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COMBINED DIFFRACTION AND TRANSMISSION OF WATER 
WAVES AROUND A POROUS BREAKWATER GAP 

Xiping Yu1    and   Hiroyoshi Togashi2 

ABSTRACT 

An analytic method for the combined diffraction and transmission around a 
porous breakwater gap is presented. The method can be summarized as follows. 
First of all, it is necessary to decompose the incident wave into two components, 
according to the incidence angle and the permeability of the two breakwaters that 
form the gap. Then, let the breakwaters be completely transparent to the rele- 
vant component of the incident wave and ascertain the transmission field. Next, 
treat the breakwaters as solid to the other component of the incident wave and 
solve the diffraction field. Finally, superpose the transmission and the diffrac- 
tion to give the objective wave motion. The available analytic methods for the 
diffraction by an aperture on solid wall are comparatively studied since they play 
the central role in working out the final solution of a real problem with combined 
diffraction and transmission. Sample computations are carried out for typical 
cases with both regular and irregular incidence. The computational results show 
that the phase effects of the porosity of the breakwaters on a combined wave 
field can be significant. 

INTRODUCTION 

Being constructed with rocks or concrete blocks in most of the engineering prac- 
tices, segmented offshore breakwaters for the purpose of shore protection are 
usually of greater or lesser permeability. For this reason, it has long been a keen 
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interest of not only the scientific researchers but also the practicing engineers 
to have a good understanding on the effects of the permeability of a porous 
breakwater on the pertinent wave motion. 

There exist possibly a few very different approaches to water wave problems 
with porous breakwaters involved. The one appeared to be relatively dogmatic 
is to isolate the region occupied by the porous skeleton and consider the details 
of the flow within the porous medium, which is in general of a complex picture 
and needs to be treated as viscous and turbulent. A solution of such configured 
problem also requires the relevant exterior flow to be matched with the flow 
inside the pores. Since both a straightforward look at the pore water flow and 
the matching procedure are extremely sophisticated, studies in the past decades, 
instead of dealing with Navier-Stokes flows, have been directed to modeling the 
effects of the porous skeleton on the fluid motion. There have been a few effective 
models based on such consideration established. The one by Sollitt and Cross 
(1972) and Madsen (1974), which includes both the resistance and the inertia 
forces exerted on the fluid by the porous skeleton, has indeed been applied to 
many practical problems. 

Even with modeling, treatment of the flow inside a porous medium is still not 
easy at all. Practical solutions can only be obtained under very simplified condi- 
tions. This situation has motivated a more pragmatic approach that is to treat 
the surface of the porous structure as an absorptive or partial reflective bound- 
ary of the problem concerned. With this consideration, however, prescription of 
the amplitude and phase of the reflected wave relative to the approaching wave 
is necessary (Chen, 1986; Isaacson and Qu, 1989). Extension of the applicabil- 
ity of this approach thus requires continued efforts to establish highly accurate 
empirical formulas for the reflection coefficient and the phase trapping property 
of a structure with given porosity and known hydraulic conditions behind the 
structure. 

The approach adopted in the present study is yet another one. It was orig- 
inally proposed by Yu and Chwang (1994) and Yu (1995). As a porous break- 
water is thin when compared to the local wavelength, the normal component of 
the seepage velocity through the porous body was noted to be proportional to 
the difference of the wave function at both sides of the breakwater. The propor- 
tionality coefficient is a function of the physical thickness, the porosity as well 
as the other properties of the porous medium and the wave. 

The primary objective of the present study is to provide an analytic method 
for the combined diffraction and transmission around a porous breakwater gap. 
We shall try to find a method that takes advantage of the well established tech- 
niques for diffraction by a solid aperture. Emphasis will also be paid on the 
phase effects of the porosity of breakwaters. 
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Fig. 1.   Definition sketch of a porous breakwater gap. 

