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A Boussinesq breaking wave model with 
vorticity 

I. A. Svendsen, Ke Yu, and J. Veeramony1 

ABSTRACT: The paper describes a breaking wave model based on the 
classical assumptions for long, moderately nonlinear Boussinesq waves. 
It is shown that wave breaking can be described by accounting for the 
effect of vorticity generated by the breaking process. This leads to two 
additional terms in the momentum equation, both of which represent the 
enhancement of the momentum flux associated with the extra particle 
velocities found at and around the turbulent front of the breaking waves. 
In addition to the wave height decay and profile deformation predicted by 
earlier breaker models, the present model also provides information about 
particle velocity profiles including the undertow. Comparisons are made 
to measurements for these quantities. The similarities and differences 
between various breaker models are also examined and explained. 

1. Introduction 

The present paper presents a Boussinesq wave model that includes the effects 
of wave breaking in the equation of continuity and momentum. 

The process of wave breaking has been widely studied during particularly 
the past two decades. For a long time, almost all detailed information came 
from experimental investigations but the success of the Boussinesq approach in 
modelling nearshore wave motion has also lead to Boussinesq models that, by 
various means, create the decrease in wave height and the transformation of the 
wave shape observed during breaking in the surf-zone on a gently sloping beach. 

Since breaking involves strong energy dissipation, it was natural as a first 
approach to heuristically add a "dissipation term", usually taking the form of 
the double derivative of the unknown variable to the momentum equation. Early 
examples are Zelt (1991), Karambas et al (1992) and more have followed. If the 
coefficient for the dissipation term is chosen carefully as in Wei et al (1995), 
such models can give breaker like wave development. The reason for this will be 
discussed later. 

However, the Boussinesq wave models are developed from the fundamental 
equations of hydrodynamics. In the case of wave breaking this would mean the 
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Reynolds equations, in which the Reynolds stresses represent the only signature 
of the turbulence generated by breaking. Following the usual procedure, one 
finds (if the Reynolds stresses, as a reasonable approach, are modelled by means 
of an eddy viscosity) that the "dissipation term" of the assumed d2/dx2-{ovm 
originates from the turbulent normal stresses, which are small (see eg. Stive 
and Wind, 1982) and are very far from modelling the dramatic changes in the 
momentum flux typical of wave breaking. 

An approach closer to meet that goal was used by Brocchini et al (1992) 
and, in more explicit form, by Schaffer et al (1992, 1993). They observed the 
importance the roller of a mature breaking wave has in enhancing the momentum 
flux of the wave. The roller essentially is the volume of recirculating water flow 
carried forward in the turbulent front at the speed c of the wave. The concept 
was first used by Svendsen (1984a,b) in the wave averaged equations to calculate 
wave height decay, set-up and undertow. The two above mentioned models 
essentially introduced that concept into the Boussinesq equations, and, though 
there are limitations, the results are remarkably convincing, as they should be 
because the models give an approximate representation of the actual physics. In 
addition, such models only represent a moderate extension of the computational 
work relative to Boussinesq models for non-breaking waves. 

Because of the heuristically assumed form of the velocity profiles, these mod- 
els cannot be expected to provide detailed information about the particle motion 
in the breaking wave motion, including the undertow. The model presented in 
the following is aiming at including such information by avoiding apriori as- 
sumptions about the velocity profiles. This means it is necessary to include in 
the model the vorticity generated by the breaking, which is an important fea- 
ture of breaking waves: the motion is not irrotational as assumed in traditional 
Boussinesq theory. 

The model is therefore formulated in terms of a stream function and the 
vorticity is an additional unknown which is determined separately by solving 
the vorticity transport equation. The model equations are outlined in section 2 
and section 3 gives additional discussion about particularly the boundary con- 
ditions for the vorticity. In section 4 we show a comparison with measurements 
including particle velocities and undertow. The last section gives a comparison 
with previous models mentioned above which explains why all these models seem 
equally successful in predicting the wave height and wave profile development. 

2. Outline of model equations 

The governing equations are derived from the basic equations for conserva- 
tion of mass and momentum. Only a brief outline is given here, for more details 
see Yu & Svendsen, 1995. We consider a breaking wave propagating over a gen- 
tly sloping bottom topography of depth h0(x). Fig 1 shows the definitions of all 
geometrical quantities used. Then the depth integrated equations of continuity 
and momentum becomes 

l + ? = » a) at      ox 

where 

/ 
udz (2) 

—ho 
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Figure 1: Definition sketch showing the geometrical quantities. 
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where rj, and rs are the bottom and surface stresses, respectively. In (3) the 
pressure term has been eliminated using the depth integrated vertical component 
of the momentum equation. 

