
CHAPTER 89 

STRUCTURE OF FREQUENCY DOMAIN MODELS FOR RANDOM 
WAVE BREAKING 

James T. Kirby1 and James M. Kaihatu2 

Abstract 

We consider the form of a breaking wave dissipation term for use in spectral or 
stochastic wave evolution models. A time-domain Boussinesq model is tested for ac- 
curacy in modelling evolution of second and third moment statistics in shoaling and 
breaking waves. The structure of the dissipation term in the time domain is then used 
to infer the corresponding structure of the term in the frequency domain. In general, 
we find that the dissipation coefficient is distributed like l/S^(f), where Sv(f) is the 
spectral density of the surface displacement rj. This implies an /2 dependence for the 
coefficient in the inner surfzone, as opposed to a constant distribution over frequency 
as suggested by Eldeberky and Battjes (1996). 

Introduction 

Recently, there have been several suggestions on how to structure the breaking 
wave dissipation term in spectral or stochastic wave evolution models, with the prin- 
ciple question being how to structure the dissipation coefficient as a function of fre- 
quency. As an example, Mase and Kirby (1992) developed evolution equations for the 
shoreward (x direction) evolution of component amplitudes An(x), where the An are 
related to surface displacement i) according to 

^ = g An(x)_e; Jkn(x]dx^nt + cc (1) 

n=l       2 

where k„ is related to u„ through a suitable wave dispersion relation. Index n is the 
analog in the discrete spectral representation to a continuous dependence on frequency 
/ in the continuous spectrum representation, and the two representations will be used 
interchangeably below. Restricting our attention here to wave breaking effects, the 
evolution equations may be written as 

^•n,x ~ ~&nAn -T * * * \Z) 
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where the omitted terms are related to shoaling and nonlinear interaction effects. 
Mase and Kirby (1992) proposed a form for an given by 

«n = «o + {fn/ffai (3) 

with 

«o = F/3 (4) 

°"{l-FW&w (5» 
and where /? is determined from a bulk dissipation model such as the one of Thornton 
and Guza (1983). Based on analysis of laboratory data and numerical results, Mase 
and Kirby chose to set F = 0.5, indicating a dissipation term with a partial dependence 
on the square of the frequency. They also found that choosing F — 0.0, corresponding 
to an f2 dependence for the entire dissipation term, destroyed the tail of the computed 
power spectrum in very shallow water but had little impact on the evolution of spectral 
shape away from the shallowest measuring gages. 

Eldeberky and Battjes (1996) have suggested that a similar formulation corre- 
sponding to the choice F = 1.0, spreading the dissipation term uniformly over all 
frequencies, should be utilized, and showed that an adequate description of power 
spectrum evolution was obtained in several simulations of field data. Eldeberky and 
Battjes did not consider the effect of this choice on the evolution of higher statistical 
moments. More recently, Chen et al (1996; referred to as CGE) have examined a 
number of laboratory and field cases. They have shown that the estimates of power 
spectrum evolution are relatively insensitive to the choice of F, with error-minimizing 
F values occupying the entire range 0 < F < 1 for various field and laboratory cases. 
Aside from the Mase and Kirby case, error measures changed by as little as 20% over 
the entire range of values. In contrast, all data sets support the choice of F = 0.0 when 
error measures based on third-moment statistics are introduced, with the exception 
of the Mase-Kirby data set. (This last discrepancy is fairly weak, however). There is 
a clear trend towards increasing error with increasing F in most data sets. 

In this talk, the problem of determining the form of the spectral dissipation term is 
approached from a different direction. Instead of considering a bulk energy decay and 
an arbitrary distribution of dissipation over /, we instead consider the structure of 
the dissipation term in a time-dependent Boussinesq model setting, and consider the 
contribution of the term to energy loss and the structure of that loss in the frequency 
domain. This loss is then related to the spectral evolution equations, and the form of 
the dissipation term is deduced. We find that, in general, the dissipation coefficient 
is distributed more or less as Sn(f)~

l, where Sn{f) is the power spectrum of the 
surface displacement rj. For the case of a smooth spectrum, this result indicates an 
f2 dependence in the dissipation coefficient in the surfzone, consistent with CGE's 
results with F — 0.0. The conclusions here are based on an examination of the Mase 
and Kirby (1992) data set, which is well modelled by the chosen time-domain breaking 
wave model. 
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Time-Domain Model for Wave Breaking 

