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A HAMILTONIAN MODEL FOR NONLINEAR WATER WAVES 
AND ITS APPLICATIONS 

A.K. Otta1, M.W. Dingemans2, A.C. Radder3 

Abstract 

Evolution equations for nonlinear long waves are considered from an approxima- 
tion to the exact Hamiltonian (total energy) for the water waves. The approxima- 
tion which is used here has two distinct advantages over many other formulations 
which are commonly used for the same purpose. Further, a variation of these 
evolution equations is considered in order to incorporate higher-order nonlinear- 
ity. Numerical solutions of the evolution equations have been carried out for 
both the systems. Application of these models is illustrated in some practical 
cases. Comparisons between experimental measurements and computed results 
show that the model can be used for satisfactory prediction of nonlinear trans- 
formation of non-breaking waves over varying depth. Two features for further 
investigation are: (i) inclusion of both short-wave and long-wave nonlinearity so 
that the model can be used with uniform validity from deep to shallow water 
and (ii) modifications of the evolution equations so that they can be applied to 
propagation of breaking waves in a robust way. 

Introduction 

Commonly used nonlinear equations for propagation of water waves can be cat- 
egorised into two main groups: Stokes-type valid in deep water and Boussinesq- 
type valid for fairly long waves. Several modifications to classical Boussinesq 
equations have been presented in an attempt to increase the validity of the model 
equations with respect to frequency dispersion and varying depth (e.g., Madsen 
et ah, 1991; Dingemans & Merckelbach, 1996). In this article, we discuss an al- 
ternative approach based on an explicit Hamiltonian formulation (Radder, 1992) 
for modelling of nonlinear waves over varying depth. The explicit expression for 
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the kinetic energy in the form of a surface integral involving the free surface po- 
tential ip and the surface elevation ( is derived by using a conformal mapping in 
the complex plane. Therefore, the formulations are limited in a strict sense to 
unidirectional problems in the horizontal space. 

Formulations 

We use the symbols ((x,t) and <p(x,t) = $ {x,((x,t),t} to denote respectively 
the free surface elevation and potential where $ is the usual velocity potential. 
The evolution equations for ( and if follow the Hamiltonian structure (see, for 
example, Benjamin and Olver, 1982): 

<%_6n        dtp__8H 
dt ~ Sf    '     dt ~     6( [ } 

where 7i is the total energy (sum of potential and kinetic energy) of the water 
mass which reads as 

1 /*oo 1 roo /*£ 
n   =   -pg        (2dx + -p        dx       (V$ • V$)<fe 

£        J~oo Z     J—oo J—h 

-Pg(2dx + -p        dx\ll + (&)%>*» • (2) 
-OO    Z <U        J — OO 

The essential difficulty in deriving explicit evolution equations from (1) and (2) 
lies in the vertical integral or the Neumann operator of the potential $ in the 
expression for kinetic energy density. This is where different procedures differ 
in the way that the simplifications are made. Several of the more commonly 
known weakly nonlinear formulations (either of the Stokes or Boussinesq-like 
approximations) correspond to some of these variations. Recently, Craig and 
Groves (1994) have presented a comprehensive discussion of these variations. 

The basis for our approach is an explicit formulation of the Hamiltonian for 
two-dimensional water wave problems (unidirectional propagation) presented by 
Radder (1992). All details of the derivations are not included here. These may be 
found in Radder (1992), Otta and Dingemans (1994a) and Dingemans and Otta 
(1996). Radder has shown that an exact expression for the kinetic energy T as a 
function of the free-surface variables ( and if can be obtained in an explicit form 
using a conformal mapping, namely the Woods' transformation from the physical 
space (horizontal and vertical coordinates x and z) to (—oo < x < oOj 0 < f < 1). 
This expression for the kinetic energy in the \ space along the free surface (£ = 1) 
is given by 

where log is the natural logarithm and the variable \ is related to x along the 
free surface through 

dX~(   ^   W(-^~W (4) dx       \tan d/dxj \sm d/dx 
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The mapping (4) is valid exactly for arbitrary variation of depth h and surface 
elevation (. 

We need to inverse the Jacobian, given by (4), in order to express T in the 
physical space. It is, however, difficult to obtain an exact inversion. Consequently, 
we shall use an approximation to the exact Jacobian leading to an approximation 
of the Hamiltonian (Ha) in the physical space. A notable distinction of the 
method is that the positive definiteness of the kinetic energy density can be 
ensured for each approximation if one selects the inversion such that ~ > 0. 