To evaluate the integrals in (3) the velocity u must be determined. In break- 
ing waves the flow cannot be assumed irrotational. However the stream function 
i\> for the flow satisfies the equation 

VV = w (4) 

where u is the vorticity which must be determined separately. Equation (4) is 
solved by introducing the usual assumptions of Boussinesq wave theory that the 
water depth to wave length ratio fi and wave amplitude to water depth ratio S 
are small and 8//j,2 are 0(1). The stream function ifi can then be expanded in a 
power series 

1p - J2 {z + hof 4>n{x,t) (5) 

Substituting this into (4) and solving it turns out to be convenient to dis- 
tinguish between the rotational and the irrotational part of the solution. Hence 
for the velocity we define ur and up respectively and find 

= Mo - A*2 (z + h0) (2hxu0x + hxxu0) - — (z + h0f u0xx + O (/x4) (6) 
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ur -  I     codz - fi2 /      /      /     u>xxdzdz + 0 (fi4, fi2hx, u2hxx)        (7) 
J-ho J-h0 J-h0 J-ho x ' 

Though UJ is assumed large, the uixx terms in (7) turn out to contribute little 
to the solution. The wr-terms represent the additional terms generated by the 
presence of vorticity. We further define the discharge Qr as 

Qr = I     urdz (8) 
J-ho 

f< 

-ho 

which implies that Q = Qp + Qr. 

When these results are substituted into the integrals of (3) these integrals 
can be written 

fc ..3J.    Q
2 

I    u2dz = ^- + AM (9) 
J—ho O, 

/(        r)3      K   t' h3 (G\ h2 

ft „a. /    /     udzdzdz = — ( — )      - -^-Qxxt + APxxt (10) 
•ho  ox2at Jz J-ho o  \hJxxt      2 

where d = h0 + ( and again the AM and APxxt represent the contributions 
caused by the breaking. For AM and APxxt we get 

AM = f   u2
rdz - 0^ + O (n4) (11) 

J—ho d ' 

rC    it   rz (h + () , N 
AP=- /     /       urdzdzdz + V '   Qr. + O (S, ft2, hx) (12) 

J—h   Jz      J—h O ^ ' 

The Boussinesq equations for the breaking waves therefore become 

(t + Q* = 0 (13) 

Q2\       . .,      h3 (Q\ h2 

-%-    + AMT. + — (-?•       - —( Qt + g(h0 + ()(x+\^j   +AMx + j[^j   ^-—Qxxt + APxxt = Q  (14) 

The two unknowns in these equations are the surface variation ( and the 
total instantaneous volume flux Q in the waves. The vorticity u is determined 
from the vorticity transport equation, which to the same order of approximation 
as (14) reads 

UJt = [utLOz]z + 0(fi2,S) (15) 

where vt is the eddy viscosity. This is solved using the boundary conditions 

co{-h)=Q (16) 

w(C) = us (17) 

Here LOS is the maximum value of ui generated near the surface due to the wave 
breaking. 
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3. Discussion of boundary conditions for the vorticity 

The bottom boundary condition of zero vorticity is consistent with the gen- 
eral neglection of the bottom friction in the model. 

At the free surface we can expect that the vorticity will be zero along the 
part of the surface which is outside the roller area. 

In the roller region, the free surface vorticity will also be near zero. However, 
strong vorticity is generated inside the recirculating roller flow. Measurements 
in that region of breaking are not yet available for surf-zone conditions, but 
measurements have been made in weak hydraulic jumps (see Lin & Rockwell, 
1994). The flow patterns in all such jumps will of course differ somewhat from 
breaking waves, in particular far away from the turbulent roller region. Around 
the roller region, however, the flows in a hydraulic jump and a surf-zone wave 
are very similar indeed with the same local mechanisms dominating. Hence the 
measurements around the roller in a hydraulic jump can be expected to model 
the equivalent conditions in a surf-zone wave well. 

