
CHAPTER 183 

Resonant Reflection and Refraction-Diffraction of Surface 
Waves due to Porous Submerged Breakwaters 

Hajime Mase", Akira Kimura2) and Hiroshi Sakakibara3) 

ABSTRACT: A wave equation, taking account of the effects of porous medium, 
is transformed into coupled parabolic equations. It is assumed in the theory that 
the mean water depth and the thickness of porous layer are slowly varying and the 
bottom undulation is rapidly varying compared to the wavelength of surface waves. 
Though we can utilize the Bragg reflection to reduce transmitted waves behind 
breakwaters in one-dimensional case, wave heights behind breakwaters do not 
always decrease due to wave refraction-diffraction in horizontal two-dimensional 
case. By adding a dissipation term to the coupled parabolic equations, we 
can calculate the wave breaking deformation. 

INTRODUCTION 

Porous submerged coastal structures are superior from the view points of seascape, 
water quality conservation, and fishery resources. If artificial reefs for fish habitat, 
consisted of blocks, are arranged to form a suitable bar field, we can expect a function 
of wave control as well as the function of creating fishery resources. Such porous bar 
fields make wave reflection and transmission smaller than those by impermeable bar 
fields. 

Davies and Heathershaw (1984) studied the reflection from sinusoidal undulation 
over a horizontal bottom and derived a solution of reflection coefficient. Mei (1985) 
and Naciri and Mei (1988) developed theories of wave evolution at and close to the 
resonant condition by shore-parallel sinusoidal bars and two-dimensional doubly sinu- 
soidal undulations over a slowly varying topography. Kirby (1986) derived a general 
wave equation which extends the mild slope equation of Berkhoff (1972). These ex- 
isting theories don't take account of the effects of seabed permeability. Izumiya (1990) 
obtained an extended mild slope equation for waves propagating over a permeable 
submerged breakwater. However, since the assumption that the slope of the structure 
is very gentle is employed, the theory cannot be applied to the case of seabed with 
rapidly varying undulations. 

In this study, a wave equation over porous rippled beds (Mase and Takeba, 1994), 
taking into account the effects of porous medium, is transformed into coupled para- 

l)Assoc. Prof., Disaster Prevention Research Institute, Kyoto Univ., Gokasho, Uji, 611, Japan 
2) Prof., Dept. of Social Systems Eng., Tottori Univ., Koyama Minami, Tottori, 680, Japan 
3) Engineer, NEWJEC, 1-20-19 Shimanouchi, Chuo-ku, Osaka, 542, Japan 

2366 



POROUS SUBMERGED BREAKWATERS 2367 

bolic equations of forward- and backward-scattering waves. Numerical calculations 
are carried out to examine wave transformations or the Bragg scattering by a group of 
porous submerged breakwaters over constant and sloping beaches in horizontal two- 
dimension. 

WAVE EQUATION OF ELLIPTIC TYPE 

Mase and Takeba (1994) and Mase et al. (1995) derived a wave equation over 
porous rippled beds: 

V, .(aV^) + afe20-^^(l-7)V, .(8Vhi) = 0 (1) 

where 

a = 5" l cosh2 khs sinh 2kh   1 + —  + y sinh 2khs (cosh 2kh -1) 
4/fcZT I V     sinhlkh )- 

2kh 
+ yz sinh/ kh, sinh 2kh 11 I + y sinh 2khK sinh 2kh 

' s '      sinh2tt '   ' 
1 +    2kH 

sinh2ttj     (2) 

D = cosh khs cosh kh(\ + y tanh khs tanh kh) (3) 

y = n/(T + if) (4) 

(ol - gk s- (5) 
l + ytanhkhtanhkhs 

where 0 is the complex amplitude of velocity potential, 8 is the rapidly varying undu- 
lation, h and hs are slowly varying water depth and thickness of porous layer, Vh is the 
horizontal gradient operator,/is the linearized friction factor, n is the porosity, Tis the 
inertia coefficient, and ft) is the angular frequency. The effects of the porous medium 
are taken into account through the complex wavenumber k given by Eq.(5) and the 
complex coefficients a and y. 

Eq.(l) contains the existing models such as the mild slope equation by Berkhoff 
(1972) and the general wave equation by Kirby (1986), see Mase and Takeba (1994). 