The simplest approximation which accounts for long-wave nonlinearity (it is 
assumed that kh-ka is small) for moderately high waves is arrived at by dx/dx ^ t] 
where r\ is the total water depth (h + £). The resulting Hamiltonian Ha is 

— = o /     dxg(2 ~ —        dx        da;'^,,/log tanh-   / 
p Z J-oo lK J-oo        J-oo 4    Jx 

(5) 
{*' dx^_ 

V 

With regards to the approximate inversion we introduce the variable p such that 

dx      ,      , ,„, 
- = h + C (6) 

and the resulting evolution equations are 

dx'ipxi log tanh —   / 
-oo 4  \Jx 

d( 13/0°, T   /*' dr 
—   =   -— /     dx w log tanh-   /    — 
Ot 7TOX J-oo 4  \Jx       J] 

(7) 

*t - _^_j_r dx'f dx" ^^  fs) 
dt -   9C wU**J. ^sinh(f/;;'t)' 

() 

We note that for this approximation, positive definiteness is maintained as long 
as the total water depth {h+() remains greater than zero. This feature of positive 
definiteness is not guaranteed in the entire wave spectrum in many other approx- 
imate Hamiltonian system. Another significant advantage is that in the limiting 
case of infinitesimal waves the dispersion relationship of the evolution equations 
derived from (5) is identical to that from the classical linear wave theory over 
uniform depth. This has the positive consequence that linear propagation and 
shoaling are properly predicted for all free components over the entire wave spec- 
trum in transferring from deep to shallow water although nonlinear interactions 
of the short-wave type may suffer from the same limitation as when Boussinesq 
formulations are used. 

Higher-order Description 

The approximation (5) and the evolution equations derived therefrom do very well 
in reproducing long-wave nonlinearity as will be shown later. However, for better 
description of the form near the crests during wave steepening and propagation of 
higher waves, higher-order nonlinearity needs to be incorporated in the evolution 
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equations. Both short-wave and long-wave nonlinearity can be accounted for 
in the approximate Hamiltonian in a hierarchial way by seeking higher-order 
inversion to (4) than used in (6). This is, however, not very straightforward. 
Instead, we choose an intermediate appoach where the evolution equation for the 
surface elevation is obtained by replacing x by p in the exact expression for the 
kinetic energy; i.e., 

dm 1     f°° TT 
= ~   I       dp<Pp' log tanh J\P-P'\ 

TT J-oa 4 
(9) 

with ((x,t) = dm/dx in combination with the dynamic free surface boundary 
condition used directly for the free surface potential, i.e. 

1 {Ct + 9z(xf 
2   i + (G)2 

(10) 

Numerical Solution 

The evolution equations (7) and (8) are not convenient for direct numerical treat- 
ment due to the singular kernels and the double integral in the latter. The inte- 
grands are first regularised to make them more amenable for numerical solution. 
The modified equations (Otta & Dingemans, 1994a) are presented in the follow- 
ing: 

•K dx 
— TTVT] 

vt  =  -g(x 
d 

dx 

/oo 7r   r 
dx'X(x', s)logtanh —   / 

•oo 4   Jx 

1     fx 

— /     dx'vqCt 
W    J-oo 

(*' dx^ 
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where 

= ipx,        X(x',x) = v(x') ;     .V(x) . 
T,(X>)    (    ' 

(11) 

(12) 

(13) 

The equations, given by (11) and (12), are numerically solved using an predictor- 
corrector scheme, namely the Adams-Bashforth-Moulton method. The spatial 
discretization of the right hand sides of the equations is carried out using the sine- 
series approximation (Lund & Bowers, 1992). More about the characteristics and 
advantages of using the sine-series and the high order of accuracy of the numerical 
scheme used is described in a separate article under preparation. 

Certain advantages are gained by carrying out the numerical evaluation of the 
evolution equations, given by (9) and (10), in a uniformly spaced p-space. Using 
the sine approximation to express V(p') (V = <pp), i.e., 

V(p>) ]P  V/sinc 
/= — OO 

p -Pi 

Ap 
(14) 
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with I denoting the grid index and Ap the uniform interval between two consecu- 
tive grids in the p-space we obtain the discretised form of the evolution equation 
(9): 

~    =£V,J(|Z-j|;Ap) (15) 
3 ' 

where 

7(|/ - j\; Ap) = -- r dp' sine ^-=^ log tanh - \Pj - p'\ . (16) 
X J-oo Ap 4 

For a time-invariant value of Ap, the terms I(\l — j\; Ap)'s remain constant and 
need to be evaluated only once. We note, however, that the ^-coordinates corre- 
sponding to the fixed values of p grids are time-variant. The local evolution rates 
[(t(x,t), VtC^i^)] then need to be transferred to the constant p-grids through the 
relation 

dip, p    .    _    dip     dxp dip 

~dt{X '   '   ~   ~dt+~dTdx~ 
dip_     dx^dpdip_ .    . 

dt      dt dxdp {   ] 

where ip is used to denote either ( or ip and xp denotes the z-coordindate of a 
constant p-value. The value of xp itself is updated with time. 