The literature includes examples of a number of formulations for computing wave 
breaking in the context of Boussinesq wave models. Three examples include an eddy 
viscosity model (Zelt, 1991), a surface roller model with an assumed two-layer velocity 
profile (Schaffer et al, 1993), and a surface roller model with a computed horizontal 
profile (Svendsen et al, 1996). Schematically, the eddy viscosity model may be written 
as 

ut + uux + gr/x + dispersive terms — {v\,ux)x = 0 (6) 

The simple roller model of Schaffer et al (1993) is written in the context of a model 
for total volume flux, and may be written schematically as 

Pt + (P2/-ff)   + 9Hr)x + dispersive terms + Rx = 0 (7) 

= /_   (M?ot - <4rot) dz (8) 

and 
H = h + r, (9) 

The more complex roller model of Svendsen et al (1996) is essentially of the same 
form. While these models differ in both form and theoretical intent, it may be shown 
that the numerical representations of each dissipative term are similar. In particular, 
the contribution of each dissipation term is highly localized in space and time, since 
it is concentrated on the front face of the breaking wave. Further, the contribution of 
each dissipation term is about the same size, since each successfully calibrated model 
must extract the same amount of energy. An illustration of this fact is given by Figure 
9 of Svendsen et al (1996). 

Since our primary goal below is to examine the spectral signature of the wave 
energy decay, we can conclude that, due to the structural similarity of the various 
breaking models in the time domain, it should not matter which of the existing mod- 
els is used to perform the analysis. The analysis will be based on the eddy viscosity 
model of Zelt (1991) for two reasons: it is already incorporated in an existing time- 
domain Boussinesq model (Wei and Kirby, 1996), and it is simple to interpret the 
terms in the eddy viscosity model in terms of measured sea surface elevations, as de- 
scribed below. 

Leading-Order Energy Balance 

Let r = R/H or ~VbUx represent the breaking-induced momentum deficit per unit 
depth. Then, each of the models above may be written in the form 

ut + uux + gr\x + dispersive terms + rx = 0 (10) 

Neglecting nonlinear and dispersive effects, we have 

ut + grix + rx   =   0 (11) 

Vt + (hu)x   =   0 (12) 
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Multiplying (11) by phu, (12) by pgrf and adding then gives 

Et + Fx = -ej, (13) 

where 

E = \pgr]2 + \phu2 (14) 

is the local energy density/unit surface area, 

F — pghurj (15) 

is the flux of energy in the x direction, and 

eb = phurx (16) 

is the local rate of energy decay. Each of these quantities may be averaged in time, 
yielding (for a stationary wave process) 

(F)x = -<e6> (17) 

The average or bulk energy decay {eb) can be specified according to models such as the 
one of Thornton and Guza (1983), which models the data set considered below quite 
well. Each of the quantities in (17) may be thought of as the sum of contributions 
from each frequency to the total value; i.e., 

(F) = Y^Fn;       (eb) = ^ebn (18) 
n n 

We will attach a meaning to each of these component terms in the analysis below. 
In order to proceed further, we need to choose a model to evaluate eb. This will 

be done using the Zelt (1991) eddy viscosity model. 

Eddy Viscosity Model 

The eddy viscosity appearing in (6) is written by Zelt (1991) as 

vb = -l2ux;      £ = By{h + r]) (19) 

where 7 = 2 is a mixing length parameter determined by Heitner & Housner (1970) 
and chosen so that the resulting model correctly predicts the width of a hydraulic 
jump. The factor B is given by 

B 2< < w* < < (20) 
ux > u* 

and provides a somewhat smoothed onset of breaking dissipation when the local break- 
ing criterion is exceeded. The breaking criterion is given in terms of a critical velocity 
divergence, chosen to be 

i£ = -0.3jg7h (21) 
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The accuracy of this formulation in modelling breaking random waves will be illus- 
trated below. The model is particularly useful to us in the present context because 
the terms in the model may be evaluated (to leading order) using time derivatives of 
the surface elevation. Using ux « ~ijt/h, we get 

Vb   =   Bj2h2ux^By2hr!t (22) 

i  ;  m>2vl 
Vt <Vt< 2%* (23) 
Vt < ift 

r,*   =   0.3v^ (24) 

0 

Finally, the instantaneous energy dissipation may be written as 

€6 = -phu (vbux)x fa -p l-j {vbr)t)t (25) 

The advantage of this formulation is clear in the context of evaluating experimental 
results, since the energy loss term that would be predicted by the numerical model 
may be deduced directly from the measured data. Thus, in order to evaluate dissipa- 
tion effects, We may proceed without actually running the model in the majority of 
cases, provided that the model as formulated is known to be an accurate predictor of 
the wave field in sample representative cases. 

