameter, N, appear. The parameter related 
to the tendency of the sedimend to go downslope now become 7' = 7/?. An 
important parameter is the characteristic Froude number of the longshore 
current, F = U/\/gLv and the frictional parameter, r = Cf/(3. Finally, the 
ratio between both time scales, e = Th/Tm, is very small but not set to 0 
(which is usually called quasi-steady hypothesis. See 'response time concept' 
in Christensen et al, 1994). In this way, the model allows for the computation 
of purely hydrodynamic instabilities like shear waves or even for the possible 
interaction between both kind of instabilities. However, we have focussed 
only in morphological instabilities for the present contribution. Hereinafter, 
nondimensional quantities will be handled dropping accents for simplicity. 

j8=tan 6 

Figure 3: scaling. 

Finally, equations (7),(8),(9) and (10) result in an eigenproblem where 
the eigenvalue is the growthrate, a, and the eigenfunctions the perturbations 
(u(x),v(x),fi(x),h(x)). This problem is discretized by a numerical spectral 
method. In the next section, an indication is given of the solution procedure. 

3. Numerical method 

For simplicity, we will ilustrate the numerical method by means of a 
simpler eigenproblem than (7)-(10). Consider the differential equation 

p(x)u"(x) + q(x)u'(x) + r(x)u(x) = au(x) 0 < x < 00 fll) 

with boundary conditions u(0) — u(oo) = 0. Here, a is the eigenvalue and 
u{x) the eigenfunction. 

The   method   uses   an  expansion   in   Chebyshev   polynomials   and   a 
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transformation from [0, oo) to [—1,1). First, this map is given by 

X = ^Z) = 1^~1 (12) 

(see Falques and Iranzo, 1994). 

Second, an expansion in Chebyshecv polynomials is assumed: 

N N 

u(x) = J2 UnTn{z) = Y, u„Tn{4>-\x)) (13) 
n=0 n=0 

The following step is to find a combination of Chebyshev polynomials 
which verify the boundary conditions. The N-l functions which satisfy this 
requirement are: 

gn(x) = Tntf-Kx)) - i(l + {-l)»)T0(4>-\x)) - \(1 + (-l)^1)^^"1^)) 

where n = 2,3,..., N. Then, expansion (13) is substituted by 

yv 
u(x) 

n=2 
)=]Twn^(z) (14) 

where the unknowns (eigenvector) are the N — 1 coefficients U2, ...UN- 

Now, to discretize equation (11) we will apply collocation at the Gauss- 
Lobatto nodes z{ = cos(wi/N) transformed by the map (12) (Falques and 
Iranzo, 1994). For this purpose, the first step is to know the values of g„ at 
the nodes. This is given by the martix Gij = gj(xi), so that 

N 
u(xi) = ^ Gj„U„ 

n=2 

In a similar way, the first derivative of u will be given by a matrix G' : 

N 
u\xi) = Y, G»»"" 

n=2 

where G'in = g'n{xi) can be computed by using the derivatives of the Chebyshev 
polynomials and the map (12). Similarly, the second derivative will be 
computed by 

N 

u"(xi) = Y^G'inUn 
n=2 

where G"n = g'^(xi) can also be computed by means of the derivatives of 
the Chebyshev polynomials and the map (12).   Explicit expressions of the 
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derivatives of Chebyshev polynomials combined with (12) can be found in 
Falques and Iranzo, 1994. 

Finally, after performing collocation at a;;, i = 1...N — 1 the discretized 
eigenproblem reads: 

N N N N 

p(xi) ]P G"kuk + q(x{) ]P Gifc"fc + r(xi) J2 Gikilk = aYl G'k{lk 

where the eigenvector is (u2---MAr)- 

4. Results 

One of the drawbacks of Hino model, 1974, without the quasisteady 
hypothesis, i.e., hydrodynamic instabilities out of control, has been solved. 
All hydrodynamic instabilities could be identified as shear waves with a clear 
maximum in the a — k curve. Shear waves have growthrates an order e_1 

larger than bed wave growthrates. By comparison with other models (Falques 
and Iranzo, 1994) they could be recognized. Usually, however, when a realistic 
friction and viscosity parameters are choosen, no hydrodynamic instabilities 
appear. Figure 4 shows the nondimensional growth rate Re(a) as a function 
of the wavenumber k, for three different cases. In one set of curves only bed- 
flow terms were kept in the equations while in the other set the full equations 
(bed-flow + bed-surf) were considered. It can be seen that bed-surf, that is, 
the effect of the wave field perturbation enhances significantly the instability. 
This was also found by Christensen at al., 1994. Also, bed-surf gives shorter 
spacing between the bedforms. The imaginary part of a is not shown here. It 
is negative and of order one. This means that the topographic waves migrate 
downcurrent with a speed of the order Ly/Tm. 

Regarding the shape of the topographic features, two kind of bedforms 
were found. First what we call current dominated bedforms. In this case, the 
shape of the bars looks very similar when only bed-flow terms were taken or 
when bed-flow and bed-surf were considered. The bars are upcurrent rotated, 
very oblique ( a small angle with the shoreline of the order of 10° ). These 
topographic waves come out in the case of a relatively high characteristic 
Froude number, say F > 0.6 (note that this is not the maximum local Froude 
number which can be smaller). According to 

U 5n 7fe sinab 
F = -== = — -7===——- (15) 

9<b      16 ^/l + 0.3757fc
2 

this corresponds to small frictional parameter, r, and large angle, a&. Figure 
5 shows how the bottom perturbations with only bed-flow and with bed-flow 
and bed-surf look quite similar. Figure 7 shows the full equation bedform 
when the basic slope is added to the perturbation. 

