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THE ROLE OF WAVE-INDUCED SHEAR STRESSES 
IN THE MOMENTUM BALANCE EQUATIONS 

Francisco J. Rivero and Agustin S.-Arcilla*, M. ASCE 

ABSTRACT 

The wave-induced shear stresses, which result from the correlation between 
horizontal and vertical components of the oscillatory velocity after time- 
averaging the horizontal momentum balance equations, are shown in this paper 
to play an important role in vertical circulation analysis, having the same 
order of magnitude than other wave-induced (normal) stresses. The model 
of Rivero and Arcilla (1995) to calculate the wave-induced shear stress for a 
2DV situation, based on a mathematical identity that relates this stress to 
the wave-induced normal stresses and the oscillatory vorticity, is now extended 
to a general 3D flow. The consequences of neglecting the wave-induced shear 

stresses are shown to be an overprediction of the waves effect on the description 
of the vertical profiles of the mean (current) velocity. Theoretical examples of 
such effects are presented and discussed for some simplified situations (the 
undertow and longshore current vertical profiles). 

1. INTRODUCTION 

The correlations between horizontal (UJ) and vertical (w) components of 
the oscillatory (wave) motion, which appear explicitly in the time-averaged 
momentum balance equations as wave-induced (effective) shear stresses, have 
been shown to play an important role in the analysis of the vertical distribution 
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of wave-induced currents (see e.g. Deigaard and Freds0e (1989), De Vriend 
and Kitou (1990), Stive and De Vriend (1994), and Rivero and Arcilla (1995), 
to mention some recent references). However, most circulation models have, 

until very recently, neglected the <UjW>-contribution (< > denotes the time- 

averaging operator over a wave period) by simply arguing that the two wave 
velocity components, Uj and w, are 90° out of phase. This result, which 
corresponds to periodic waves of permanent form, is not valid for real waves 
propagating over a sloping bottom and/or with energy dissipation (be it in the 
bottom boundary layer or in the free surface area for the roller of breaking 

The purpose of this paper is to present new formulations to calculate the 

wave-induced shear stresses < fijw >, based on mathematical identities that 
relate these stresses to other wave stresses (<UJUJ> and <w >), easier to 
calculate by any given wave theory (e.g. linear theory), and the vorticity of the 
oscillatory velocity, and to investigate the relevance of these stresses in vertical 
circulation analysis. 

The outline of the paper is as follows. Section 2 gives an overview of the 
model of Rivero and Arcilla (1995) to calculate the wave-induced shear stress 
<uw> in a 2DV situation. This model is extended in section 3 to a general 
3D flow, and its implication in the horizontal momentum balance equations 
are discussed in section 4. Theoretical examples on the role of wave-induced 
shear stresses in the description of the vertical circulation for some simplified 
situations are given in sections 5 (undertow profiles) and 6 (longshore current 
profiles). Finally, section 7 presents the summary and conclusions. 

2. WAVE-INDUCED SHEAR STRESS IN A 2DV FLOW 

For a 2DV situation (as that encountered in a wave flume), in which waves 
propagate along the x-direction and the z-axis is directed vertically upwards 
(Fig. 1), Rivero and Arcilla (1995) derived a mathematical identity which 
relates the wave-induced shear stress < uw > to other wave-induced stresses 
(< u2 > 
CJ = M - dw. 

dz       dx ' 

and  < wz >)  and to the  (scalar) vorticity of the oscillatory flow 

d      .. 1 
— <UW> = <WCJ> —- 
dz 2 dx 

<u2> - <w2> (1) 

where the oscillatory components of the velocity (u and w) are defined such 
that <u>=<w>= 0, and hence, <u>>= 0. 
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Waves 

MWL 

Z=Zb(x) 

Figure 1. Domain definition sketch -2DV situation- 
(after Rivero and Arcilla, 1995). 