COUPLED PARABOLIC EQUATIONS 

We need the boundary condition along a closed curve surrounded an analytical 
domain to solve Eq.(l) of elliptic type. In problems of predicting wave transforma- 
tions over sloping topography, we cannot set the shoreward boundary condition a priori. 
A parabolic approximation method developed by Radder (1979) is useful for such 
problems. Here, following Kirby (1986), we transform Eq.(l) into coupled parabolic 
equations. 
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Multiplying Eq.(l) by the gravity acceleration g makes the dimension of ag same 
as that of CCg (phase velocity x group velocity). Hereafter, ag and gcosh2 khs ID

2 are 
described as a and jS, respectively. Manipulating Eq.(l) yields 

{a - j3(l - r)8}K + {ax - p{\ - 7)8x}<px + ak2^> + (a<l>y)y - 0(1 - y)(ty), = 0   (6) 

and Eq.(6) is rewritten as 

*„ + v~lvjx + v-lak20 + v-\a<py)y - v^l - r)(<%), = 0 (7) 

where 

v = a-p(l-y)8 (8) 

vx = ax-/5(l-y)8x + 0(kdf 

l + -(l-y)8 + 0(kS)2 v~l = a-x 

a 

Let's introduce the following pseudo-operator: 

H2<l> = k2 '^-^y-^H),-^*,) 

(9) 

(10) 

+ 0(kS)2    (11) 

Treating /i2 to be a numerical value and taking the square root of it gives 

H<j> = k '•^'-^W^W^M' + 0(k5)2     (12) 

Now we express the potential 0 as a sum of the forward-scattered potential, 0+, and 
the backward-scattered potential, 0~, as 

and express their derivatives as 

^ = ^0++F(0+,0-) 

(13) 

(14) 

(15) 

where F(0+, 0 ) is a coupling term, and /J, is a kind of wavenumber. Using Eq.(ll), 
Eq.(7) is expressed as follows: 

^ + y^ + i"20 = O (16) 
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Fir ") is found to be 

by substituting Eqs.(13)~(14) into Eq.(16). The pseudo-operator ^uvcan be given by 

^v = kla - £ (1 - y)s\ + 0(kS)2 

Differentiating Eq.(18) with respect to x yields 

(»v)x = (ka)x-±{kp(l-y)8}x 

(18) 

(19) 

Using Eq.(12) and Eqs.(17) ~ (19), Eqs.(14) and (15) can be expressed as follows: 

*H{i+£(i~r)*k+i?^'> 
^.M-rvM-r) 
2ka     4a (20) 

<t>x = -ik 

2kAa      "\ •' iy\   i 2ka    4a 

The relation between the potential amplitude and the wave amplitude is 

CO 

co 

(21) 

(22) 

(23) 

where k0 is a reference wavenumber. Substituting Eqs.(22) and (23) into Eqs.(20) and 
(21) yields 

2a 2ka 4a 

W-rif.u \ _[M,    P(l-Y)Sxln„-2,knX 
2tov    y,y '     2ka ;K)> +- -K), 2ka 4a 

Be' (24) 
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Bx + 
2a 2ka Aa 

B 

+^LK) -Mzrl(ffl \ =(^k_fcAW      (25) 
2tov    ^       Ika   v   ^    [ 2to 4a 

Eqs.(24) and (25) are the coupied parabolic equations for forward- and backward- 
scattered waves. Detail deviation is seen in Mase et al. (1995). 

BRAGG SCATTERING DUE TO POROUS SUBMERGED BREAKWATERS 

Procedure of numerical calculations 
Eqs.(24) and (25) were finite-differentiated by the Crank-Nicolsen method. The 

procedure of numerical calculations is as follows: 
1) Setting B = 0 in the right hand side of Eq.(24), we calculate Eq.(24) for A in the 

forward direction; 
2) Using the calculated A for the right hand side of Eq.(25), we calculate Eq.(25) for B 

in the backward direction; 
3) Using the calculated B in the previous step, we solve Eq.(24) for A; 
4) Using the calculated A in the previous step, we solve Eq.(25) for B. 
The procedure of 3) and 4) is repeated until getting convergence of the calculated 
results of A and B. A preliminary calculation revealed that four repetition was enough 
to reach the convergence. 

Numerical conditions 
The following conditions were adopted in the numerical calculations: 

1) The analytical domain is 500 m x 500 m; 
2) The model beaches are constant water depth of 8 m, and 1/25 uniform slope; 
3) Impermeable and permeable submerged breakwaters of elliptic shape (see, Mase et 

al., 1995), are installed at the interval of 40 m over constant and sloping beaches; 
4) The height of the breakwaters is changed by 1.5 m and 2.5 m; 
5) Characteristics of porous medium are selected as n - 0.4, r= 1.0, and/= 1.0; 
6) Waves propagate in the direction of x axis. The incident wave amplitude is 1 m, and 

the wave period is changed by 8 s, 10 s, and 12 s. 