THRORY 

Formulation 

The physical problem is sketched in Fig. 1. Outside the porous breakwaters we 
adopt the conventional assumptions that the fluid is inviscid and incompressible, 
and moreover, the fluid motion is irrotational. The three dimensional wave field 
can then be represented by a scalar velocity potential <fi that satisfies the Laplace 
equation. Let the waves of interest be sinusoidal with respect to time and be of 
small amplitude. Hence, we can express the velocity potential in the following 
form with the time and the vertical coordinate separated: 

4>(x, y, z, t) = F(x, y) cosh k(h + z)eiai (1) 

where a is the angular frequency of the wave motion, k is the wave number, 
h is the water depth, x and y are the horizontal coordinates, z is the vertical 
coordinate, and t is the time. F, usually called the wave function, is complex- 
valued with its modulus proportional to the amplitude and its argument equal 
to the relative phase of the surface oscillation. It can be readily confirmed that 
Eq. (1) satisfies the impermeable bottom condition and also the free surface 
condition as far as a, k and h are related to each other through the dispersion 
equation: 

a2 = gk tanh kh (2) 

where g is the gravitational acceleration. By substituting Eq. (1) into the Laplace 
equation for <f> we can show that F(x,y) is governed by the following Helmholtz 
equation: 

V2F + k2F = 0 (3) 

where V is the horizontal gradient operator. 
For the problem concerned in the present study the boundary conditions 

include the incidence condition, the radiation condition at infinity and a partial 
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transmission condition along the permeable breakwaters. The incident wave, 
long-crested and propagating in the direction that forms an angle a with the 
positive £-axis, can be described by 

F0 = A0e
ik<-xcosa+ysina^ (4) 

where A0 = gH'/2a cosh kh and H is the incident wave height. The partial 
transmission condition at the porous breakwaters can be written as: 

fU = fU—rt^l—-n^) (5) 
where G = "f/k6{f — i[l 4- Cm{\ — 7V7]} represents the permeability of the 
breakwaters while, 8 is the physical thickness of the breakwaters (geometrically, 
the thickness of the breakwaters is considered to be zero) and, 7, / and Cm are 
the porosity, the linearized resistance coefficient and the added-mass coefficient 
of the porous medium, respectively, y = 0+ and y = 0— indicate respectively the 
downwave and the up wave side of the breakwaters. As the ratio of the physical 
thickness of the breakwaters to the local wavelength is less than about 0.2, which 
is right in most of the practical situations, Eq. (5) has been shown to be in good 
agreement with experimental data (Yu, 1995). Since the wave function and 
its gradient are proportional to the dynamic pressure and the velocity of the 
fluid, respectively, in a linear wave theory, Eq. (5) is apparently identical to the 
Darcy's law which states that the velocity of the fluid flow in a porous medium 
is directly proportional to the pressure gradient. The actual difference between 
Eq. (5) and the Darcy's law is that we allowed a phase lag between the velocity 
and the pressure gradient to represent the inertia effects of the porous flow. This 
is trivial if the porous medium is closely-packed and the resistance dominates the 
flow. But it might be important if the porosity of the breakwaters is relatively 
large. 

Reflection and Transmission 

Consider the special case where the opening of the porous breakwater gap de- 
scribed in Fig. 1 approaches zero, or the two semi-infinite breakwaters are con- 
nected to become a continuous one extending to infinity at both ends. On this 
particular occasion, we are able to derive an explicit solution for both the re- 
flected and transmitted waves under arbitrary incidence conditions. 

Let the reflection and transmission coefficients of an infinite breakwater be 
defined as the ratios of the amplitudes of the reflected and the transmitted wave 
to the incident wave. Denoting the reflection and the transmission coefficient by 
Kr and Kt, respectively, we can formally express the wave field in the reflection 
region and that in the transmission region by 
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Fr = F0 + KrA0e
ik(-xcosa-ysbia) (6) 

F = K J4ngifc(a:cosa+!/sil10) (7) 

Both Kr and Kt are assumed to be complex-valued so that information on not 
only the magnitude but also the phase of the reflected and transmitted waves is 
included. To satisfy the partial transmission condition (5) at the porous break- 
water, we attain the following relations: 

Kt sin a =• (1 - Kr) sin a = G(\ + Kr - Kt) (8) 

which yields 

Kr = ^r- (9) 
2G + sin a 

on K' = wvsr* (10) 

Back substitution of Eqs. (9) and (10) into Eqs. (6) and (7) gives rise to the final 
solution of the simple reflection-transmission problem. It must be pointed out 
that verification of Eqs. (9) and (10) by measured data under general conditions 
has not been carried out. It is because they were demonstrated to be in satis- 
factory agreement with laboratory experiments at a = -rr/2 or under the normal 
incidence conditions we give credence to these equations in the present study. 

Diffraction 

In both the reflection and transmission regions we decompose the wave function 
F into two parts: the transmitted wave Ft and the diffracted wave Fd- That is, 
we let 

F = Ft + Fd (11) 

where Ft is given by Eq. (7) with Kt defined by Eq. (10). For Ft is known we 
need only to fix Fd to finally determine F. 

