
CHAPTER 196 

WAVE IMPACT LOADING OF VERTICAL FACE STRUCTURES 
FOR DYNAMIC STABILITY ANALYSIS 

- PREDICTION FORMULAE - 

P. Klammer1, A. Kortenhaus2, H. Oumeraci3 

ABSTRACT 

Based on impulse theory and experimental investigations on breaking wave kine- 
matics and impact loads, prediction formulae for impact forces have been derived for 
vertical face breakwaters and further monolithic structures where wave effects dominate 
design considerations. Hydraulic model tests have been performed to obtain the water mass 
involved in the impact process and to verify the theoretical results obtained from theory. 

INTRODUCTION 

The results of the re-analysis of vertical breakwater failures (Oumeraci, 1994) have 
highlighted the importance of breaking waves and the subsequent destructive potential of 
impact loads. One of the principal lessons drawn from these failures consists in the urgent 
need to supplement the present static design approach by dynamic stability analysis. For 
this purpose, the impact loads induced by breaking waves on vertical breakwaters must be 
specified. It is the main purpose of this paper to develop an approach for the prediction of 
the impact load as needed for dynamic analysis of caisson breakwaters and further mono- 
lithic structures where wave effects dominate design considerations. 

For this purpose, a formula for the impact force will be derived using impulse 
theory and solitary wave theory. Missing parameters were obtained from PIV measure- 
ments (particle image velocity) conducted at the University of Edinburgh. The obtained 
formulae will be compared to hydraulic model tests performed in the Large Wave Flume 
of Hannover (GWK). 
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THEORETICAL BACKGROUND 

A breaking wave impinging on a vertical wall generally induces impulsive pressu- 
res on the wall which are difficult to predict in terms of their magnitude as well as in 
terms of their spatial and temporal distribution (Fig. 1). 
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Fig. 1: Impact loading of vertical structure - definition sketch 

The forward momentum of a fluid mass m hitting a wall with a horizontal velo- 
city u will induce a force impulse (Fig. 1): 

jFh(t)-dt   =   m-u (1> 
0 

where t,. is the rise time up to the peak force Fh max and Fh(t) is the horizontal 
force-time function. Assuming a linear temporal increase of the force F(t), Eq. (1) yields: 

1 
1 ^-Fh,max-tr   =   m-u (2) 

thus leading to the peak force: 

P „   m -u 
^h.max 

tr 
(3) 

Most of the difficulties encountered in applying Eq. (3) for the prediction of impact 
forces originate from the lack of information on the magnitude of the fluid mass m which 
is involved in the impact process and which accounts only for a small portion of the total 
mass M of the breaking wave impinging on the wall 

m   =   k-M W 

Assuming that the actual wave at breaking may be approximated by a solitary 
wave, its total mass M is given by the following relationship (Munk, 1949): 



2536 COASTAL ENGINEERING 1996 

M    =    p 
16    U      A3 (5) 

where p is the density of the fluid; Hb is the wave height at breaking and db is the 
water depth at the breaking point. 

The maximum horizontal velocity approximates to (Munk, 1949): 

u = yg -(c 

Hb 

db 

Idb
+Hb) 

and with the corresponding breaking criterion: 

=   0.78 

Eq. (6) yields: 

\/g-db-(l +0.78)     =   1.33 ^g-db 

and Eq. (5) yields: 

M P- #%• 

f       ^ 
Hb 

N  3 0.78 
3.35-p-Hb 

(6) 

(7) 

(8) 

(9) 

The forward momentum of the fluid mass m involved in the impact process is 
obtained from Eqs. (4), (8) and (9) to: 

<2    l      — (10) m-u   =   (k-M)-u   =   4.47-k-p-H^-v/g-db 

Considering Eq. (3) the dimensionless peak force is obtained as a function of the 
dimensionless rise time: 

Fh,r k-8.94 

p-g-Hb 

k-8.94 

•l 

(ID 

The nondimensional parameter k which represents the portion of the total mass of 
the breaking wave involved in the impact process has to be determined experimentally for 
each breaker type. According to Bagnold (1938) k is approximately 0.2. It can be con- 
cluded from Eq. (11) that the following issues will have to be further investigated: 

• Breaker types: Breaker types have to be classified with respect to the loading 
induced in order to check the applicability of the proposed formula (impact loading 
and non impact loading) 

• Wave height Hb: If Hb is not measured a method must be developed to determine 
the wave height at the breaker point taking into account the presence of the struc- 
ture. 

• Mass parameter k: for each loading case k has to be calculated from hydraulic 
model tests (see Eq. (4)). 