Assuming irrotational flow (w = 0) and invoking linear wave theory to 
evaluate <u >, <w2> and the near-bed value of <{iw>, which is given by the 
kinematic boundary condition at the bottom z = Zf, (Putrevu and Svendsen, 
1993) —see Fig. 2—, the vertical distribution of <iiw>, after integration of 
Eq. (1), is found to be linear over depth: 

<uw> =  -G 
E_\   dd 
phj   dx dx 2° ph) {z ~ *b) (2) 

where d is the still-water depth, h is the mean water depth, E is the wave 
energy density, p is the fluid density, and G = 2fc/i/sinh(2fc/i). 

Waves 

Figure 2. Simplified model for the oscillatory wave motion near the bed. 
(after Rivero and Arcilla, 1995) 
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This general expression (2), using linear wave theory, has been applied 
to simplified situations and has been shown to coincide or degenerate into 
other existing formulations with comparable simplifying assumptions, viz. 
irrotational waves over a sloping bottom in the shallow-water approximation 
(De Vriend and Kitou, 1990), and surf-zone breaking waves over a horizontal 
bottom (Deigaard and Freds0e, 1989). 

Expression (2) has also been compared (Rivero and Arcilla, 1997) with 

experimental results for the vertical distribution of the wave-induced shear 
stress < uw > in shoaling waves within the framework of a research project 
{Dynamics of Beaches) funded by the EU —see Prinos et al. (1994) for details. 
Simultaneous time series of horizontal and vertical velocity components, and 
free surface elevation were measured at several stations along the wave flume 
and at several points within each station. Various regular and irregular wave 
conditions were generated with and without a submerged breakwater on a 1:15 
sloping beach (Rivero et al, 1996). The experimental results presented here 
correspond to the test without submerged breakwater under irregular wave 
action (Test E: Jonswap-type spectrum with 7 = 3.3, peak period Tp=2.50 s 
and significant wave height Hs=0.25 m in the deeper part of the wave flume, 
with water depth /i=3.06 m). Fig. 3 shows the measured values of <uw> at 
3 stations located in the shoaling zone, and the predicted <uw>-distribution 
with expression (2). As can be seen from this figure, both the sign (positive) 
and the trend (decreasing upwards) of the vertical distribution of < uw > is 
correctly predicted by the authors' model, as well as quantitavely. 

Figure 3. Comparison between experimental data (squares) and this model 

(Eq. 2) for the vertical distribution of the wave-induced shear stress <uw>. 

Test E: irregular waves, Jonswap-type, Hs=0.25 m, Tp=2.5 s. 
(after Rivero and Arcilla, 1997) 
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3. WAVE-INDUCED SHEAR STRESSES IN A 3D FLOW 

Explicit expressions for the vertical distribution of the wave-induced shear 
stresses (< iiw >, < vw >) in a 3D situation may be found from (2) in a 
horizontally rotated frame of reference, after assuming that the (irrotational) 
flow is essentially two-dimensional in the direction of wave propagation x' (see 

Fig. 4), and neglecting the curvature of wave rays: 

<uw> =   -2A 

'dA 

dd dd 
— cos  a + —— sin a cos a ]   — 
ox dy 

dx 
i        9 A  . 

cos  a + -7— sin a cos a 
dy {z - Zb) (3a) 

<vw> 
r. A 1 ^d   . dd  . 2 

-2A 1 TT~ sin a cos a -\ sin  a |   — 
, ox dy 

dA  . dA  . o    ,   , 
-—— sin a cos a + -7— sin  a     (z — zj,) 
dx dy ' 

(36) 

where A = ^G I A^ j is an energy-like magnitude. 

wave ray 

Figure 4. Domain definition sketch -3D situation- 
(after Rivero and Arcilla, 1997). 