Since both F and Ft satisfy the Helmholtz equation, which is linear and 
homogeneous, Fd should do likewise to ensure Eq. (11). That is, 

V2Fd + k2Fd = 0 (12) 

At x —> ±oo, the effects of the breakwater gap on the wave field die off and, 
therefore, F approaches the relevant solution for a continuous breakwater. This 
can be written as 

Fd -» 2KrA0e
ikxmsa cos(ky sin a)       at y < 0 and x -* ±oo (13) 
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Fd -> 0       at y > 0 and x -> ±oo (14) 

Along the porous breakwater, Eq. (5) leads to 

~ = 0       at y = 0 and \x\ > - (15) 
oy 2 

Eqs. (12), (13), (14) and (15) are in fact the formulation for diffraction by an 
impermeable breakwater gap provided the incident wave is given by 

F2 = KrA0e
ik{xcosa+ys'ma) (16) 

which is the original incident wave expressed by Eq. (4) with a phase shift (since 
Kr is complex-valued) and an amplitude reduction (since \Kr\ < 1)- 

It becomes now very obvious that the wave field around a porous breakwater 
gap can be treated as the superposition of a transmission and a diffraction by 
impermeable structures. Namely, we can split the incident wave (F0) into two 
component waves (Fi = KtA0e

ik(xcosa+vsina'> and F2 = KrAoeik^cosa+ysina}). 
To one of these components (Fi) the breakwater is completely transparent and 
transmission of wave into the region behind the breakwater is totally free. To the 
other component wave (F2), on the other hand, the breakwater works like a solid 
wall. A complete reflection in front of it will occur and transmission of the wave 
energy into the region behind the breakwater is only by the diffraction process. 
Since both Kr and Kt are complex-valued in general, it should be emphasized 
that split of the incident wave is not simply a proportional division of the incident 
wave energy or amplitude. The phase effects of the porosity of the breakwater 
must be correctly considered. 

A different way to view the combined diffraction and transmission around a 
porous breakwater gap can be explained as follows. Instead of Eq. (11) we let 

F = KrF0 + KtFod (17) 

where FQ is intepreted as the wave field due to transparent breakwaters and F0d 
as the wave field due to solid breakwaters (the relevant incidence is F0 in either 
case). Considering the fact 

Kr + Kt = l (18) 

we can treat a porous breakwater as the proportional combination of a trans- 
parent one and a solid one. The resulted wave field associated with the porous 
breakwater can also be interpreted as the similarly proportioned combination of 
the relevant wave field as the breakwater is transparent and solid. Again, it is 
important to notice that the proportional factors are complex-valued, so disinte- 
gration of breakwaters depends on not only the porosity of the breakwaters but 
also the properties of the wave. 
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ANALYTIC METHODS FOR DIFFRACTION 

By the concept described in the previous section, the solution of wave motion 
around a porous breakwater gap can be obtained as long as the principle for 
decomposition of the incident wave or disintegration of the breakwaters in ad- 
dition to an effective solution method for the diffraction by solid breakwater 
gaps are available. The theoretical elements which underlie the decomposition 
and disintegration course for given incidence condition and the porous proper- 
ties of breakwaters has been discussed in details. In the following we shall give a 
brief summary of the useful methods for the diffraction by solid breakwater gaps 
with emphasis on their limitations when recently available numerical recipes are 
employed. 

Water wave diffraction by solid breakwater gaps is one of the most classical 
subjects of coastal and harbor hydrodynamics. The problem has its analogy in 
both acoustics and electromagnetics. A large number of studies, analytical and 
numerical, have been carried out in the past half century. Exact solutions of the 
problem can be obtained by separation of variables in the elliptic coordinates. 
This elegant method is usually attributed to Morse and Rubenstein (1938) who 
gave the first outline of application for the diffraction of sound and electromag- 
netic waves by a slit in the infinite plane. Its effectiveness in solving the relevant 
water wave problems was widely recognized after Carr and Stelzriede's work 
(1952). The method is essentially straightforward but it does involve substantial 
efforts if numerical results are necessitated. The difficulty is owing to the ap- 
pearance of the unusual Mathieu functions, for which advanced computational 
programs do not seem to have been readily available until this manuscript is to be 
finalized (although no sign showed they are more accurate than the present devel- 
opment, the routines in the recent book by Zhang and Jin (1996) are valuable). 
Even the excellent work by Sobey and Jonsson (1986) still had to partially rely 
on tables for some characteristic values. In principle, Morse and Rubenstein's 
method is valid with no restriction. However, accurate evaluation of the modified 
Mathieu functions of the third kind, which are involved in the solution, is rather 
difficult if the breakwater ga,p is wide. Owing to this fact, the exact solution 
method has not been recommended if the ratio of the opening of the breakwater 
gap to the local wavelength is larger than 3 (Carr and Stelzriede, 1952). Whether 
this suggested limit is still reasonable at present and how accurate is Morse and 
Rubenstein's solution near this limit are, however, not known. 

