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Abstract 

A numerical method is developed to analyze the 
dynamic responses of large-scale floating structures to 
waves. A boundary element method is applied to evaluate 
the fluid motion and a finite element method to analyze 
the response of structure. The BEM and FEM are combined 
to solve the wave-structure interaction problem by 
satisfying the continuity of the pressure and displacement 
on the fluid-structure interface. The unknown time- 
dependent boundary conditions on the free surface and 
the interface are evaluated by a time-stepping procedure, 
which gives a time domain solution. An implicit scheme 
ensures the calculation precision. 

1. Introduction 

In the analysis of floating structure, the dynamic 
responses of structure to waves are the most important 
factor. A small-scale floating structure can be analyzed 
as a rigid body. However, for a large-scale floating 
structure like floating pier, floating bridge or floating 
airport, the elastic deformation can not be ignored, and 
then the effect of flexibility should be considered in 
the wave-structure interaction. 

In the previous studies, the wave-induced deformation 
of floating structure is calculated by the radiation- 
diffraction theory, in which the velocity potentials are 
expressed as a linear summation of incident, radiation 
and diffraction waves.  This theory is available for the 
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analysis of periodic waves, however it is difficult to 
solve the problem with non-periodic waves, such as the 
random waves in actual seas. In the present study, a 
numerical approach is developed to simulate the interaction 
of floating structure with arbitrary waves. 

In order to examine the validity and applicability of 
the proposed numerical implementation, the calculated 
results are compared with experimental data. 

2. Numerical analysis 

2.1 Governing equation and boundary conditions 

The coordinate system of two-dimensional numerical 
flume is defined in Figure 1. The water depth is 
uniform. The waves generated on the wave maker boundary 
propagate in x direction, and pass through under the 
elastic structure, which is floating on water surface 
and can move freely in the vertical direction. A numerical 
wave filter is set up on the other end of water flume to 
absorb the waves. The property of fluid and the condition 
on fluid-structure interface are assumed as follows: 
(l)the fluid is incompressive and inviscid; (2)the flow 
is irrotational; (3)structure moves with fluid inseparably 
and satisfies both of the Bernoulli's equation and the 
bending equation of structure. 

v///////////. 
Sfo (bottom) 

f   Xi    S2   X2 

'///////////A 

Figure 1. Definitions 

According to assumption (2), a velocity potential ^ 
will satisfy the following governing equation in the 
domain Q : 

d2<p    d24> 

dx dz' 
= 0 in Q (1) 

Assuming that the waves excited on free surface is of 
small amplitude, the boundary conditions can be described 
as 
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(2) 

(3) 

(4) 

(5) 

(6) 

on     S3 (7) 

where,? is time and n means the outward normal direction 
on boundary. (2) gives the water particle velocity of 
waves generated on wave maker boundary, and (3) is the 
impermeability condition on bottom boundary. (4) and (5) 
are the kinematic and dynamic conditions on the free 
surfaces and the interface. (6) is the dynamic condition 
on the free surface of the wave filter and (7) is the 
Sommerfeld equation on the outside boundary of the wave 
filter. 
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2.2 Boundary integral equations 

As the velocity potential ^ is a harmonic function, 
the Laplace equation in domain Q can be derived as the 
boundary integral equation by using Green's equation. 

i 

G(x,Xi)-—log\x-Xi\ 
lit 

where, x=(x,z) and x**{xuzi) are tne position vector on 
boundaries at the points of consideration and application 
respectively, and c(Xi) is the parameter corresponding to 
the configuration of boundaries. 

By substituting (2), (3), (4) and (7) into (8),  the 
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relation between the unknowns of the velocity potential 
<t> on all boundaries and the variable z on the free 
surface and the interface can be expressed by the 
following integral formulation. 

c*(Xi)<P(Xi) = -f 0-TTfc + f   7G& + f VnGds + f (^W 

(9) 

On the right side of the above equation, the third 
term is known by giving the normal water particle 
velocity of waves on wave maker boundary. The fourth 
term is treated by the transformed Sommerfeld condition 
on the outside boundary of wave filter, which will be 
explained in part 2.4. The second term is the unknown 
time-dependent part including free surfaces and structure 
surface. To obtain the solution that satisfies equation 
(9), it is necessary to utilize the dynamic boundary 
conditions. 

The dynamic boundary condition on free surface S£ is 
described by imposing p =0 into equation (5) 

^- + gz=0 on  sf (10) 
dt 

where z is the displacement measured from the equilibrium 
water surface. 

The dynamic boundary condition on the free surface of 
wave filter is shown in equation (6). If ti=d(i/dx=0, 
it will be identical with the general form, like equation 
(10). 

The dynamic condition on structure surface is 
introduced in part 2.3 in detail. 

2.3 Finite element analysis of structure 

The flexible floating structure is considered as a 
plate with unit width, in which the effect of axis force 
is neglected. By discretizing the continuous body into 
elements, and converting the distribution force acting 
on each element into the concentrated force acting on 
the nodal points, the finite element analysis can give 
the solution of structure deformation from the dynamic 
condition on fluid-structure interface by satisfying the 
continuity of the nodal displacement. 