• Rise time tr: the determination of rise time tr is dependent on the breaker type. 
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Occurrence frequency of relative horizontal force: one of the two related parame- 
ters (relative horizontal force or relative rise time) in Eq. (11) must be taken from 
statistical analyses of hydraulic model tests. 

(a) Typical Breaker Types 

Model tests in the wave flume at the University of Edinburgh were conducted to 
experimentally define the water mass m involved in the impact process under different 
loading case conditions {Oumeraci et al, 1995). In these tests velocity profiles for the fol- 
lowing breaker types could be determined: 

• well developed plunging breaker with large entrapped air-pocket 
• plunging breaker with small entrapped air-pocket 
• "flip-through" breaker 

A rough classification of wave loading is given in Fig. 2 which distinguishes 
between 'pulsating' loads and impact loads. For the latter which is induced by waves 
plunging on the structure the Goda method (Goda, 1985) is not applicable (Takahashi et 
al., 1993). The proposed method was therefore developed for this type of loading 
(Fig. 2c). 
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Fig. 2: Classification of wave loading 

(b) Estimation of Incident Wave Heights 

Wave breaking can be taken into account by a formula given in Oumeraci et al., 
1993 in which the total reflection of the structure and its influence on wave breaking is 
considered: 
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Hb    =   H 0.1025 + 0.0217 
1 -c, 
1 + cr 

tanh 271. (12) 

In Eq. (12) db is the water depth at the breaking point of the wave, L,, is the wave 
length of the breaking wave and Cr is the reflection coefficient of the structure. The sig- 
nificant wave height can be calculated by a comparison between Hd (calculated from 
shoaling) and Hb in which Hd may not exceed Hb. 

The water depth in front of the structure can be regarded as the governing parame- 
ter for the magnitude of the resulting wave height Hb. It can be assumed that a relatively 
short berm in front of the structure (Bb/L < 0.15) will have only a small influence on wave 
breaking. Therefore, it would not be correct to use the water depth d in front of the struc- 
ture as an input (d = db) for Eq. (12). On the other hand using the water depth hs (Fig. 1) 
at the toe of the berm would certainly overestimate the breaker height as the influence of 
the berm on the breaking would be neglected. It is assumed that the berm width Bb, the 
wave length L and the slope of the berm 1 :m (m = cot a) will influence the breaking of 
waves. Therefore an effective water depth (L^ can be derived which takes into account the 
aforementioned parameters (Fig. 1): 

(hs-d) (13) =   d + B rel Vel 

depth: 

!rel 

In Eq. (13) Brei is the part of the berm width which influences the effective water 

1  - 0.5-Bu/L 

forBb/L > 1 

forBb/L < 1 
(14) 

The parameter m^ in Eq. (13) is a part of the slope of the berm which influences 
the effective water depth and is assumed to be: 

mrel -0.5 
for m < 1 

for m > 1 

(15) 

For solitary waves the effective water depth dm is very close to the depth hs (dm = 
hs), so that Brel = 1 and m^,, = 1. This is confirmed by comparing the calculated wave 
height using Eq. (12) and this assumption with measurements in the Large Wave Flume of 
Hannover (GWK) (Fig. 3). 

A relatively good agreement between measured and calculated values is also 
obtained for regular and random wave tests. 

(c)  Experimental Determination of Mass Parameter k 

The basic concept for the evaluation of water mass m involved in the impact pro- 
cess is illustrated in Fig. 4. The impulse of a water mass m with a horizontal velocity v(z) 
at a height z above the berm can be calculated as follows (Fig. 4a): 

v(z)-dm(z)   =   v(z)-[p'l(z)'dz] (16) 
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Fig. 3: Calculated vs measured wave height Hb for solitary waves 

a) Breaking wave at the wall b) Pressure measurements at point i 

Pressure p 
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c) Mass distribution d) Velocity distribution e) Pressure distribution 

Fig. 4: Principal determination of wave induced loading 

The vertical component of the velocity can be neglected. This impulse (Eq. (16)) is 
equal to the pressure impulse dl = p(t) • dt at the wall measured at a height z above the 
berm during the period Xx to t2 (Fig. 4b): 

p(t)-dt   =   [p-l(z)-dz]-v(z) (17) 
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Both the velocity (Fig. 4d) and the pressure distribution (Fig. 4e) were measured 
over the full height of the wall. From those, it is possible to determine the mass distribu- 
tion for the respective breaker type (Fig. 4c). 

The calculation of water masses involved in the impact process was performed 
according to the height of the pressure cells 6-12 at seven locations (Fig. 4a). The 
measured pressure distributions were integrated from time tj to the time of the maximum 
L^^ (Fig. 4b) and from time tj to the time of maximum wave run-up at the wall t2 

(Fig. 4b). These values were multiplied by the horizontal velocities obtained from the PIV 
measurements. 