The standard method for the diffraction by a solid breakwater gap with rel- 
atively large opening is attributed to Penney and Price (1952). The method is 
based on the Sommefield solution for the diffraction around the tip of a semi- 
infinite wall. It was widely promoted in the coastal engineering society (CERE, 
1984), because of its relative simplicity from the numerical point of view when 
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Fig. 2.   Computed wave height at x = 0 and y = L for varying opening of breakwater gap. 
Morse and Rubenstein's solution, Penney and Price's solution and Mei's solution are compared. 

compared to Morse and Rubenstein's method. One needs only to evaluate the 
Fresnel integrals for determining the wave motion. Penney and Price's solution 
is not exact because it assumed that the scattered waves due to one breakwater 
arm produce no transverse flow at the position of the other arm and this as- 
sumption is approximately valid only when the opening of the breakwater gap is 
larger than a few wave length depending on the accuracy requirement. 

Approximate solution for the diffraction by a breakwater gap with small 
opening is also available (Mei, 1989). This is called Mei's method and is based 
on matched asymptotic expressions. It assumed that the gap is equivalent to a 
singularity to a far-field observer. In the near-field, on the other hand, general 
representation of the wave field can be derived by comformal mapping. Mei's 
solution is concise but it can not be applied to cases with large ratio of the 
opening of the breakwater gap to the local wavelength. The limit for given 
accuracy is yet open to question. 

Owing to the fact that practical problems in coastal and harbor engineer- 
ing may not always fall inside the limits of the approximate solutions for large 
and small gaps, we developed a highly accurate numerical method for evaluating 
Morse and Rubenstein's solution in the present study. The characteristic val- 
ues of the Mathieu functions in the method are determined through finding the 
eigenvalues of real-symmetric tridiagonal metrices with elements differing widely 
in order of magnitude. The relevant eigenvalue problems are solved by the QL 
method with implicit shifts (Press et al., 1989) in double precision. The com- 
puter codes were strictly checked by the tables given in Abramowitz and Stegun 
(1972). The Bessel functions of the various kinds involved in the expansions 
of the Mathieu functions are also evaluated in double precision, following the 
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Fig. 3.   Computed wave height at x = L and y = L for varying opening of breakwater gap. 
Morse and Rubenstein's solution, Penney and Price's solution and Mei's solution are compared. 
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Fig. 4.   Comparison of the wave height distribution around the breakwater gap. The let half 
is Penney and Price's solution. The right half is Morse and Rubenstein's solution. b/L = 0.5. 

schemes given by Watanabe et al. (1989). 
Figs. 2 and 3 are the plots of the relative wave height j3 (= the ratio of the 

local wave height to the incident wave height) against the relative opening of the 

breakwater gap (= the ratio of the opening 6 to the wavelength L) at two different 

positions. It can be noticed that the agreement between Morse and Rubenstein's 

solution and Penney and Price's solution is fairly good if b/L is larger than about 
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Fig. 5. Comparison of the wave height distribution around the breakwater gap. The left half 
is Mei's solution. The right half Morse and Rubenstein's solution. b/L = 0.1. 

0.5. At the other end, Morse and Rubenstein's solution almost coincides with 
Mei's solution if b/L is less than about 0.1. Accurate evaluation of Morse and 
Rubenstein's solution has been successfully done for b/L up to more than 10, 
which is much larger than the number reported previously. 

Figs. 4 and 5 also compare Morse and Rubenstein's solution with Penney 
and Price's solution and Mei's solution. The comparisons are made for the wave 
height distribution around the breakwater gap at b/L = 0.5 and b/L = 0.1, 
respectively. The selected ratios of the opening of the breakwater gap to the 
wavelength can actually be viewed as the limits of the approximate solutions. 
The agreement, as can be seen, is fairly good from the engineering point of view. 