There are a number of flow features that play an important role in assessing 
the vorticity in this region. Considering a vertical section through a point in 
the roller, one of the dominating features observed in such measurements is 
the increase in vorticity to a maximum which always occurs at or below the so 
called dividing streamline, which is the streamline limiting the roller. Above that 
streamline, the average flow recirculates, below it continues to the downstream. 
At the toe of the turbulent region, the dividing streamline joins the surface 
streamline ahead of the jump. 

In this region, we can approximate the vorticity w by 

du .„   . 
w ~ — (18) 

oz 

and hence we notice that 
vtu> ~ — (19) 

P 

Hence the specification of vt and LOS is equivalent to the specification of the shear 
stress at the lower edge of the dividing streamline used in some breaker models 
(see eg. Brocchini et al, 1991 or Schaffer et al, 1992). The advantage of the 
present method, however is that through the solution of the vorticity transport 
equation, it explicitly models the mechanisms for the effect such a shear stress 
has on the entire flow, a problem previous models do not address at all. 

In spite of the limited knowledge we have about the value of w and ut, there 
are some very specific bounds on how these parameters vary. One such bound is 
given by (19). Fig 2 shows an analysis of the maximum shear stress which occurs 
at or just below the dividing streamline in three different hydraulic jumps with 
Froude numbers F = 1.28, 1.44, and 1.60. Here lT is the length of the roller. 
We see that in all three cases, r/pu\ (where u0 is the inflow velocity) varies the 
same way over the length of the roller. 

Another set of bounds for ui near the surface are related to the flow conditions 
at the toe of the roller. As indicated in Fig 3 in the immediate neighborhood of 
the toe, the free surface and the dividing streamline can both be approximated 
by straight lines so that the roller height e in that region increases linearly with 
distance xt from the toe (xt — % — xtoe). Since the particle velocity in the wave 
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Figure 3:  Schematic diagram showing the distribution of vorticity and the 
proximation at the toe of the roller. 
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at the surface of the roller is ~ c and at the dividing streamline is u <C c (where 
u is close to the velocity in the wave trough) the vorticity u> must vary as 

w w —!— (20) 
e 

For dynamic reasons, however, we must also have in that region 

r oc pge oc a;( (21) 

which according to (19) implies that near the toe 

Vt fa — oc e2 fa x2
t (22) 

pu> v    ' 

Based on the geometry, combined with (19) and measurements of r and e, 
we find that ut rapidly increases to a maximum value and then decays slowly to 
near zero before the next breaker arrives. 

Based on this information we are able to construct a realistic variation of vt 
and w,. We have used 

U.=A(\-J\ 0<xt<lr (23) 

where lr is the horizontal length of the roller from the toe to the wave crest, which 
for dynamic reason must be the rear edge of the roller2. For vt the relationship 
is 

vx = Ch^fihe-^2' tanh2(az4) (24) 

Though the formulation used in the computations shown in the following are 
slightly more complicated, the expressions above are similar in effect to those 
used. 

When the boundary condition (17) is applied at z = ( we get the u> vari- 
ation shown in Fig 4. Between the z — f and the instantaneous MWS it is 
assumed that u varies linearly from ws to zero at the surface. The hydraulic 
jump measurements indicate that this is a good approximation to the actual 
variation. 

4. Comparison with experiments 

Examples of comparisons with experimental results are shown in the follow- 
ing. The experiments used were obtained by Okayasu and analyzed by Cox et 
al (1995). Waves were generated in the Precision Wave Tank (PWT) at the 
Center for Applied Coastal Research at a depth of 0.40m and propagated onto 
a 1 : 35 sloping beach. The measurements were taken at 6 different locations 
of which some were in the surf-zone. Because a laser-doppler velocimeter was 
used to measure the velocities, the measurements could only be taken up to a 
point slightly above the trough level of these waves. Inside the surf-zone, bubble 
entrainment due to breaking also restricted the measurements. 

Figure 5 shows a picture of the model simulations of the waves in the tank 
at two fixed times. The full line shows the solution of (13) and (14), the dotted 
line shows the wave transformation without the breaker terms in the equations. 

2The rapid fluctuations of the toe position imply that at the turbulent averaged mean 
position of the toe it has a small but finite thickness (Brocchini and Peregrine, 1996). This 
justifies the finite value of w, at the toe in (23) 
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Figure 4: The variation of ui(x, z) for a wave which has started breaking. Above 
the MWL, u> varies linearly from the value at the MWL to zero at the MWS. 

