CHAPTER 263

PREDICTION OF SHORELINE CHANGE CONSIDERING CROSS-SHORE SEDIMENT TRANSPORT

Yoshimichi Yamamoto', Kiyoshi Horikawa', Katsutoshi Tanimoto'

ABSTRACT

Relations of cross-shore sediment transport rate with the grain size of sediment, the sea bottom slope in a surf zone and others were investigated by using data of field observation and large scale model experiments. The results are as follows:

(1) the coefficient of a cross-shore sediment transport rate varies inversely as the 1.31th power of the grain size. Then, the steeper a initial bottom slope is, the faster a beach profile reaches a state of equilibrium.

(2) The amount of a shoreline change is roughly proportional to the square root

of the cross-shore sediment transport rate.

(3) The stabilized bottom slope in the surf zone increases with the grain size and the wave period, and it decreases as the breaking wave height increases.

Then, new equations to predict a beach profile change induced by cross-

Then, new equations to predict a beach profile change induced by cross-shore sediment transport were introduced from this investigation. Moreover, the adequate applicability of these equations to actual coasts was confirmed.

1. INTRODUCTION

As practical models for predicting long-term transformation of long beaches, a shoreline change model and Uda et al.'s contour change model (1991, 1996) were proposed. However, these numerical models do not take cross-shore sediment trans-

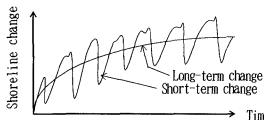


Figure 1 Transformation of a beach with time.

port rate into consideration. In designing measures to control coastal erosion and wave overtopping, it is necessary to take account of short-term beach transformation under stormy weather condition in addition to the long-term transformation as shown in Figure 1. The short-term transformation, which cannot be

³ Dr. -Eng., Professor, Ditto.

¹ Dr.-Eng., Coastal Eng. Dept., INA Corporation, 1-44-10 Sekiguchi Bunkyo-ku, Tokyo, 112, Japan.

² Dr.-Eng., President, Saitama University, 255 Shimo-okubo, Urawa, 338, Japan.

determined without considering the cross-shore sediment transport, can be predicted by means of 2 or 3 - dimensional beach transformation models combined with the computation of waves and currents (e.g., Horikawa, 1988; Sato, 1994; Shibayama et al., 1994). However, it is difficult to apply these models to long-term prediction of long beaches, because long computational time is required and numerous coefficients introduced in sand transport rate formulas have not yet been generalized.

In this study, an attempt was made to generalize the coefficient of crossshore sediment transport rate formulas. Moreover, a convenient beach evolution

model using this result was proposed and applied to actual coasts.

2. CROSS-SHORE SEDIMENT TRANSPORT NEAR SHORELINE

Sunamura (1984) proposed the following formula for calculating cross-shore sediment transport rate, ${\it Q}$ near the shoreline per unit time and unit beach width :

$$Q = K U_r^{0.2} \phi(\phi - 0.13 U_r) w d$$
 (1)

where K: a coefficient of sediment transport rate, U_r : Ursell parameter [= gHT^2/h^2], ϕ : Hallermeier parameter [= H^2/shd], ω : the settling velocity of sediment, d: the median grain size of sediment, g: the acceleration of gravity, h: the wave setup height at shoreline against the still water level [= (1.63 $\tan \alpha + 0.048)$ H_b , Sasaki and Saeki (1974)], H: the wave

height at shoreline against the still water level [= 2.4(tan α)^{0.3} h. Yamamoto(1988)], T: the wave period, s: the specific gravity of sediment in water, $\tan \alpha$: the initial bottom slope in the surf zone, H_b : the

breaker height.

Now, let us generalize the coefficient K of Eq. (1). As long as external forces remain constant, the rate of cross-shore sediment transport decreases with the lapse of time, and the beach profile approaches the equilibrium state. Therefore the coefficient K can be expressed by the following equation with the elapsed time t:

$$K = A \cdot e^{-B t/T} \qquad (2)$$

where A and B are coefficients. Then, we assume that the coefficients A and B are dominated by $\tan \alpha$ and d/ H_0 (H_0 is the wave height in deep water), and investigate relations of these coefficients with $\tan \alpha$

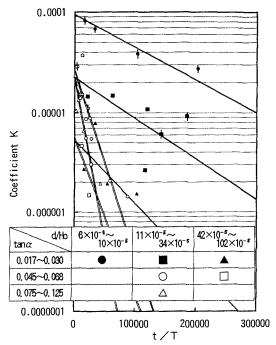


Figure 2 Relationship of the coefficient K with t/T.

and d/H_0 by using data of field observation and large scale model experiments

given in Tables $1 \sim 4$ in the appendix.