Boundary Conditions 

The evolution equations (with the exception of (10)) described so far include an 
integral over the infinite span. This has its origin to our deliberate choice of ex- 
cluding the lateral boundary from the formulations in order that the Hamiltonian 
can be expressed as a function of £ and (p. With no further modifications, these 
evolution equations can be used to study an initial value problem. This means 
that the span in the z-interval for the numerical solution has to be much longer 
than the physical interval of interest with the consequence that the required 
computational time increases tremendously. This is, however, not necessary. 

Consider for example the evolution equation (9). We rewrite this equation as 

-^   =   - / ° dp<pp, log tanh - \p - p'\ + - /    dptpp, log tanh - \p - p'\ 
01 7T J-oo 4 •K Jpo 4 

+ -        dpc^ylogtanh--|p-p'| (18) 
IT Jpn 4 

where po and pn denote respectively the begin and end point of the computation 
interval. Though the intervals of the first and third integrals in (18) outside the 
computational interval are semi-infinite, the rapid decay of the function log tanh() 
appearing in the kernel of the integral allows reduction of the interval to usually a 
few (local) water depths without any loss of accuracy. We assume for simplicity 
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that the bottom stretches uniformly to the left of p0 and the right of pn. For 
generating incoming waves in the computational interval, we use an appropriate 
theory to translate the time record of surface elevation ((t) at a given location 
(say p0) to a space and time record for both ( and </? outside of the computational 
interval. In the simplest way this is done by using linear theory to specify the 
incident field in the offshore side. On the shallower part a sponge layer can 
be introduced to absorb the radiating waves. For this purpose the evolution 
equations are modified; i.e., 

<t = R((<,<P)-ti*)< (19) 

where R(((, <p) represents the unmodified part of the equation and /i(x) a damp- 
ing coefficient. In many cases, the introduction of a sponge layer over a rea- 
sonable length of the computational domain allows absorbtion of the radiating 
waves such that the third integral in (18) becomes non-significant. In a more 
general approach, a combination of the sponge layer and a Sommerfeld type of 
radiation condition can be implemented to specify the space and time record of 
( and ip outside of pn to compute the third integral in (18). Details of the types 
of boundary conditions and the procedures are described in Otta & Dingemans 
(1994b) and Dingemans & Otta (1996). 

Examples of Applications 

In this section we discuss the application of the models to some critical cases. 
An illustrative example is the study of the propagation of a solitary wave over a 
bottom of constant depth. The initial surface profile ((x, t = 0) and the potential 
<fi(x,t = 0) are specified from Tanaka's (1986) solution which may be considered 
exact. Fig. 1 shows that this profile changes considerably with a decrease in 
the crest height and the formation of a dispersive tail during the propagation 
according to (7) and (8). The change in crest height and the dispersive tail is 
much less prominent when the set of evolution equations with the higher order 
of nonlinearity is used. 

An example of practical interest is the propagation of waves over varying 
depth. To test the validity of our two models for such cases we consider an 
experimental setup (Fig. 2) as described in Luth et al. (1994) and used in 
Dingemans (1994). Transformation of an incident train of periodic waves is shown 
at different locations along the bar in Fig. 3. The incident waves are of mild 
amplitude such that they do not break over the bar. The computed profiles 
shown here are obtained by using (9) and (10). The nonlinear interactions on top 
of the bar (at location x = 13.5 m) and the propagation of the free waves behind 
the bar (location x = 19 m) are reproduced in a satisfactory manner. Though not 
shown here, results obtained from (7) and (8) for this case have been found to be 
be nearly as good with only slightly differences near the crest. In a previous study 
(Dingemans, 1994), the model based on (7) and (8) has been found to yield better 
agreement with experimental measurements than many Boussinesq-like models. 
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Figure 1: Computed profiles of a solitary wave (initial height/depths 0.4) during 
propagation over a bottom of constant depth. Solid line: based on (9) and (10); 
dashed line: based on (7) and (8). 

Wave Breaking 

The evolution equations, given by (7) and (8) or by (9) and (10), are valid for 
waves which do not break. Wave-breaking is, however, of great practical signif- 
icance in coastal areas. In field conditions, wave breaking in shallow water is 
identified by overturning of the water surface and plunging on to itself (plunging 
breaker) or the formation of a thin jet near the crest that spills over (spilling 
breaker). There are several difficulties, both physical and numerical, in mod- 
elling this process of breaking reasonably. Although a proper description of the 
water motion in the neighbourhood of breaking is essential for some purposes, 
it is sufficient to incorporate the main effects of breaking in the post-breaking 
behaviour of wave propagations for many a problem. To incorporate this effect 
in weakly nonlinear equations two steps are essential. Since either overturning 
of the surface and the spilling jet may not be manifested in the model behaviour 
or the numerical limitations of an adopted scheme may not permit computa- 
tions advancing to the desired point, a criterion has to be used to indicate the 
incipience of breaking. Secondly, the evolution equations (derived originally for 
non-breaking waves) have to be modified so that the effects of wave-breaking 
{e.g., energy dissipation) are incorporated within the framework. 