A more general (differential) expression for < uw > and < vw >, from 
which their implication in the time-averaged momentum balance equations 
may be easily assessed, is given by the following straightforward mathematical 
identities that involve the oscillatory vorticity components, 

Wz 
dw 

dy 

dv 

dz 

du 

dz 

dw 

dx 
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and the continuity equation for the oscillatory velocity components, 

du     dv     dw 
dx     dy     dz 

d      __ 1 
—- <uw> = <wwv> —- 
dz I 

a   I    ~2 ~2 —- (<uz> - <wz> 
dx 

dv 
- <u—>        (4a) 

dy 

d     __ 1 
—- <VW> =    — <WWj> —- | (<v2> - <w2> 

- <V^> (4&) 

For an irrotational flow (uix — &>y = 0), these mathematical identities read: 

<uw> 
9^ 

—- <vw> = 
dz 

dx 
<fi2> <w2> 

—     <V^>  -  <W^> 

.dv 
dy 

_5u 
9a; 

(5a) 

(56) 

4. WAVE-INDUCED STRESSES IN THE HORIZONTAL 
MOMENTUM BALANCE EQUATIONS 

The "conventional" wave-induced stresses appearing in the time-averaged 
horizontal momentum balance equations (see e.g. Svendsen and Lorenz, 1989): 

X-direction —-   <u > - <wz>    + — <uv> +— <uw> 
dx V /      dy dz 

Y-direction —     <vz> -   ^"'Z~ „    i <v  > — <w  >    + —- <uv> +-— <vw> 
% V /      dx dz 

(6a) 

(66) 

would read, after invoking identities (4a- 

X-direction --«„-, ^   i / ^,~^ <WCOy> + K7f i <u  > - <w^> ) + <v—> 
.du 
dy 

Y-direction 
1 d  /   _o 9   \ _ <9v 

^vz^ — ^wz~      •    - <WWi> +„^-     <V   > - <W   >     + <U-~> 
Idy \ / dx 

(7a) 

(76) 
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and assuming irrotational flow (u)x = £ty = 0): 

,,   , . 1   9   /     .9 _0 
X-direction - —   <uz> - <wz> 

2ox \ 

Y-direction 

) + <v 
du 

dy 
> 

1   (9    /     _o ~ 9     \ ~ <?V 
--(<v2>~<w2>) + <u-> 

(8a) 

(86) 

The implication of taking into account the wave-induced shear stresses, 
<uw> and <vw>, as given by Eqs.(7a-b), or equivalent)//, Eqs.(8a-b) for an 
irrotational flow, with respect to the case in which those stresses are neglected 
from the conventional form of the time-averaged horizontal momentum balance 
equations (Eqs. 6a-b), are discussed in the following sections for some idealized 
situations. 

5. UNDERTOW VELOCITY PROFILES 

For normally incident waves (a=0) on a cilyndrical beach (dd/dy=0), the 
vertical distribution of mean shear stress < TXZ > (associated with viscous 
and/or turbulent effects) can be found from the time-averaged horizontal 
momentum balance equation in the cross-shore direction after assuming a given 

mean pressure distribution (usually, <p>z=<Ph> ~P <w >, where <Ph> is 
the mean hydrostatic pressure) —see e.g. (Svendsen, 1984) for the assumptions 

and motivation of this equation—: 

d_ ( <TXz> 
dz 

dU2        d<r,>       d_ 

dx dx dx 
<u2> <w2>) + — <uw>   (9) 

az 

where U(x, z) is the (undertow) mean velocity and <r)> (x) is the mean water 
level (set-up/set-down). Eq. (9) shows the vertical variation of the mean shear 

stress <TXZ> in the {x,z} vertical plane. 