Figure 2 is a semilogarithmic graph of the relationship between K and t/T based on these data. Symbols with a vertical segment mean field data and other symbols mean experimental data. Then, average values of significant waves are used for the wave height and the wave period of irregular waves, because data of significant waves are used in many countries. However, experimental data of regular waves are used in order to supplement lack of data. Each straight line in this figure shows a tendency of data of each group. When t/T is 0, K (= A) varies greatly depending on the value of A but changes very little depending on the value of A but o

by d/H_0 . Moreover, the slope of the straight lines in this figure varies widely depending on the value of $\tan \alpha$, while it is little affected by the value of d/H_0 . This means that the coefficient B is strongly dominated by $\tan \alpha$.

tæna d/Ho	6×10 ^{-s} ~ 10×10 ^{-s}	11×10 ^{-s} ~ 34×10 ^{-s}	42×10 ⁻⁵ ~ 102×10 ⁻⁵
0. 017~0. 030	•		A
0.045~0.068		0	
0.075~0.125		Δ	

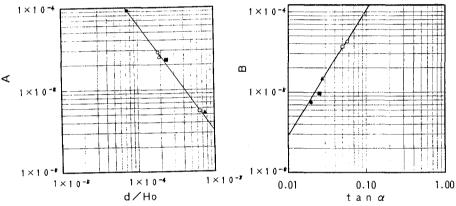


Figure 3 Relationship of A with d/H_o .

Figure 4 Relationship of B with $tan \alpha$.

Figure 3 illustrates the relationship of the coefficient A with $d\mathcal{H}_0$ and Figure 4 shows the relationship of the coefficient B with $\tan\alpha$. As these figures indicate clearly that the coefficient A increases as $d\mathcal{H}_0$ falls and the coefficient B increases with $\tan\alpha$. Namely, the smaller the grain size of sediment is the larger the coefficient A is and the steeper the sea bottom slope is the faster the beach profile reaches the equilibrium state. These relations can be expressed by the following equations:

$$A = 3.61 \times 10^{-10} (d/H_0)^{-1.31}, \quad B = 4.20 \times 10^{-3} (\tan \alpha)^{1.57}$$

$$[\tan \alpha = 0.017 - 0.125, \quad d/H_0 = 0.00006 - 0.00102]$$
(3)

The rate of cross-shore sediment transport near the shoreline can be obtained from Eqs. (1), (2), and (3). Figure 5 shows the comparison between

measured values and calculated values obtained from data shown in Tables 2 and 4. This figure shows that the calculated values agree fairly well with the measured values.

3. SHORELINE CHANGE DUE TO

CROSS-SHORE SEDIMENT TRANSPORT

Let us consider a simplified pattern of beach profile change, as shown in Figure 6. sediment cross-shore due to transport. Transforming slightly continuity equation of cross-shore sediment transport. we can obtain the shoreline displacement as $\Delta y \propto (\int_0^t Q dt)^{0.5}$ by using the data Moreover. shown in Tables 2 and 4. following equation can obtained:

$$\Delta y = 2.7 \left(\int_{0}^{t} Q \, dt \right)^{0.5}$$
 (4)

Therefore, the shoreline displacement due to cross-shore sediment transport can be calculated by using Eq. (4).

Figure 7 compares the measured values shown in Tables 2 and 4 with the calculated values given by Eq. (4). The data marked with + mean cases that initial bottom slopes above the still water level are steep by cliffs or steps. This figure shows that the calculated values agree well with the measured values. However, since Eq. (4) is intended for the simple beach profile change due to crossshore sediment transport, Application of Eq. (4) to shores undergone complex beach changes should be preceded by careful study.

By combining the above equations with a formula for calculating the stable slopes of sea bottoms, the beach pro-

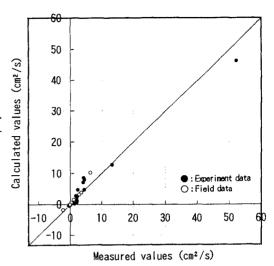


Figure 5 Measured vs. calculated values of cross-shore sediment transport rate.

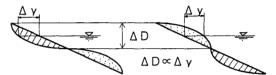


Figure 6 Patterns of beach change due to cross-shore sediment transport,

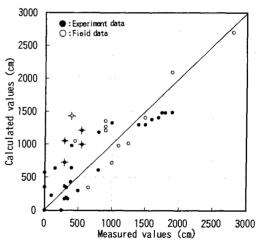


Figure 7 Measured vs. calculated values of Δy .

files after transformation can be determined.

From Eq. (1), when the beach profile reaches the equilibrium state, the following relation can be obtained:

$$\phi = 0.13 U_r$$
 (5)

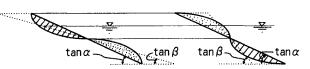


Figure 8 Image of $tan \beta$ (sea bottom slope under equilibrium state in the surf zone).