Laboratory Data 

The experimental data considered here is taken from Run 2 of Mase and Kirby 
(1992). The present results have been reproduced for a number of other data sets, 
and a more comprehensive view of the study will be published elsewhere. The aingle 
case shown here suffices as an indication of the results for a wide range of conditions 
studied to date. 

Figure 1 shows a schematic of the experimental facility. The experimental wave 
conditions correspond to a Pierson-Moskowitz spectrum generated in 47cm of water, 
with a peak frequency / = 1Hz and a significant wave height of 6cm. Waves were 
measured using capacitance wave gages at twelve stations across the 1:20 beach profile. 
Data for the analysis below is taken from the measurement at the h — 10cm depth. 
This depth corresponds to a point where the probability of breaking is increasing 
rapidly but the saturated inner surfzone has not yet been established. 

A sample of 20 seconds of measured and computed time series of surface elevations 
at h = 10cm is shown in Figure 2, which indicates an accurate reproduction of wave 
heights and phases in the numerical model. Computations were performed using the 
extended fully-nonlinear Boussinesq model code of Wei et al (1995), which is capable 
of propagating waves in the large water depths used in this experiment. Second and 
third moment statistics were computed based on the entire experimental run, covering 
about 800 wave periods. Figure 3 shows the evolution of significant wave height up the 
beach slope and through the surfzone, while Figure 4 shows the evolution of skewness 
and asymmetry. Reproduction of measured values by the numerical model is good in 
both cases. 
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Wave Paddle 

Figure 1: Bottom configuration and wave gage locations for experiments of Mase and 
Kirby (1992). 

M&K, lull run, h=10 
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Figure 2: Sample of measured (solid) and predicted (dashed) time series of elevation 
•q for Run 2 of Mase and Kirby (1992). Measurements at h = 10cm, corresponding to 
analysis of dissipation rates below. 
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Figure 3: Measured (solid) and predicted (dash) significant wave heights for Run 2 of 
Mase and Kirby (1992). 

Third Moments, Mase & Kirby, Run 2 

Figure 4: Measured (solid) and predicted (dash) skewness (circles) and asymmetry 
(stars) for Run 2 of Mase and Kirby (1992). 
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Analysis of Data 

Having verified that the numerical model is capable of correct reproduction of 
second and third moment statistics in the evolution of a shoaling and breaking random 
wave train, we may now examine the results for energy dissipation in the model based 
on a direct analysis of the laboratory data. Figure 5 shows a short segment of the 
record of surface displacement T/(£) and dissipation Q,(t) at h = 10cm. Dissipation «(,(£) 
is computed directly from the measured data using (25). We compute the smoothed 
power spectrum of each of these quantities for the entire data run, according to the 
definitions 

5,(n)   = 

Scb{n)   = 

2A/ 

(!^|2) 
2A/ 

(26) 

(27) 

where ej,n is the Fourier transform of the dissipation term and where brackets here 
indicate ensemble averaging. Results for the Run 2 data at h = 10cm are shown in 
Figure 6. 

Figure 5: Time history of surface elevation and computed loss et,(t) for 9 seconds of 
Run 2, showing two strong breaking events at a 10cm depth. 

Returning to the schematic frequency domain model, we may rearrange the original 
model equation 

An,x + ••• = -anAn (28) 

into the form of an energy equation 

{\p9\An\2y/gh}   =-2s/ghan (^Pg\An\^j (29) 
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Figure 6: Power spectrum 5^(/) of surface displacement (lower trace) and Se(f) of 
energy loss (upper trace) for Mase and Kirby (1992) Run 2 data. 

The quantity in brackets on the left hand side of (29) represents the contribution to 
the wave energy flux from the ra'th frequency component, or Fn. The quantity on the 
right is the contribution to the loss of wave energy at that frequency, or ebn • Using 
the definitions of power spectral densities (26) and (27), we may write the dissipation 
coefficient in the form 

1 
pg^E   y/2EJ      S„(n) 

1/2 

(30) 

Results similar to those presented in Figure 6 may now be utilized to determine the 
form of an. Analysis of a number of data sets has indicated that the spectral tail 
of S^(f) tends to have an f~2 dependence on frequency after breaking is established. 
This is consistent with the notion that the wave form tends towards a sawtooth shape, 
with a vertical front face and a linear back slope. We note that this is somewhat 
simplistic representation of the waves, as it implies that the wavefield would have 
significant asymmetry and zero skewness, whereas the measured data exhibits a bal- 
ance between skewness and asymmetry in the inner surfzone. Nevertheless, the f~2 

dependence seems to characterize several of the data sets which have been examined 
extremely well. 