Finally, the mass parameter k could be estimated for different breaker types 
(Tab. 1) (see also Fig. 4): 

Tab. 1: Mass parameter and impulse ratio for different breaker types 

Loading 
case 

Breaker type 
Mass parame- 

ter k [%] 
Impulse ratio*' 

2 Well developed plunging breaker with 
much air enclosed 

11 9 

3 Plunging breaker with little air enclosed 16 15 

4 flip-through breaker 28 21 

'rFh' 'dFh: deflnition see Rg- 4 

In Tab. 1  the experimentally determined mass parameter k (11-28%) are in the 
same order of magnitude as the average value k = 0.2 proposed by Bagnold (1938). 

h,max 

Fig. 5: Substitution of the real force history by an equivalent triangular force 
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Fig. 5 (left side) illustrates a typical horizontal force history induced by a wave 
impinging on the wall. The maximum load is reached after a time t^ and the maximum 
wave run-up after a time tdPh. At that time it is assumed that the total mass M of the 
breaking wave has transferred its impulse Ijpj, to the wall whereas the mass m inducing 
the impact transfers its impulse 1,-pj, to the wall over a duration t^. Subsequently, the 
mass parameter k can be verified by the ratio of L^, and IdFh as given in Fig. 5. 

This force impulse ratio calculated for the same PIV tests as those used for the 
determination of k leads to results also given in Tab. 1. A comparison between the values 
of the PIV tests and the impulse ratio clearly shows that the latter are slightly smaller. 

(d) Temporal Development of Horizontal Force 

The theoretical approach is based on the assumption of a linear rise of the horizon- 
tal force to the maximum load (Fig. 5). Actually the shape of this force increase is strong- 
ly dependent on the breaker types. 

Therefore two factors k^ and kdph are introduced which account for the different 
geometries of load histories in the case of breaking waves. The factor k^q, is the value that 
has to be multiplied with the rise time t^ in order to obtain a triangle with the same area 
(force impulse). For the horizontal force this can be calculated as follows (Fig. 4): 

krFh   =    F  2  hFh
t withkrFh   <   1 (18) 

rh,max  lrFh 

For kdFh a similar approach yields: 

kdFh   =    ¥
2'A1f* withkdFh   <   1 (19) 

hhmax'AtdFh 

where the portion of impulse AIdFh is defined as: 
ldFh 

AIdFh   =     J Fh(l)dt (20) 
trFh 

(e) Prediction Formula for Impact Loading of Vertical Structures 

Using the results derived in the previous sections Eq. (11) may be rewritten as: 
VI 

(21) max Fh, 

p.g.H,2 Kr,Fh 
8.94' 

v/v7 

where k and kjp,, are obtained from PIV tests: 
• well developed plunging breaker: k = 0.10; k^ = 0.80 
• plunging breaker: k = 0.15; kfph = 0.80 
• 'flip-through': k = 0.20; k^ = 1.00 

Since a distinction between these three loading cases based on simple parameter 
analysis is not yet available it is proposed to select a conservative value for k = 0.20 and 
kjpjj = 0.80, thus resulting in the following prediction formula: 
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^h.max 

P'g-Hb
2 

2.24 

f VI 

[fi^-j 
(22) 

This prediction formula can be compared with measurements obtained from GWK 
tests (Fig. 6) which are described in more detail in Kortenhaus el al. (1994). 
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Fig. 6: Comparison of prediction formula to large-scale measurements (random waves) 

It can be seen from Fig. 6 that the prediction formula in Eq. (22) represents ap- 
proximately the upper envelope to the random wave test results. This was to be expected 
as a conservative approach was used where solitary wave theory was used. Therefore, for 
solitary waves the prediction formula better fits the data obtained from the model tests 
(Fig. 7). However, the large scatter in the data can be explained as follows: 

• breaking processes at a vertical wall are extremely stochastic which can only be 
approximated by the aforementioned approach; 

• the sampling frequency of the pressure transducers used in the tests was not high 
enough leading to errors in both defining the rise time and the maximum load; 

• sampling noise during the measurements cause some problems in defining the zero 
crossings which are essential in defining the accurate rise times. 