Substituting Hallermeier parameter, Ursell parameter and Eq. (6) (Yamamoto, 1988) to Eq. (5), and transforming slightly, we can obtain Eq. (7).

$$H = 2.4(\tan\beta)^{0.3} h = 1.9(\tan\beta)^{0.9} H_b$$
 (6)

$$\tan \beta = \left(\frac{0.0864 \, sg \, dT^2}{H_b^2} \right)^{2/3} \tag{7}$$

where $\tan \beta$ is the sea bottom slope under the equilibrium state in the surf zone, and H_b is the breaking wave height.

Then, assuming that the rate of time change of the sea bottom slope equals $e^{-Bt/T}$, the sea bottom slope of the arbitrary elapsed time t in the surf zone, $\tan \theta$, can be expressed by the following equation:

$$\tan\theta = \tan\beta + \frac{\tan\alpha - \tan\beta}{e^{-Bt/T}}$$
 (8)

Moreover, substituting the data shown in Tables 5 and 6 in the appendix, we can obtain Figure 9. The figure indicates that the calculated values agree well with the measured values.

4. APPLICATION OF THE PROPOSED

EQUATIONS TO ACTUAL COASTS

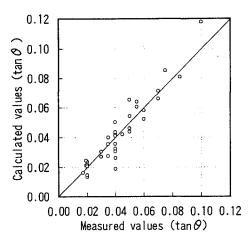


Figure 9 Measured vs. calculated values of $tan \theta$.

We performed the following two beach change simulations.

(1) SHORELINE CHANGE AT HAZAKI COAST

The first one is the time series hindcast for 18 days at Hazaki coast in Ibaragi Prefecture, Japan, based on the data given in Katoh and Yanagishima's paper (1988). In their paper, time series data of the daily mean wave energy flux, and limited data of the maximum significant wave height $[(H_{1/3})_{\max}]$ and period on stormy days were given. Therefore, time series data of the significant wave height $(H_{1/3})$ from the data of the square root of the daily mean wave energy flux $(E^{-1/2})$ were calculated by using the following empirical relations:

$$H_{1/3} = (H_{1/3})_{\text{max}} / 1.5$$
 (9), $E^{1/2} = (H_{1/3})_{\text{max}}$ (10)

Eqeation (10) can be obtained from Figure 10 drawn by limited data under stormy weather. However, as the offshore bars exist and the mean water depth at the bar crown is about 2.9 m. the significant wave height of waves acting on the shore-

line is less than approximately 2.2 m due to wave breaking. Therefore, the breaking wave height heigher than 2.2 m is reduced to 2.1 m. Then, the time series data of the wave period are calculated by using Eq. (11) obtained empirically in their paper.

$$H_{1/3}/L^{1/3} = 0.25 \times E^{0.37}$$
 (11)

where L is the wavelength.

However, as larger waves are diminished in this case, the breaking wave height is cut down, the wave period in this case should be shortened by using the following equation based on Bretschneider's formula [$T = 3.86 (H_{1/3})^{0.5}$]:

$$T_a/T_b = C (2.1/H_{1/3b})^{0.5}$$
 (12)

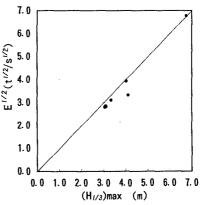


Figure 10 Relation between maximum significant wave height and square root of daily mean wave energy flux.

where the suffix ∂ means the values after wave breaking, while the suffix b means the values before wave breaking, and C is a proportional coefficient (=1.1 from a few field observation data).

Because the shoreline of Hazaki coast is straight and no coastal structure like a groin exists along this coast, the shoreline change due to longshore sediment transport can be neglected. Therefore, the shoreline change on this coast can be simulated by using Eqs. (1) \sim (4), (7), and (8). The calculated result of shoreline change agrees well with the measured result as shown in Figure 11.

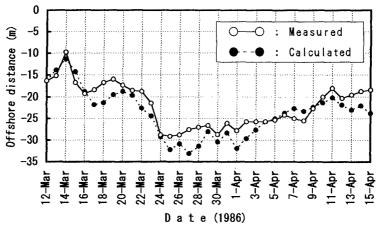


Figure 11 On-offshore changes of shoreline position (D.L. + 1.4 m).

(2) SHORELINE CHANGE AT MISAWA PORT COAST

Another example is the simulation for one year at Misawa Port coast in Aomori Prefecture, Japan, based on data of Hashimoto and Uda's paper (1979).