The dynamic equilibrium equations for a finite element 
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system in motion can be written in matrix form 

[M]T\+([K] + [Kd])^ = {F} (11) 

where, [M] : the assembled mass matrix of structure 

[K]:  the assembled stiffness matrix 

[/^]:the converted coefficient matrix of the 
hydrostatic restoring force 

{v}: the displacement vector 
{F}:   the external force vector 

The mass matrix and stiffness matrix are calculated 
by the general approach of finite element method. The 
hydrostatic restoring force\Pgv{x)), which is proportional 
to the displacement v{x) of structure, is a distribution 
force along elements. By changing the distribution force 
into the equivalent concentrated forces at nodal points, 
the coefficient terms corresponding to the displacement 
can be described in the form of the element coefficient 
matrix [KdT i  which is 

[Kdl  ~420 

ri56 22/ 54 -13/ 
22/ 4/2 13/ -3/2 

54 13/ 156 -22/ 
-13/ -3/2 -22/ 4/2 

(12) 

where, p is water density, g is the acceleration due to 
gravity, and / is the length of element. The coefficient 
matrix of the complete element assemblage is obtained by 
the direct addition of the element coefficient matrices 
similar to the assemblage of stiffness matrix. 

Moreover, the fluid pressure \p--d<f>ldt) that acts on 
floating body is a distribution force varying with the 
velocity potentials. It is also needed to convert the 
distribution force into the equivalent concentrated forces 
at nodal points. And then, the external force vector {F} 
can be obtained by adding the nodal forces to the 
corresponding points. 

In dynamic analysis, the equilibrium equations (11) 
are solved by using the Newmark integration scheme. 

2.4 Wave filter boundary condition 
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In order to decrease the reflection waves from the 
far end of flume, a numerical wave filter proposed by 
Ohyama et al(1985) is employed to absorb the waves. The 
numerical wave filter consists of a sponge layer for 
absorbing the energy of incident waves and a Sommerfeld 
boundary for radiating the incoming waves. The sponge 
layer can be effectively used to absorb the component 
waves within a wide period range. But if the wave length 
is larger than the width of sponge layer, the efficiency 
of the sponge layer decreases. Therefore, the Sommerfeld 
condition applied on the outside boundary of the sponge 
layer can absorb the wave energy of long period waves. 

Assuming that the attenuation coefficient jx   in the 
sponge layer distributes linearly in horizontal direction 
and imposing eq.(6) to eq.(7), the boundary condition on 
S3 that satisfies the continuity of velocity and pressure 
can be derived as follow 

1 (dtp jc7   .        d\x     \ 

2.5 Time-stepping procedure 

The velocity potential <P on the discrete nodal points 
along all the boundaries and the nodal displacements on 
free surface and fluid-structure interface are time- 
defendant variables. The time under consideration is 
subdivided into the constant time intervals A;, the 
motions of fluid and floating body can be described by a 
time-stepping scheme, in which a solution is established 
at each time step. Assuming that the velocity potential 

and its time derivatives at time t , denoted by <p  , <pk and 

4>k , respectively, are known, and that <p+ ,<p* and 0*+1 at 
time f+Af are unknown, the relation of the unknowns at 
time step k+\ and the knowns at time step k on nodal 
point i can be expressed by the constant-average- 
acceleration scheme, as follow. 

rf* -rf + ty? -tf +t*4!+^-$+tf1) d4) 

J1*1 2 / ,*+l    ,k\        Jk 

*l  =AT'^  ~*s>  * <15) 
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At the nodal point i on free and interface boundaries, 
the displacement, velocity and acceleration at step k+1 
can be also expressed in the similar relation equation 
in terms of the previous solutions. 

In the time-stepping calculation employed in this 
paper, at first, tftl is predicted in relation (14), in 
which A#+1 is approximately evaluated by the solution of 
the previous time step in relation (17). 

A4>?l~Attf + 
AS 

(17) 

And then, the vertical velocity and displacement on free 
surface and interface are calculated from the boundary 
integration equation (9). The velocity potential 4*1 

required can be evaluated by the dynamic conditions of 
eq.(6),(10) and (11). For one step's calculation, it 
repeats until the relative error between tf*1 evaluated 
and that predicted is smaller than a given value. The 
solution is given by an implicit method. 