COMBINED DIFFRACTION AND TRANSMMISION 

Hereinbelow we examine the combined diffraction and transmission around a 
porous breakwater gap with numerical examples. The first case under consider- 
ation is of an oblique incidence with a = n/4. The relative opening of the gap 
is 1.0. For reference, the diffracted wave height distribution as the breakwaters 
are solid, which can also be treated as a limiting case of the combined diffrac- 
tion and transmission at G = 0, is shown in Fig. 6. The wave pattern we can 
have is evidently a typical one for pure diffraction which represents the dynamic 
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Fig. 6.  Wave height distribution around a solid breakwater gap. b/L — 1.0 and a = TT/4. 

processes of essentially radial waves. 
The combined diffraction and transmission around the gap formed by break- 

waters with any permeability can be readily assembled from a unidirectional 
wave and the diffracted wave as depicted in Fig. 6. Fig. 7 presents an example 
for G = 0.25 + 0.25i, that is, KT = 0.500 - 0.207i and Kt = 0.500 + 0.207i. 
What we can recognize from this figure is that the wave pattern for combined 
diffraction and transmission is very different from the one for a pure diffraction. 
This may have to be explained by the phase interactions between the diffraction 
(an essentially radial wave) and the transmission (a unidirectional wave). 

To understand the combined diffraction and transmission of random waves, 
we turn to a case with normal incidence of the Bretschneider-type spectrum: 

<T&7fi/m •7r-A-4i S{f) = 0.430// T(Tf)~bexp[-0.675(T/) (19) 

where H is the mean wave height, T is the mean wave period and / = <r/27r is the 
frequency. Fig. 8 is a comparison of the energy-spectrum of the wave at x = L 
and y = L ( L is the mean wavelength) under various conditions of the porosity of 
the breakwaters, fn the computations, the mean wave period is f 0 s and the still 
water depth is considered to be 5 m. The opening of the breakwater gap equals 
to the mean wavelength. The permeability of the breakwaters in terms of the 
mean wavelength is assumed to take different values representing structures with 
different porosity (G = 0 is for solid breakwaters; G = 0.1 for densely-packed and 
resistance dominated breakwaters; and G = 0.25(1 + i) for loosely-packed and 
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Fig. 7.   Wave height distribution around a porous breakwater gap with combined diffraction 
and transmission. b/L = 1.0, a = ir/i and G = 0.25(1 + i). 
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Fig. 8.   Spectrum of the combined diffraction and transmission at x = L and j/_— L with 
various permeability of the breakwaters. Incidence is of the Bretschneider-type. b/L = 1.0. 

moderately dissipative breakwaters). The important information included in the 
figure is that the wave spectrum behind the breakwater undergoes significantly 
different transformation for different properties of the breakwaters. When the 
breakwaters are impermeable, the spectrum is of only one peak, like the incident 
wave. When they are porous, however, the spectrum shows at least two peaks. 
This implies that the performance of the breakwaters depends closely on the 
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Fig. 9. Comparison of the wave height distribution for regular and irregular waves. Normal 
incidence is considered. b/L = 1.0 and G = 0.25(1 + i). 

wavelength. It should also be noted that as the permeability increases, wave 
energy behind the breakwater increases, as it should be. But, the increase of the 
energy related to long waves is particularly remarkable. This indicates that a 
porous breakwater is less effective to long waves. 

Fig. 9 compares the wave height distribution around the porous breakwater 
gap with G = 0.25(1 + i) when the incident wave is regular and irregular. We 
are able to observe totally different wave patterns for monochromatic and spec- 
tral waves. This is again explained by the effects of phase interactions between 
diffracted and transmitted waves. 

SUMMARY AND CONCLUSIONS 

We presented an useful method for the combined diffraction and transmission 
around porous breakwater gaps. The method can be summarized as follows: 
(1) we need to decompose the incident wave into two components, according 
to the incidence angle and the permeability of the breakwaters which form the 
gap; (2) we assume the breakwaters to be completely transparent to the rele- 
vant component of the incident wave and ascertain the transmission field; (3) we 
treat the breakwaters as solid to the other component of the incident wave and 
solve the diffraction field; (4) we superpose the transmission and the diffraction 
to obtain the objective wave. Since they play the central role in working out 
the final solution of a real problem with combined diffraction and transmission, 
methods for the diffraction by solid breakwater gaps were comparatively stud- 
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ied. Limitations of the approximate solutions for large and small breakwater 

gaps were demonstrated. Sample computations were done for typical cases with 

combined diffraction and transmission. The computational results showed that 

the effects of phase interactions between diffracted and transmitted waves, which 

result from the porosity of the breakwaters, are not insignificant. 
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