A remarkable shoreline change occured during the period of one year from

1976 to 1977, when the offshore breakwater at Misawa Port became long enough to bring about remarkable diffraction effect (refer to Figure 12). It is likely that the diffraction effect of the breakwater made the wave height small in the water area sheltered by the breakwater, thereby the rate of onshore sediment transport increased in this area Figure 13. shown in as Hashimoto and Uda applied an empirical eigenfunction expansion method to predict shore transformation at and

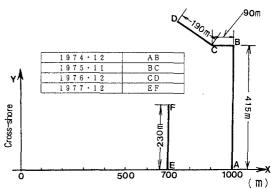


Figure 12 Configuration of breakwaters at Misawa port,

around Misawa Port and pointed out the existence of cross-shore sediment transport. Thus, the probable mechanism of this shoreline change was that alongshore transport sediment entered the port area due to influence of the diffraction effect of the breakwater, then the waves in the port transported the sediment onshore, therefore the shoreline advancement occurred.

The hindcast of the shoreline change in this area was performed by combin-

ing Eqs. (1) \sim (4) with the shoreline change model.

First, the shoreline change model was applied under the following conditions on the basis of the Hashimoto and Uda's paper:

(a) The height of the longshore sediment transport zone was 11 m.

(b) Ozasa and Brampton's formula (1979) was used to calculate the longshore sediment transport rate, and the figure 0.2 was selected as a coefficient in

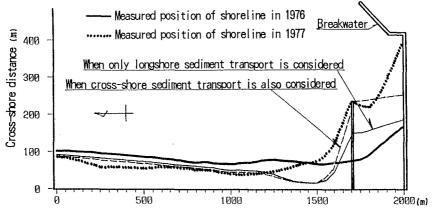


Figure 13 Result of shoreline change simulation.

the formula.

(c) The wave height, period and direction are shown in Table 7 in the appendix.

(d) The sea bottom slope was 1/50.

The result of this simulation was plotted in Figure 13 by a solid line. This result, which was the same as that calculated by Hashimoto and Uda, did not

agree with the measured result shown as a dotted line.

Then, the shoreline change due to the cross-shore sediment transport was taken into account by using Eqs. (1) \sim (4). The influence of the wave hysteresis on the shore transformation seems to be great. However, the available data were not the time series data of waves but the statistical data shown in Table 7. Therefore, we adjusted the median grain size of sediment so as to obtain reasonable shoreline displacement. Because the natural beach change after one year induced by cross-shore sediment transport is regarded as small, the shoreline change due to the cross-shore sediment transport near the 0 m point, which is far from the breakwater, can be deemed small. Namely, the median grain size of sediment must be selected so as to obtain a small shoreline change due to the cross-shore sediment transport near the 0 m point. When the figure 0. 43 mm was selected as the median grain size from usual grain size at Misawa Port coast, the shoreline displacement near the 0 m point became small as shown in Table 7. Therefore, the calculation by Eqs. (1) \sim (4) was performed under the condition of the median grain size 0.43 mm. By combining this result with the result obtained by the shoreline change model, the significantly improved shoreline displacement was obtained as shown in Figure 13 by a broken line.

5. CONCLUSIONS

Main conclusions are as follows:

(1) The relations among $\tan \alpha$, d/H_0 and the coefficient K of cross-shore sediment transport rate (in Sunamura's formula) can be expressed by Eqs. (2),

(3) based on the analyses of data obtained by field observation and large

scale experiments.

(2) The formulas [Eqs. (4), (7) and (8)] were proposed for calculating the shoreline displacement and the bottom slope change in the surf zone due to the cross-shore sediment transport. Then the effectiveness of these formulas against actual coasts was demonstrated by the simulation results of shoreline change on two actual coasts.

REFERENCES

Hashimoto, H. and Uda, T. (1979). "The application of empirical shoreline change model to Ogawarako coast", Proc. 26th Japanese Conf. on Coastal Eng., JSCE, pp. 215-219 (in Japanese).

Horikawa, K. (1988). "Nearshore Dynamics and Coastal Processes" Univ. of Tokyo

Press. 522pp.

Katoh, K. and Yanagishima, S. (1988). "Predictive model for daily changes of shoreline", Proc. 21st International Conf. on Coastal Eng., ASCE, pp. 1253 -1264.

H. and Brampton, A. H. (1979). "Models for predicting the shoreline evolution of beaches backed by seawalls", Report of The Port and Harbour Ozasa, H. and Brampton, A. H. (1979). Research Institute, Vol. 18 - no. 4, Ministry of Transport, pp. 77-104.