In contrast, Figure 6 shows that the dependence of Seb (/) on / is relatively weak, so 
that this quantity can be taken to be constant. This is consistent with the notion that 
the dissipation term has the character of a sequence of isolated, spike-like processes. 
Taken together, these results indicate that the dominant frequency dependence of an 

is given by 
an <x S^n)'1 (31) 
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and we may further infer that this dependence translates into a dependence on f2 in 
the inner surfzone. Figure 7 shows a sample distribution of a{f) as calculated from 
(30), together with a best quadratic fit to the calculated distribution. The fit is cen- 
tered fairly close to the frequency of the spectral peak at 1Hz, and the dependence of 
a on / is clearly quadratic towards higher frequencies. 

Figure 7: Sample «(/) deduced from data (according to (30)) together with a best 
quadratic fit. 

Effect of Choice F = 1 on Modelled Waves 

The results of the previous section strongly imply that a value of F — 0 should be 
chosen in the model (3)-(5). CGE have shown that the choice of F does not introduce 
a strong bias in the prediction of evolving power spectra. It appears that there is a 
preferred spectral shape that is obtained in shallow water, for which the reasons are 
still unclear. The effect of redistributing the loss differently across the spectrum serves 
mainly to enhance or suppress the nonlinear transfer of energy needed to maintain 
the target spectral shape. 

In particular, the choice F = 1 implies that the rate of energy loss is the same in 
all spectral components, which accounts for the entire pattern of overall energy loss 
in evolving waves (Mase and Kirby, 1992; Eldeberky and Battjes, 1996). However, if 
the dissipation term is chosen to account for all changes in spectral energy density, 
there is necessarily a parallel suppression of all nonlinear energy transfer across the 
spectrum during the breaking process. This loss of an active transfer should suppress 
the imaginary part of the bispectrum, and would be evidenced by a loss of front-to- 
back asymmetry in the wave form, or a loss of statistical asymmetry. CGE have shown 
the consequence of choosing F = 1 on the prediction of third moment statistics, which 
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are severely damaged. A more graphic example is provided by Liu (1990, see pages 55- 
57), who modelled the breaking decay of a periodic wave using a dissipation coefficient 
which was uniform across the modelled spectrum. The resulting wave crests in the 
surfzone clearly lose their asymmetry, which provides direct evidence that nonlinear 
energy transfer across the spectrum has been suppressed. 

In contrast, the choice F = 0 strongly concentrates dissipation at higher frequen- 
cies. As a result, there is necessarily a high rate of nonlinear transfer of energy across 
the spectrum from low to high frequencies, in oder to maintain the tail of the spec- 
trum. This accounts for the presence of a strong, negative asymmetry. This choice is 
much more sensible in light of our understanding of the nonlinear processes going on 
in this region, and agrees with a direct analysis of the behavior of a well-tested time 
domain model of the breaking process. 

Conclusions 

The results of this study indicate that dissipation due to wave breaking should 
be biased strongly towards higher frequencies in spectral calculations, and that an 
f2 dependence in the dissipation coefficent comes closest to matching the desired 
structure of the breaking terms using a simple functional dependence. This result 
supports the conclusions of Chen et al (1996) and is obtained by an entirely different 
route, being based on an anlysis of the frequency structure of the dissipation term in 
a time-domain wave evolution model. 

A much more comprehensive description of the results of this study is currently 
being prepared, and will consider the form of the dissipation coefficient in the outer 
surfzone as well as in the established inner surfzone. In particular, there is some 
indication that, in regions where the breaking events are infrequent, that there is a 
tendency for a„ to be slightly negative at frequencies below the wind wave peak. This 
result could be thought of as the effect of distributing a set of localized momentum 
sources in the domain. Each breaking wave event would impart a kick to the water 
column in the manner described by Rapp and Melville (1990). The irregular, widely- 
spaced-in-time nature of these kicks translates into a wave generating mechanism at 
low frequency, and could contribute to the growth of the low-frequency wave climate 
in the surfzone. 
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