3. Calculated and experimental results 

3.1 Experimental equipment 

The wave flume used for the present experiments is 
26m long, 0.8m wide and lm deep, as illustrated in 
figure 2. The water depth is 60cm. A wave generator is 
placed at one end of the flume. The wave generator has 
an absorbing system so that any reflected waves from the 
floating structure will not be reflected by the paddle 
of the wave maker. At the other end a wave absorber is 
installed to decrease wave reflection.  Three kinds of 

1        1         1         1        1 1 bo66d dooog 1 t          s 
wave           polyethylene sheet 

generator               \ 
|      ch.12         \             ch.3   ~   ch.22 

t 
wave 
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f    u    \ \ \ 
d^ $ 

<-2.5->l 1.5 

unit m 

Figure 2. Experimental equipment 
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polyethylene plates with thickness 5mm,10mm and 20mm are 
used as the model floating structure. The density of 
polyethylene plate is 0.941 and its elastic modulus is 
about 450 MPa. The wave profiles in the front open water 
are measured by two wave gauges. The vertical displacements 
of the floating body are measured at 20 points along the 
center of the flume by using an array of ultra-sonic 
sensors. 

3.2 The numerical wave flume 

The definition of the numerical two-dimensional wave 
flume is shown in figure 3. In the discretization of all 
boundaries, the element length on floating structure is 
0.1m, 0.2m on free surface and 0.5m on the bottom. The 
calculation starts with a still water as the initial 
condition, and waves are produced by giving the water 
particle velocity and elevation on wave maker boundary. 
The step-by-step calculation proceeds with the time 
intervals of 1/100 wave period and the relative error 
0.01 for each calculation step. 

Z 

lm 10B 3m    *1    3m   X2 

f    .^TTT] 

d " 0.6m Q 

/W =1-6 

'//////////// '///////////A 

23m 

Figure 3. Definition of the numerical wave flume 

3.3 Deformation of water surface and structure 

Fig.4 shows an example of the calculated wave profile 
and the structure deformation at t=24s after the waves 
are generated from a still water condition. In this 
case, the structure is 20mm thick and the wave period is 
1.2 second. It can be seen clearly that the wavelength 
under the structure increases and the wave height (structure 
deformation amplitude) decreases significantly. 

In figure 5, the time histories of deformation at 
several nodal points are plotted. The top one and the 
bottom one are in front and rear open waters respectively, 
and that in the middle part are on floating structure. 
In this figure, the vertical axis gives the value of 
vertical deformation and the horizontal axis is time. 
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Figure 4. Deformation in open water and structure 
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Figure 5. Time history deformation 

The waves in front open water become stable, and then 
are influenced by the reflection waves due to the motion 
of floating body. For the deformation of structure, the 
amplitudes are large at both ends and small in structure. 
The motion of structure become stable after five waves 
pass through the structure. The variation of water 
surface elevation in front of wave filter is in steady 
state, therefore the waves are absorbed in the wave 
filter and the motion of floating structure is not 
influenced by the reflection waves. 

3.4 Structure displacement response 
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Figure 6 shows the vertical deformation amplitude of 
structure with the thickness of 20mm and the wave 
periods of 0.8s and 1.4s. In this figure, the experimental 
data are the average values of wave heights measured by 
the time history deformation at the five waves that are 
in steady state. The amplitudes decrease significantly 
near the edge of the structure. This phenomenon is 
attributed to the energy conversion when the fluid 
motion changes into the structure-fluid combined motion. 
Both of the measured and the calculated results show 
that the deformation amplitudes exit the modes which 
depend on the length of structure and the period of 
incident waves, and they agree with each other very 
well. 
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Figure 6. Deformation amplitude of structure 

Figure 7 shows the changing rates of deformation 
amplitudes when waves propagate into structure by energy 
conservation method, potential matching method,the present 
method and experiments, respectively. The amplitude 
changing rates by the present method are calculated by 
evaluating the average amplitudes excluding the values 
near the edges of structure. The amplitude variations at 
structure edge based on the present method coincide with 
the measured data well. 

3.5 Moment response 

Figure 8 shows the response of bending moment for 
20mm-thick floating structure. The peaks exist at several 
places and the mode observed depends on the incident 
wave periods.  The longer the wave period becomes,  the 
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lower the order of mode is and the greater the bending 
moment becomes. 
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Figure 7. Comparisons of the amplitude changing 
rates at the edge of floating structure 
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Figure 8. Moment response 
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4. Conclusions 

The numerical approach proposed in the present study 
simulates the interaction of waves and flexible floating 
structure by employing BEM for evaluating the fluid 
motion and FEM for calculating the deformation of floating 
structure. By satisfying the continuity of the pressure 
and displacement on the fluid-structure interface, the 
BEM and FEM are combined to solve the interaction 
problem. The proposed method is of the following advantages: 
(1) The dynamic responses of structure to waves are 
calculated in a time-stepping procedure, which gives a 
time-domain solution; (2) The velocity potential is not 
expressed by any assumed function and is evaluated 
numerically. Therefore, the present method can be easily 
applied to any wave condition including random waves 
just by giving the values of incident waves on the wave 
maker boundary of the numerical wave flume; (3) The 
unknown time-dependent boundary conditions on the free 
surface and fluid-structure interface are evaluated by 
an implicit predictor-corrector scheme, which ensures a 
calculation precision. 

The comparisons between the calculated and experimental 
results show that the present method is effective to the 
dynamic response analysis of flexible floating structures 
to waves. 
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