Sasaki, M. and Saeki, K. (1974). "Study on wave transformation after wave breaking (2)", Proc. 21st Japanese Conf. on Coastal Eng., JSCE, pp. 39-44 (in Japanese). Sato. S. and Kabiling, M. B. (1994). "Numerical model of 3-dimensional shore transformation including swash zone", Proc. 41st Japanese Conf. on Coastal

Eng., JSCE, pp. 401-405 (in Japanese).
Shibayama, T., Yamada, M., and Kobayashi, A. (1994). "Shore transformation model around mouth of a river and its verification", Proc. 41st Japanese Conf. on

Coastal Eng., JSCE, pp. 466-470 (in Japanese). nura, T. (1984). "Study on cross-shore sediment transport in surf zone Sunamura, T. (1984). including swash zone", Proc. 31st Japanese Conf. on Coastal Eng., JSCE, pp. 316-320 (in Japanese).

Uda, T., Yamamoto, K., and Kouno, S. (1991). "Prediction method of 3-dimensional shore transformation due to longshore sediment transport". Proc. 38th Japanese Conf. on Coastal Eng., JSCE, pp. 386-390 (in Japanese).
Uda, T., Yamamoto, Y., Itabashi, N., and Yamaji, K. (1996). "Field observation of movement of sand body due to waves and verification of its mechanism by numerical model". Proc. 25th International Conf. on Coastal Eng., ASCE, pp. 774-775.

Yamamoto, Y. (1988). "On the wave run-up height after wave breaking on a complicated nearshore profile", Proc. of Civil Engineering in the Ocean, Vol. 4,

JSCE, pp. 295-300 (in Japanese).

APPENDIX

Нο : significant wave height in deep water.

: wave period.

: wavelenght in deep water. l۵ Ho/Lo: wave steepness in deep water.

 $\tan \alpha$: initial mean bottom slope in the surf zone.

Hb : breaking wave height.

: wave setup on shoreline against the still water level. : wave height on shoreline against the still water level.

d : median grain size of sediment.

: Hallermeier parameter.

: Ursell parameter.

cross sectional area of erosion part near shoreline. Ar

: observation time.

: rate of cross-shore sediment transport.

settling velocity of sediment.

: coefficient in the cross-shore sediment transport rate formula. Δy : shoreline displacement due to cross-shore sediment transport. $\tan \beta$: mean bottom slope under the equilibrium state in the surf zone. $\tan \theta$: mean bottom slope of the arbitrary elapsed time in the surf zone.

: wave direction. α

Тp : frequency of incoming waves.

Suffix c means the calculated value.

Table 1 Field observation data (Na1),

	_		_										
	1960	1960	1089			1085	1985	1991	1001	1001	1001	1992	1992
Researcher	Sonu.	Sonii	Ilda,	172800 Sunamura et al	172800 Sunamura et al	036800 Takeda et al	259200 Takeda et al	036800 Kurivama	728000 Kuriyama.	1296000 Kurivama	43200 Nairn.	172800 Katoh et al.	345600 Katoh et al
t(s)	88620 Sonu	133260 Sonu	12096001	172800	172800	1036800	259200	1036800	1728000	1296000			345600
Ur Ar(cm2)	6684 -200000	150000	-2.70000			280000			- 1	-70000	275000		1000000
Ur	6684	1256	3544	2398	2398			2646	2965	2828	1839	2520	2520 1
0	440				325				298				
d(cm)	0.030	0.030	0.030	0.020	0.027	0.076	0.026	0.018	3 16.8 11.8 0.018	0.018	40. 9 38. 7 0. 026	0.020	0.020
H(cm)	22.3	25. 2	12. 6	18.2	18.2			18.3	11.8	8.4	38. 7	25.7	25. 7
h(cm)	24.4	26.6	15.9	24.6	24.6			26.0	16.8	11.9	40.9	33. 2	33. 2
Lo(cm) Ho/Lo tana Hb(cm) h(cm) H(cm) d(cm)	21	21	17	305	305		_	34	223	159	337	388	
tana	0.040	0.045	0.025	0.020	0.020			0.019 0.017	0.017	0.017	0.045	0.023	0.023
Ho/Lo	0.004	0.030 0.045	0.011 0.025	0. 020 0. 020	0. 020 0. 020	0.019	0.020	0.019	0.016 0.	7644 0.017 0.0	12636 0. 018 0.	17199 0.017 0.023	0.017
(m))on	13. 5 28431 0. 004 0. 040	5616	11271	12636	12636	15600	14079 0.020	15600	11271	7644	12636	_	-
1 1	13.5	6.0	8.5	9.0	9.0	10.0	9.5	10.0	8.5	7.0	9.0		10.5
	100	170	120	250	250	300	280	290	180	130	230	300	300

Table 2 Field observation data (No.2).