Several criteria have been used in different models for the definition of the 
onset of breaking. For example, Schaffer et al. (1993) found it necessary to use a 



A HAMILTONIAN MODEL 1163 

1 4       6     7             11 

i       i                 i 1           i                           ! 
! 1 j 

I 

... 
- 

'           ' 
12.   14. 17. 21 . 

v{p) + / 
Jo 

0. (20) 

Figure 2: Geometry of the experimental setup. 

criterion of the maximum of the local surface slope reaching a value of 20° in their 
time-domain Boussinesq model to a mark the onset of breaking. We consider here 
a criterion which is based on the idea of the Jacobian of the conformal mapping 
dx/dx becoming zero. This condition has been mentioned for horizontal bottom 
by Dingemans and Radder (1991) using a first-order expression for the Jacobian 
including both short-wave and long-wave nonlinearity. For varying depth, the 
criterion reads as 

d[C{p + q)+C(p-q)}        f°°d[h(p + q) + h(p-g)} 

exp(wq) — 1 Jo exp(irq) + 1 

The criterion (20) has been found to be a good indicator of the onset of breaking 
for waves of symmetric permanent form and some cases of asymmetric forms be- 
fore plunging (Radder, 1995; personal communication) although a comprehensive 
analysis of the criterion for the onset of breaking in dynamical situations is still 
very much needed. 

During numerical experimentations with the model equations (7) and (8) we 
have observed that the condition (20) was never reached in the computed sur- 
face form while breaking did occur in reality. Though this observation is not 
completely surprising, it was difficult to predict a priori It is our conjecture 
that this is caused by the inadequacy in the representation of nonlinearity in the 
equations (7) and (8). This conjecture is in fact the primary motivation behind 
the set-up for a higher-order description. On application of the model, based on 
(9) and (10), the breaking criterion is met in several cases followed by numeri- 
cal instabilities. An example of such a computation is shown in Fig. 4 where a 
train of periodic waves is allowed to propagate onshore over a sea-bed profile near 
Egmond on the Dutch coast. In a preliminary approach to model post-breaking 
behaviour, we have considered modifying the surface elevation at each evolution 
step following two criteria: (a) the surface form remains within the limit of the 
breaker criterion and (b) the modification does not lead to a change in the mass 
balance. The effect is to reduce the crest height and the surface steepness with an 
associated dissipation of energy. This approach has shown some qualitative suc- 
cess in a limited number of cases, e.g., during the propagation of a solitary wave 
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Figure 3: Transformation of a train of periodic sine waves due to propagation over 
a bar (Fig. 2), Water depth= 40 cm (offshore), 10 cm (over the bar); Incident 
wave height= 2 cm, period= 2.02 s. 
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Figure 4: Propagation of a regular wave train towards the shore over the barred 
bathymetry near Egmond. Incident wave height= 1 m, period= 10 s. The bed 
profile is not shown to scale. Still-water depth at x = 0 is 11.4 m. 

on a slope. However, much remains to be done in the formulation of a proper 
beaking mechanism in the model and making the model practically applicable to 
breaking waves. 

Summary 

In the present article, we have discussed two sets of evolution equations. One 
set of evolution equations, given by (7) and (8), is derived from an approximate 
Hamiltonian with two important properties: the kinetic-energy density is guar- 
anteed to be positive definite for all wave heights across the entire wave spectrum 
as long as the local water depth is greater than zero and secondly the dispersion 
relationship in the limiting case of infinitesimal amplitude is exactly identical to 
that obtained from the classical linear theory of water waves. These two features 
are of great practical significance in ensuring stability of the model equations 
during propagations of an irregular train or of the generated higher harmonics 
and in representation of proper phase speed of all components. Numerical exper- 
iments with some critical test cases show that the model describes the nonlinear 
transformation during propagation of non-breaking waves over a varying depth 
satisfactorily. The performance of the model has been found to be superior to 
that of many Boussinesq-like models during an intercomparison study completed 
recently. We have experimented with including a higher-order nonlinear rep- 
resentation in the model equations. The experiments indicate that higher-order 
nonlinearity can improve the result of the Boussinesq-like approximations of fairly 
long, fairly low waves especially near the breaking point. However, a more sys- 
tematic approach is necessary than what has been here presented in order to 
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ensure stability and conservation of energy of the system. 
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