A comparison with the measured and computed wave heights during the 
experiment is shown in Fig 6. This figure also shows the measuring positions of 
the experiment. It turns out that the increase in wave height due to shoaling is 
slightly underpredicted by the model. In the shown calculation, this has been 
adjusted for by increasing the input wave height at the left boundary so that 
the breaker height in this comparison is the same as the measurements. This 
makes the comparison of the model performance in the surf-zone more relevant. 

The underprediction of the shoaling process turns out to be a common fea- 
ture of the ( — Q version of the Boussinesq equations used as the basic Boussinesq 
model. For comparison we find that if a Boussinesq model based on the depth 
averaged particle velocity is used, the shoaling is overpredicted slightly. The 
reason for these inaccuracies and for the difference between the two types of 
Boussinesq models is that they are both lowest order Boussinesq methods in 
which terms 0(S2,S3, ...) have been omitted. When waves approach breaking, 
these terms become large enough to influence the solution. The difference be- 
tween the two model versions appear because the neglected higher-order terms 
are different in the two versions. Hence, these deficiencies can be eliminated by 
use of a higher order Boussinesq model (see Wei et al, 1995). 

Figure 7 shows a comparison between measured and computed velocity pro- 
files at position L5 which is well into the surf-zone. We see that the agreement 
is generally acceptable, though it is evident that the lack of measurements near 
the wave crest makes this comparison less valuable. 
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Figure 5: Model simulation of the waves at two different times, illustrating the 
difference between the non-breaking model (-) and the breaking model ( ). 
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Since the effects of turbulence generated by the breaking is included in the 
model predictions, the average velocity over a wave period should also predict 
the undertow profiles, which represent a balance in which the shear stresses play 
a role. Figure 8 shows a comparison between the computed and measured un- 
dertow velocities at the 6 measurement positions. Again the agreement is quite 
good. It is interesting to notice that both measurements and model predictions 
pick up the principal difference between the undertow under non-breaking waves 
(parts (A) and (B) in the figure) and breaking waves (parts C-F). Since we have 
neglected the bottom shear stress, the model predicts a slip velocity at the bot- 
tom. It is clear that in the measurements, the effect of the bottom boundary 
layer is also limited to very close to the bottom. 

5. Discussion and comparison with other models 

In (13) and (14) the breaker terms are relatively small and it is of interest 
to see how the strong process of breaking can be properly modelled by adding 
such seemingly weak modifications. 

When solving (13) and (14) the values obtained for Q are actually changed 
quite substantially. To see this we note that over most of the surf-zone the waves 
are only changing very slowly. Hence for a given value of ( we have 

Q~c( (25) 

which is valid for waves of permanent form with no net mass flux, whether the 
waves are breaking or not. Therefore, when the wave shape ( is modified due to 



1202 COASTAL ENGINEERING 1996 

0 

-0.2 

-0.4 

—0.6 

-0.8 

-1 

0 

-0.2 

-0.4 

^T-0.6 

-0.8 

-1 

(A) (B) (C) 

0 

O 

O 

( 9 
U/c 

(0) 

• 1° 
To 

jo.. 
o a... 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

!  / 
lo 

O'":  

O    : 

1    ! 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

/o 

'o 
o 
o 
o 
o • • 
% 

-°'1   rrl° U/c 
0.1 

-°-1 U/°c 
(F) 

0.1 

7 
. o 
:   O  

o o  
o 

U/C 

Figure 8: Nondimensional undertow profiles at LI (A), L2 (B), L3 (C), L4 (D), 
L5 (E) and L6 (F). (solid) - Model results, (circle) - Data. 

the breaking, so is Q. 

Even more pronounced is the change in velocity profiles caused by the break- 
ing process. Since QT represents a substantial increase in volume flux which is 
mainly concentrated near the surface it appears that for a given Q the velocity 
near the bottom must be similarly reduced. This is probably the most signif- 
icant effect the wave breaking has on the bottom conditions and as the above 
arguments illustrate, it occurs for simple kinematic reasons3. 

It is also illustrative to examine why several, seemingly quite different, Boussi- 
nesq models for breaking waves appear to be comparably good at predicting the 
wave height decay and surface profile development of breaking waves. In partic- 
ular, three models show the reduction in wave height and change in skewness of 
the wave profile towards a sawtooth shape that are typical features of mature 
surf-zone breakers. The three models in question are the model by Wei & Kirby 
(1995) which is based on a dissipative term with an eddy viscosity, the model 
by Schaffer et al (1992) in which the breaking effect is generated by including a 
surface roller in the model and the present model in which breaking is modelled 
by taking into account the rotational part of the water motion. 