Calculated results and discussions 
When the wave period is 10 s, the resonant Bragg reflection condition is satisfied 

in the constant water depth. The calculated results to be shown hereafter are those in 
the case of wave period of 10 s. Figure 1(a) shows the contour of the forward-scattered 
wave amplitude, Fig.1(b) the backward-scattered wave amplitude, and Fig.1(c) the 
total wave amplitude for the case of impermeable submerged breakwaters of which 
height is 2.5 m. It is seen from Fig. 1(a) that the amplitude becomes large behind the 
elliptic breakwaters similar to the case of a large shoal. Fig. 1(b) indicates that the 
breakwaters generate the reflected waves. In Fig. 1(c), the two-dimensional standing 
wave pattern can be seen. 
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Fig.l Wave Transformation due to Impermeable Submerged 
Breakwaters over Constant Water Depth 
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Fig.3 Wave Transformation due to Permeable Submerged 
Breakwaters over Constant Water Depth 

(Continued) 

The spatial distribution of the wave amplitude along y = 250 m and y - 350 m is 
shown in Fig.2. In an one-dimensional case, we can see that the transmitted waves 
downstream the ripples are reduced by utilizing the Bragg resonant scattering (Mase 
and Takeba, 1994); however, in a two-dimensional case, the wave height behind sub- 
merged breakwaters does not become small. 
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Figure 3 shows the result of the case of permeable breakwaters of 2.5 m in height, 
where the figure (a) is the contour of the forward-scattered wave amplitude, the figure 
(b) the back-scattered wave amplitude, and the figure (c) the total wave amplitude. 
Figure 4 is the spatial change of total wave amplitude along y = 250 m (solid line) and 
y = 350 m (dotted line). Comparing these figures with those of Figs.l and 2, we can 
see that the standing wave pattern and the increase in wave height behind the breakwa- 
ters are weakened due to energy dissipation in the porous medium. 

Within the surf zone, wave energy is dissipated. To include the energy dissipation 
due to wave breaking in the coupled parabolic equations, an energy dissipation term is 
required. Dally et al. (1985) proposed an energy dissipation model which assumed 
that there is a stable wave height after breaking equal to some fraction of the water 
depth and that the rate of energy dissipation in the surf zone is proportional to the 
difference between the actual wave energy flux and the stable wave energy flux, (ECg)s. 
The model is as follows: 

d(ECg) 

dx -W = -j{ECs-(ECsl} (26) 

where E is the wave energy. The stable wave height is given by Hs = yh. In this study, 
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Fig.5 Wave Transformation due to Permeable Submerged 
Breakwaters over Sloping Beach 
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K= 0.15 and y= 0.4 were adopted. And the wave breaking condition of Hb = 0.78ft 
was employed, where wave height H is defined as 2L4I. 

A coefficient of energy dissipation is defined as 

Wr = W/E (27) 

In order to include energy dissipation in the coupled parabolic equations, the term of 
WrA/(2Cg) was added in the left hand side of Eq.(24). 

Figure 5 shows the wave transformation over a uniform sloping beach existing a 
group of permeable submerged breakwaters. Figure 6 shows the spatial distribution of 
wave amplitude along the line of y = 250 m. Wave breaking occurs around x = 300 m, 
and wave begins to decrease and again increases toward the shore. Second wave break- 
ing occurs around x=380m, and wave amplitude continues to decrease. 

CONCLUSIONS 

In order to deal with wave transformations due to permeable submerged breakwa- 
ters, we developed a wave equation of elliptic type taking account of the effects of 
porous medium, and the wave equation was transformed into coupled parabolic equa- 
tions. It was assumed, in the theory, that the mean water depth and the thickness of 
porous layer were slowly varying and the bottom undulation was rapidly varying com- 
pared to the wavelength of surface waves. 

Numerical examples of the Bragg scattering were shown in horizontal two-dimen- 
sional case. Wave amplitudes became large behind a group of submerged breakwaters 
due to the wave refraction-diffraction, even when the resonant Bragg reflection condi- 
tion was satisfied. When the breakwaters were permeable, the standing wave pattern 
and the increase in wave height behind the breakwaters were weakened due to energy 
dissipation in the porous medium. 
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