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2 2 2	5	A Iooon b	ומים בי ווסום מספו אמנומו ממנמ וווחבי.	\100E/.			
(S/wms)	≆I	¥	d/Ho	t/T	Кc	$Q_{\rm C}({\rm cm}^2/{\rm s}) \Delta_{\rm yc}({\rm cm}) \Delta_{\rm y}({\rm cm})$	Ayc(cm)	$\Delta_{V(CM)}$	Researcher	
2.257		4. 490 0. 0000153 0. 00030	0.00030	6564	6564 0. 0000125	-1.846	1207	006	Son	1960
1. 126		0.0000111	0.00018	22210	22210 0. 0000146		1046		450 Son	1060
0.223	4.490 0.	0.0000061	0.00025	142306	42306 0. 0000030		1403	-	500 lida.	1989
			0.00008	19200	0.0000707	0.812	101	. —	250 Sunamura et al	1983
_	3, 558		0.00011	19200	0.0000477		342	1	650 Sunamura et al.	1983
0. 270	_		0.00025	103680			1429		400 Takeda et al	1985
0.502			0.00008	27284			973	_	100 Takeda et al.	1985
0.367	%	0.0000382	0.00006	103680	03680 0.0000580	0.556	1664	•	Kurivama	1001
-0. 127	2.008	0.0000274	0.00010	203294	03294 0. 0000158	-0.074	1266		900 Kurivama	1001
-0.054	2.008	ö	0000092 0. 00014	185143	185143 0. 0000117	-0.068	714	_	Kurivama	1001
6.366	3.087	0	0.00011	4800	4800 0. 0000458	10. 158	1416		Nairn	1001
3.472		0.0000816 0.00007	0.00007	16457	6457 0.0000887	3, 773	2091		1900 Katoh et al	1991
2.894	2.178	0. 0000680 0. 00007	0.00007	32914	0.0000737	3.136	2700	* -	2800 Katoh et al.,	1992
								_		

Sunamura et al.'s Δy is the calculated value by using 0c. Naim's data is based on information by Kriebel and Dean's paper.

Table 3 Experimental data in large wave tanks (No1).

	_	_	_	_	_		_		_						_	_		-					_	_		_			_	
		1957	1957	1957	1957	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1986	1986	1988	1988	1988	1988	1991	1661
	Researcher	Saville,	Saville,	aville,	aville,	imizu et al.,	imizu et al.,	ىد	imizu et al.,	ette et al.,	36000 Vellinga,	Kraus et al.,	Kraus et al.,	et	Kraus et al.,	Nairn,	Southgate,													
	t(s)	144000 S	144000 S	144000 S	144000 S	72000 S	250200 S	75600 Simizu e	126000 S	140400 S	105840 S	255600 S	353160 S	288000	273960 S	360000 S	280800 S	360000	313920 S	370800 S	212400 S	109800	15480 D	36000	54000 K	108000 K	54000 K	108000 K	15120 N	2590 S
	Ar(cm2)	300000	0			-18000		0	-7000	-50000	-2000	55000	55000	-44000	25000	-4000	17000	16000	-12000	-4000	270000	230000	70000	150000	230000	260000	240000	190000	200000	135000
	Ur	4270	5024	7585	953	2662	4679	756	1534	4671	993	3222	1479	6654	444	2209	1300	512	4896	953	731	2294	1035	879	901	901	923	923	1007	736
	Ф	1034	879	614	1137	170	218	150	187	138	77	564	534	475	475	77	216	260	99	97	1400	1004	006	1258	1235	1235	628	628	1552	2002
	d(cm)			0.022		0.047	0.047	0.047	0.047	0.047	0.047	0.027	0.027		0.027							0.027	0.033	0.023	0.022	0.022	0.040	0.040	0.022	0.033
	H(cm)	33.0	28. 1	19.3	36.3	12.7	16.2	11.1	16.2	11.9	6.7	24.0	22.8	20. 2	20. 2	ю 8	10.7	12.9	3.7	5.4	48.5	34.8	41.5	39. 6	39. 1	39. 1	36.9	36.9	46.0	79.3
	h(cm)				34. 2		16.6	11. 4	19.3			24.6			20. 7		12.8	15.4	5.0					35.9			35.0	35.0	40.1	61.6
.	Hb(cm)	200	170	011	220	001	128	88	199	147	85	190	180	160	160	47	132	159	62	91	191	137	221	211	230	230	230	230	215	245
	tana							0.050																						
	llo/Lo					0.008		0.061																0.033			0.041	0.041	0.025	0.027
	Lo(cm)	19920	19920	19920	4892	5616	12636	1404	5616	12636	1499	12918	5616	22464	1499	1911	3159	[488]	5248	1499	3900	8775	5616	4549	4892	4892	4892	4892	2616	5616
	T(s)	11.3	11.3	11.3	5.6	6.0	9.0	3.0	6.0	9.0	3. 1	9. 1	6.0	12.0	<u>ب</u>	3.5	4.5	ب ش	5.8	3. 1	5.0	7.5	6.0	5.4	5.6	5.6	5.6	5.6	6.0	6.0
	llo(cm)	141	108	48	171	46	95	85	176	73	71	96	110	65	162	34	106	161	8	8	178	110	150	151	200	200	200	200	140	150
-																														

Mave heights of Saville's, Simizu et al's, Dette et al's, Kraus et al's, and Southgate's data are not significant values but mean values, because of experiments carried out by using regular waves.