The relation between rise time tr and total duration td of the load (both for triangu- 
lar load geometries) can also be taken from large-scale measurements: 

td   =   tr + 0,35-(l - exp(-20-tr)' 
(23) 
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Fig. 8: Total duration td vs rise time t,. for random waves in large-scale model tests 

(f)   Statistical Distribution for Relative Horizontal Forces 

In order to apply the prediction formula (Eq. (22)) a statistical distribution function 
for relative horizontal forces Fh/p-g-Hb

2 is needed. Such a distribution function has been 
developed by modifying the standard Weibull distribution (Weibull, 1951) as follows: 
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F(x)   =   1 - exp[-y(lnx - P)]a      x>0 (24) 

In Eq. (24) a, B and y are the parameters of the modified Weibull functions where- 
as F(x) is the distribution function. Fig. 9 shows the non exceedance probabilities of rela- 
tive horizontal forces taken from large-scale measurements with random waves. 

0.1 10.0 50.0 90.0 99.0 99.9 
Non exceedence probability 

Fig. 9: Statistical distribution function of relative horizontal forces 

Assuming a non exceedance value a relative horizontal force can be read from 
Fig. 9 or calculated by Eq. (24). In this approach no scale effects are considered but will 
have to be investigated further. 

(g) Temporal Development of Pressure Distribution 

For dynamic analyses it is very often necessary to apply pressure distributions at 
the front face of the structure instead of horizontal forces. Therefore, a pressure distribu- 
tion has to be suggested. In Fig. 10 the temporal development of a typical pressure dis- 
tribution for a well developed plunging breaker is shown over 30 time steps with the maxi- 
mum impact force indicated in the centre of the figure. 

It can be seen from Fig. 10 that the pressure distribution changes its shape signifi- 
cantly with time. Furthermore, the peak pressure close to the design water level (DWL) is 
very high at the time of the maximum force. As a result of the analysis of several distribu- 
tions similar to that shown in Fig. 10 a very simplified pressure distribution at the time of 
peak force occurrence is proposed for design purposes in Fig. 11. 

In Fig. 11 the height of the pressure distribution r\ above DWL is dependent on 
the wave height Hb and can be derived as follows: 

=   0.8 -Hb 
(25) 
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Test 26059420 H: 0.15 m; T:   1.10 s; h: 0.79 m t,,,,, -  8.11250 s;dt- 0.00250 s 

DWL 

0.24 [m) 

0.16 [m] 

0.08 [m] 

F: 0.024 3.031        0.036 0.049 0.055 0.061       0.070       0.087 [kN/m] 

[kN/m] 

[kN/m] 

Experiment 12.5 62     0.0  [kPa] 

Fig. 10: Pressure distribution for a 'well developed plunging breaker' 

In Eq. (25) Hb is the wave 
height of the breaking wave which can 
be taken from Eq. (12). The pressure 
head at the berm pb can be approxi- 
mated by: 

Pb   =   0-45-Pmax ^ 

where pmax is the pressure at 
DWL.   Therefore,   pmax   can   be   cal- 

Fig. 11: Pressure distribution for breaking waves   culated from the horizontal force his- 
tory by: 

Fh(t) Fh(t) 
Pmax(l)    '" 0.4 db + 0.3 db + 0.4 Hb 0.7 db + 0.4 Hb 

(27) 

(h) Dynamic Load Factor 

For practical design it might be desirable to use a static approach. This can be 
obtained by assuming an equivalent static load inducing the same response of the structure. 
The ratio between equivalent static and dynamic load, called dynamic load factor D, must 
be determined (Oumeraci and Kortenhaus, 1994). 
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DESIGN CONCEPT 

For breaking waves at a structure prediction formulae have been developed in the 
previous sections. Therefore, an overall deterministic design concept can be derived which 
is principally summarized in Fig. 12. 

Statistics of horizontal and vertical forces 

Water depth <% Sign, wive height 1^ 

Rise time 1,. 

Ttimgultr load 

Dynamic analysis 

Point of application 
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Static horiz. force 
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Natural period 
of the stiucture-soil-syst. 

displacement of structure 
Oscillatory displace- 

ment of structure 

T 

Dynamic load factor D 
equivalent static load 

Stability Analysis (dynamic) Stability Analysis (static) 

Fig. 12: Design concept for breaking wave loads 

CONCLUDING REMARKS AND FUTURE WORK 

Based on impulse theory and experimental investigations on breaking wave kine- 
matics and impact loads, prediction formulae for impact forces have been derived for 
vertical face breakwaters. 

Hydraulic model tests have been performed to assess the water mass involved in 
the impact process and to verify the results obtained from theory. It was found that the 
proposed formula represents the upper envelope of the measured values. 

The ongoing and future research work is directed towards further improvement of 
the proposed prediction formulae. This will be particularly achieved by a better definition 
of the mass parameter k and of the pressure distribution for each breaker type. Moreover, a 
similar approach will also be developed for the uplift pressures and forces induced by 
breaking waves. 
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