As already mentioned before, the < uw > contribution has been, until 
very recently, neglected throughout the water column except in the bottom 
boundary layer, in which it led to the streaming solution (Longuet-Higgins, 
1953). The relevance of the <uw> contribution in the vertical distribution of 
<T~XZ> can be easily assessed after substitution of identity (1) into Eq. (9): 

d_ ( <TXZ> 

dz 

dU2      8<ri>    1 

dx dx       2 dx 
<u2> <w2> + <ww> (10) 
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Since the <ww> term will be, in general, unknown —it depends on the 
vertical distribution of the current velocity—, it may be set to zero as a first 
approximation, in which case Eq.  (10) would read: 

d  ('<TX7>\         dU2       d <f]>      1 
+ .9^ + dz \      n      I dx dx 2 

— (<uz> - <wz> 
ax 

(11) 

It may be, thus, seen that the <uw>-term first effect is to halve the normal 
wave stress contribution to <TXZ>- This would mean that unrealistic closure 
submodels for <TXZ> (i.e. eddy viscosity coefficient v% values) must be used to 
fit measured undertow profiles if the <uw> term is neglected in the momentum 
balance equation (9). It should be noticed that, although wave stress gradients 

are usually small compared to g ^ inside the surf zone (Svendsen and Lorenz, 
1989), that is not necessarily the case outside the breaker region or in the 
transition zone (Putrevu and Svendsen, 1993). This means that the < uw > 
contribution, and therefore the need to calculate it, is expected to be more 
significant in areas in which mean water level gradients do not dominate the 
momentum balance equation. 

6. LONGSHORE CURRENT VELOCITY PROFILES 

For obliquely incident waves (a / 0) on a cilyndrical beach (dd/dy=0), 
the vertical distribution of the mean shear stress < Tyz >, which may be 
related to the vertical gradients of the longshore current velocity V(x,z), can 
be found from the time-averaged horizontal momentum balance equation in the 
alongshore direction —see e.g. (Svendsen and Putrevu, f 994)—: 

d  /<Tyz>\ dUV  .   d     ..„.     .   d 
a   \ I   ~      a     + ^ <uv>+—<vw> (12) 
oz \     p     J dx       ox oz 

Upon substitution of identity  (4b)  with the  assumption of alongshore 
uniformity (d/dy=0), Eq. (12) may be written as 

d   [<TVZ>\ 8UV        __ „d 'yz- V 
<wwx> + <u—> (13) 

dz \     p     J dx ' dx 

If, as in the preceding section, the term involving the vorticity is 
disregarded, the governing equation for the vertical distribution of < Tyz > 
(13) would read 

0  f<ryz>\   _dUV+<_8v> (M) 

dz \     p     J dx dx 
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In this situation wave stresses are, in the absence of alongshore mean water 
level gradients, the dominant factors governing the vertical distribution of 

<Tyz>- Again, it may be noticed that the primary effect of the <vw> term, 
as given by Eq. (14), is to reduce (approximately, to halve) the contribution 

of wave stresses (< u§^ > versus jj- < uv >) in the vertical distribution of 
<Tyz>) with respect to the case in which the <vw> term is neglected in the 
original equation (12). This fact indicates that, for a given closure submodel 
of <TyZ>, the predicted curvature of the vertical profiles of longshore currents 
taking into account the <vw> term (Eq. 14) is smaller than the one predicted 
neglecting the <vw> term (in Eq. 12), which may help explaining the good fit 
of logarithmic functions to field measurements of the longshore current vertical 
profiles (see e.g. Thornton et al, 1995). 

7. CONCLUSIONS 

The  following general conclusions  may  be  drawn  from the  theoretical 
derivations presented in this paper: 

• New mathematical identities (4a-b) have been derived which express the 

wave-induced shear stresses (<uw> and <vw>) in a 3D flow in terms of other 
wave-induced stresses (<u >, <v >, <w > and <uv>), easier to calculate 
by any given wave theory, and the oscillatory vorticity (UJ). 

• In general, the implication of the wave-induced shear stresses (<uw> and 
< vw >) in the horizontal momentum balance equations is to approximately 
halve the contribution of other wave-induced stresses (<u >, <v >, <w > 
and < uv >) with respect to the case where horizontal-vertical correlations 

are neglected, which has been an otherwise common procedure in vertical 
circulation analysis. 
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