Second, we found what we call wave-dominated bedforms.  In this case 
the shape of the bars with only bed-flow or with bed-flow and bed-surf looks 
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quite different. With only bed-flow they are similar to alternate bars in a river 
and in the other case they are similar to transverse bars slighly upcurrent 
rotated (see Fig.6). Figure 8 shows, in this case, the total topography with 
bed-flow and bed-surf. Wave-dominated bedforms appear for small Froude 
number, say F < 0.6, that is, for large frictional parameter and small angle. 

An important issue of morphological models for rhythmic features is the 
alongshore spacing or wavelength. This is found by looking at the fastest 
growing wavenumber, i.e., the maxima in the ar,k curves for different values 
of the parameters. From experimental data (usually from the spacing between 
rip currents assumed to be related to rhythmic topography) the wavelength 
to surf zone width ratio is in the order X/Xb ~ 1.5 - 8. The mean value is 
between 3 and 4 (Sasaki and Horikawa, 1975). Christensen et al., 1994 found 
a ratio about 6. In our modelling this ratio ranges between 1 and 7, depending 
on the frictional parameter, r, and on the wave angle, a^- It decreases with 
increasing r and with decreasing ah (see Fig. 9). 

NONDIMENSIONAL GROWTH-RATE 
y =   0.8 

AiAii N=0.01      , 
***** N=0.005 
oooooN=0.01    , 

1 .2 

0.8 

a. 

0.0- 

a=12.3   .   r=0.2 
a=4.88   ,   r=0.2 

a=12.3   ,   r=0.5 

OOOl 

o0oooo0 BED-FLOW  ONLY 
*****    rt 

*^°o 

Figure 4: growthrate as a function of wavenumber for three sets of parameters. 
F = 0.3,e = 0.001,7 = 0.01. 

The growing bedforms produce a meandering in  the  longshore current. 
According to our simulation, the current is deflected offshore over the shoals 
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6-0 6.0 

5.0 S.0 

Figure 5: perturbation in the bottom for r = 0.1, a^ = 12.3°, F = 0.8, N = 
0.005,7fc = 0.4, k = 1.14. Right: only bed-flow, left= bed-flow and bed-surf. 
In this plot the current runs from the bottom to the top. 

and inshore over the pools (see Fig. 10). Thinking of rip currents, this is in 
contrast with many observed rip currents. But two things have to be taken into 
account. First this is the initial growth. It could be that for finite amplitude 
features this behaviour would be reversed leading to a non-linear saturation 
of the growth. Second, these are not exactly rip currents but just the 
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0.0 a.s 

Figure 6: perturbation in the bottom for r = 0.5, a^ = 12.3°, F = 0.16, TV = 
0.005,7t, = 0.4, k = 3.5. Right: only bed-flow, left= bed-flow and bed-surf. In 
this plot the current runs from the bottom to the top. 

deflection of the longshore current.  Also Christensen et al., 1994, found the 
same behaviour. 
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Figure 7: bottom topography for r = 0.1, ab = 12.3°, F = 0.8, N = 0.005,7b = 
0.4, k = 1.14. Basic slope plus perturbation (with arbitrary amplitude since 
we are dealing with a linear problem). Current running from left to right. 

Figure 8: bottom topography for r = 0.5, ab = 12.3°, F = 0.16, AT = 
0.005,7fc = 0.4, k = 3.5. Basic slope plus perturbation. Current running from 
left to right. 
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5.  Conclusions 

It has been shown that the topography of a plane beach can be unstable 
due to the interaction with the incoming waves and the longshore current. The 
effect of the perturbation on the waves (bed-surf) turns out to be the most 
de-stabilizing. This is in line with Christensen et al., 1994. The instability 
produces the growth of upcurrent rotated bars which is also in agreement 
with the earlier work of Christensen et al. However, as these authors pointed 
out, this is sometimes in agreement with the observed bars in the field and 
sometimes is in contrast. We found two kind of topographic features: i) 
'current dominated' (large angle, small friction) and ii) 'wave dominated' 
(small angle, large friction). Instead of fixed values of the alongshore spacing 

X/Xb 

7- 

5^ 

4: 

3^ 

ALONGSHORE SPACING 
y  = 0.8 , N = 0.005 

0.0 0.1 0.2 0.4 0.5 

Figure 9: Alongshore spacing of the topographic waves. 

X/Xf, (4 in the case of Hino and 6 in the case of Christensen et al., ) our 
alongshore spacing ratio ranges from 1 to 7, decreasing for increasing r, 
and depending on o^ and N. Finally, the growing bedforms produce a small 
meandering of the longshore current with an offshore deflection over the shoals. 
This can be a little surprising but it is also in line with earlier results of 
Christensen et al. Clearly, more research is needed to clarify the mechanism 
which produces this perturbed flow in combination with the perturbation in 
the set-up. 
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Figure 10: wave-dominated bedform and the perturbation produced on the 
current. Note the offshore deflection over the shoals, r = 0.2, aj, = 4.88°, F — 
0.3, N = 0.005,7b = 0.8. Basic current running from bottom to top. 
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