Table 4 Experimental data in large wave tanks (No.2).

	1957	1957	1957	1957	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1984	1986	1986	1988	1988	1988	1988	1661	1661
Researcher	Savi	Saville,	Saville,	Saville,	Simizu et al.,	Simizu et al.	Simizu et	Simizu et al.,	Simizu et al.,	Simizu et al.,	Simizu et al.,	Simizu et al.	Simizu et al.,	Simizu et al.,	Simizu et al.,	Simizu et al.	Simizu et	Simizu et al.	Simizu et al.,	Simizu et al.,	Simizu et al.,	Dette et al.,	Vellinga,	Kraus et al.,	Kraus et al.,	Kraus et	Kraus et al.,	Nairn,	Southgate,
∆v(cm)	_	0061	250	1800	300	400	0	001	900	330	400	150	0	390	300	0	330	200	320	1700	1500	300	300	1400	1600	1000	800	550	550
∆vc(cm)	1479	1479	0	1479	362	973	0	226	604	161	633	633	299	427	171	352	342	296	171	1403	1295	714	1046	1295	1377	1323	1177	1207	992
Qc(cm2/s)	2. 25	0.66	-0. 26	2. 33	-0.10	-0.46	0.03	-0.05	-0.55	-0.02	0. 22	0. 16	-0.40	0.02			0.07			0. 20	1. 18	7.95		8.52	4. 70			12. 68	
Kc	0.0000165					0.0000027	0.000026					0.0000021	0.0000039	0. 0000011		0.0000064	0.0000044	0.0000022	0.0000043	$\overline{}$		0.0000185	0.0000230	0.0000305	$\overline{}$	0. 0000147	0.0000086	0.0000278	0.0000208
t/T	12743	12743	12743	25714	12000	27800		21000	15600							Ξ.	_		119613	4	14640	2580	2999	9643	19286	9643	-	22	432
d/flo	0.00016	0.00020	0.00046	0.00013	0.00102	0.00049	0.00055	0.00027	0.00064	0.00066	0.00028	0.00025	0.00042	0.00017	0.00079	0.00025	0.00017	0.00090	0.00034	0.00015	0.00025	0.00022	0.00015	0.00011	0.00011	0.00020	0.00020	0.00016	0.00022
×	0.0000153	_		0.0000089	0.0000046	0.0000030	0.0000000	0.0000146	0.0000027	0.0000079	0.0000055	0.0000021	0.0000015	0.0000014	0.0000015	0.0000149	0.0000026	0.0000019	0.0000109	0.0000019	0.0000065	ö	<u>.</u>	0.0000153	0.0000086	0.0000140	0.0000055	0.0000290	0.0000235
W(cm/s)		2.354				7.947	7.947	7.947	7.947	7. 947	3.558	3, 558	3.558	3.558	3.558	3.558	3.558	3.558	3, 558	ന്	ഹ -	4.	2.459	2.354	2.354	6.349	6.349	2.354	4. 709
Q(cm2/s)	2.08	2.08		_			0.00					0. 16			_		0.04			1.27	2.09	4.52	4.17	4.26	2. 41	4.44		13. 23	52. 12

Table 5 Field observation data (No3).

$\tan \beta(-)$	$\tan \theta c(-)$	$\tan \theta (-)$	Researcher
0.062	0. 044	0.040	Sonu
0.021	0.032	0.040	Sonu
0.043	0.040	0.035	Uda
0.017	0.020		Sunamura et al.
0.021	0.020	1	Sunamura et al.
			Takeda et al.
-			Takeda et al.
0.016	0.016	0.017	Kuriyama
0.023	0. 021	0.019	Kuriyama
0.028	0.024	0.019	Kuriyama
0.018	0.041	0.040	Nairn
0.015	0.022	0.020	Katoh et al.
0.015	0.021	0.020	Katoh et al.

Table 6 Experimental data in large wave tanks (No3).