To understand why three so different approaches apparently produce similar 
effects on the wave profiles, we only need to realize that in the Boussinesq 

3Another effect of the breaking is the change in the wave profile shape and hence the 
temporal variation of the pressure gradient and velocities. A third is the added turbulence 
level even at the bottom. 
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momentum equation the three models produce almost identical signature of the 
breaking: the present model and Schaffer et al's model both include two and 
one terms, respectively, that represent enhancement of the momentum flux. In 
both models, the (%, t) variation of these terms are approximately the same as 
shown in Fig 9 (a) and (b). It turns out that, in particular, the position of 
this momentum enhancement relative to the wave crest is crucial for obtaining 
the breaking effect. It furthermore appears that in the Wei & Kirby model, the 
variation of the eddy viscosity has, on a heuristic basis, been chosen so that the 
"dissipative-term" it creates, in spite of its lack of physical justification, gives an 
almost identical contribution to the momentum equation. In other words: the 
Boussinesq equations respond equally to terms that represent the appropriate 
momentum enhancement, no matter which method are used to determine their 
variation and magnitude. 
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Figure 9: The variation of the terms in the momentum equation which induces 
breaking, for the three different models discussed in section 5. 
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6. Conclusions. 

The Boussinesq model represents breaking by including the vorticity gen- 
erated by the breaking. This gives raise to additional terms in the momentum 
equation which represent the enhanced momentum flux associated with the very 
large particle velocities at and near the turbulent front of the breaker. The 
model is based entirely on the Reynold's equations and no artificial dissipation 
terms are included. It also predicts particle velocities including undertow quite 
accurately. 

Acknowledgment 

This study was sponsored by the National Science Foundation under the 
grant OCE-9203277 and by the US Army Research Office, University Research 
initiative under contract No. DAAL 03-92-G-0016. The United States Govern- 
ment is authorized to produce and distribute reprints for government purposes 
notwithstanding any copyright notation that may appear herein. 

References 

Brocchini,M. and Peregrine, D.H., (1996). "Integral flow properties of the swash zone and 
averaging" J. Fluid Mech., 317, pp.241-273 

Brocchini,M., Cherubim, P. and Iovenitti, L., (1991). "An extension of Boussinesq type 
model to the surf zone." Computer Modelling in Ocean Engineering 91 , Rotterdam, 
The Netherlands, pp. 349-359. 

Karambas, Th. K. and Koutitas, C, (1992). "A breaking wave propagation model based on 
the Boussinesq equations."  Coastal Engrg., Vol. 18, pp. 1-19. 

Lin, J. C. and Rockwell, D., (1994)."Instantaneous structure of a breaking wave." Phys. 
Fluids. Vol 6(9), pp. 2877-2879. 

Madsen, P. A. and Svendsen, I. A., (1984). "Turbulent bores and hydraulic jumps.", J. Fluid 
Meek, Vol. 129, pp. 1-25. 

Schaffer, H. A., Deigaard, R. and Madsen, P., (1992). "A two-dimensional surf zone model 
based on the Boussinesq equations." Proc. 23rd Int. Coast. Engrg. Conf., ASCE, pp. 
576-589. 

Schaffer, H. A., Madsen, P. and Deigaard, R., (1993). "A Boussinesq model for wave breaking 
in shallow water."  Coastal Engineering, Vol 20, ppl85-202. 

Stive, M.J.F. and H.G. Wind (1982). A study of radiation stress and set-up in the nearshore 
region. Coastal Engineering,6, pp. 1-26. 

Svendsen, LA. (1984a). Wave heights and set-up in a surf-zone. Coastal Engineering, 8, pp. 
303-329. 

Svendsen, LA. (1984b). Mass flux and undertow in a surf-zone. Coastal Engineering, 8, pp. 
347-365. 

Svendsen, I. A. and Madsen, P. A., (1984). "A turbulent bore on a beach." /. Fluid Mech., 
Vol. 148, pp. 73-96. 

Zelt, J.A., (1991). "The run-up of nonbreaking and breaking solitary waves." Coastal Engrg., 
Vol. 15, pp. 205-246. 