$\tan \beta(-)$	$\tan \theta c(-)$	$\tan \theta$ (-)	Researcher
0. 044	0.054	0.050	Saville
0.054	0.060		Saville
0. 097	0. 085	0.075	Saville
0.015	0.026	0.040	Saville
0.079	0.061	0. 055	Simizu et al.
0.097	0.081	0. 085	Simizu et al.
0.037	0.042	0. 045	Simizu et al.
0.031	0.030	0.030	Simizu et al.
0.081	0.042	0.040	Simizu et al.
0.043	0.036	0. 035	Simizu et al.
0.040	0.044	0.040	Simizu et al.
0.025	0. 028	0. 035	Simizu et al.
0.073	0.064	0. 055	Simizu et al.
0.012	0.013	0.020	Simizu et al.
0.073	0. 065	0.050	Simizu et al.
0.026	0.027	0.030	Simizu et al.
0.012	0.015	0.020	Simizu et al.
0.098	0. 050	0.040	Simizu et al.
0.026	0.024	0.020	Simizu et al.
0.018	0.019	0.040	Simizu et al.
0.048	0.058	0.060	Simizu et al.
0.022	0.066	0.070	Dette et al.
0.016	0. 052	0.060	Vellinga
0.014	0. 044	0.050	Kraus et al.
0.014	0. 031	0.040	Kraus et al.
0.021	0.046	0. 050	Kraus et al.
0.021	0. 036	0.040	Kraus et al.
0.017	0.072	0.070	Nairn
0.019	0.118	0. 100	Southgate

Table 7 Calculated shoreline position at Misawa Port coast,

		_ ∞	2	9	- 4	4		2		- 00	6		- ec
	Δyc(cm	158	1365	-1006	-1234	104	1481	-955	988-	128	979	-446	-313
	W(cm/s) Qc(cm /s) Ayc(cm)	7. 689 -0. 00043	-0.11586	0. 15718	3.31069	-0.00017	7. 689 -0. 15901	0. 20899	3.41716	-0.00036	-0. 13885	0.86454	3
	W(cm/s)		7. 689	7. 689	7.689	7. 689		7.689	7.689		7.689	7. 689	
	Кc	9. 0 12636 0. 012 25. 0 7884000 875000 0. 020 208 16. 7 12. 4 0. 043 139 3517 0. 00029 0. 00000000	2398 0.00017 0.000003362	1863 0. 00012 0. 000019746	38. 2 28. 3 0. 043 317 1543 0. 00010 0. 000062500	16.7 12.4 0.043 139 3517 0.00029 0.000000002	305 24.6 18.2 0.043 204 2398 0.00017 0.00004615	31.6 23.5 0.043 263 1863 0.00012 0.000026254	38. 2 28. 3 0. 043 317 1543 0. 00010 0. 000064510	15.3 11.3 0.043 127 2676 0.00029 0.00000008	946080 126144 0.020 278 22.4 16.6 0.043 186 1824 0.00017 0.00009864	21. 4 0. 043 240 1417 0. 00012 0. 000046121	
	oll/p	0. 00029	0.00017	0.00012	0.00010	0.00029	0.00017	0.00012	0.00010	0. 00029	0.00017	0.00012	_
	Ür	3517	2398	1863	1543	3517	2398	1863	1543	2676	1824	1417	
	0	139	204	263	317	139	204	263	317	127	186	240	
	d(cm)	0.043	24.6 18.2 0.043	31.6 23.5 0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	
	H(cm)	12.4	18.2	23. 5	28.3	12.4	18.2	23.5	28.3	11.3	16.6	21.4	
	h(cm)	16.7	24.6	31.6	38. 2	16.7	24.6	31.6	38. 2	15.3	22. 4	28.9	
	t/T tana Hb(cm)h(cm) H(cm) d(cm) Φ	208	305	392	474	208		392	474	190	278	358	
	tana	0.020	0.020	98112 0.020	7008 0.020	0.020	0.020	66576 0.020	3504 0.020	0.020	0.020	4205 0.020	
	t/T	876000	245280			981120	210240			840960	126144	- 1	
	Lo(cm) Ho/Lo Tp(%) t(s)	7884000	7. 0 2207520 245280 0. 020	883008	63072	12636 0.012 28.0 8830080 981120 0.020 208	6. 0 1892160 210240 0. 020	599184	31536	8775 0.017 20.0 6307200 840960 0.020 190	946080	31536	
	Tp(%)	25.0	7.0	2.8	0.2	28.0		1.9	0.	20.0	3.0	0. 1	
	llo/Lo	0.012	12636 0.020	12636 0.028	0.036	0.012	12636 0. 020	12636 0. 028	0.036	0.017	8775 0.028	8775 0.040	
	Lo(cm)	12636	12636	12636	12636 0.036	12636	12636	12636	12636 0.036		8775	8775	
	T(s)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	7.5	7.5	7.5	
	a No(cm) T(s)	150	250	350	450	150	250	350	450	150	250	350	
Ì	α	ENE	ENE	ESE	ER	띠	ы	ப	E	33	ESE	ESE	