
CHAPTER 88 

Fast methods for computing the shoaling of nonlinear 
waves 

J. D. Fenton1 and A. B. Kennedy1 

Abstract 

Accurate nonlinear numerical methods for wave propagation have existed for some 
years. Most of these are very demanding of computer resources as they use global 
means of approximation which usually requires the costly solution of a full matrix 
equation at each time step. It is the aim of the present paper to describe and to compare 
the features of two new methods for the two-dimensional propagation of nonlinear 
waves over varying topography. A method based on local polynomial approximation 
is presented, which was found to be efficient, cheap and accurate. A novel boundary 
integral method is also presented, which was capable of good accuracy even for 
waves which overturned. For practical purposes, the local polynomial approximation 
method is to be preferred and may have some useful contributions to make. 

Introduction 

In computing nonlinear wave evolution over topography, there has always been a 
trade-off between accuracy and efficiency. On one hand, boundary integral equa- 
tion methods (BIEM) have been able to perform accurate potential flow calculations 
past the point of overturning, but their computational expense has traditionally been 
very high. On the other hand, Boussinesq-type methods have had a much smaller 
computational cost, especially for large domains, but are limited to mildly nonlinear, 
mildly dispersive waves. Recently, there have been many attempts both to increase 
the efficiency of BIEM (Wang et al., 1995, de Haas et al, 1996) and to increase the 
accuracy of Boussinesq-type approximations (Madsen and S0rensen, 1992, Nwogu, 
1993, Wei et al, 1994) However, much room still remains for fast methods which 
can accurately predict wave evolution. 

This paper presents details of and results from two new potential flow methods which 
have not yet been widely published, but combine excellent accuracy with a reasonable 

1 Dept of Mechanical Engng, Monash University, Clayton, Vic, Australia 3168 

1130 



SHOALING OF NONLINEAR WAVES 1131 

computational cost. The first is a finite depth technique which assumes that the flow 
field is represented locally by polynomial variation. Two variants are presented: 
one has excellent accuracy for highly nonlinear waves, while the other has greater 
efficiency at the cost of some accuracy for nonlinear waves. Both variants have a 
computational cost which is linearly proportional to the number of computational 
points, which makes them suitable for computations over large domains. The second 
method presented here is a BIEM which is formulated differently from those currently 
in use. This new form is simpler, potentially more accurate, and allows for the use of 
faster solution techniques than are currently standard. It is not as robust as the local 
polynomial approximation (LPA) method presented and does take longer to run, but 
unlike that method it can describe wave overturning. As with all boundary integral 
techniques, accuracy remains good up to overturning. 

Governing Equations 

For irrotational flow a velocity potential 6(x, y, t) exists such that the fluid velocity 
vector (u, v) = (86/8x, 86/dy), restricting consideration here to two dimensions. If 
the fluid is incompressible, the potential satisfies Laplace's equation 

^ + ^=0. (1) 
8x2     dy2 

At any time t, this elliptic equation is governed by the conditions on the domain 
boundary. At all points along the free surface specified by y = r\ (x,t): 

6 = 6s{x,t), (2) 

where 6S is known. The kinematic boundary condition on the bed is 

86     8h86 
-f-jrir^0 on   y = h> <3) ay     ox ox 

where h (x) is the bed elevation. Along the left and right boundaries, the horizontal 
velocity is set to 

|-/w. CO 
These equations completely specify the velocity potential, and (1) may then be used 
to solve for the flow field. To advance the solution in time, the free surface kinematic 
boundary condition is used to advance the free surface elevation: 

drj _ 86     8r\ 86 _ 
8t      dy     dxdx 

and the unsteady form of Bernoulli's equation, modified here to compute the rate of 
change of at a surface point, is used to advance the free surface velocity potential 6S: 
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where C(t) is constant throughout space. 

Slightly different versions of these equations are generally used for BIEM which do 
not assume a single valued free surface, and use Lagrangian methods to track moving 
surface particles. 

Local Polynomial Approximation Methods 

In finite depths, the representation of a velocity potential locally by a polynomial can 
provide an excellent approximation to the flow field. Local polynomial approximation 
(LPA) methods for one dimension in plan use this principle to model wave evolution 
over varying topography, with very good results. A preliminary version has been 
given by Kennedy and Fenton (1995). Two main variants are summarised here: a 
fully nonlinear model which can provide highly accurate results, and an model which 
uses Taylor expansions about the undisturbed surface to increase speed, but which 
sacrifices some accuracy for high waves. For both methods, the expense of solution 
at each time step is directly proportional to the number of computational subdomains, 
which allows wave evolution to be computed over relatively large regions with a 
reasonable computational cost. 

Solution of Laplace's Equation 

For both the fully nonlinear and expansion LPA methods for one dimension in plan, 
the basic method of solution for Laplace's equation is very similar. As shown in 
Figure 1, the computational domain is divided into subdomains extending vertically 
from the free surface to the bed. In any typical subdomain, m, the velocity potential 
4>m at any point (xm,y) is represented by the polynomial 

<f>m(xm,y,t) 4>« + Rel      (x   +iv)»i   4*.    nodd 
(xm + iy)   j .^    n even 

(7) 

where n is an integer > 3 which controls the level of approximation, i = %/—T, 
Re (...) means taking the real part. The A coefficients are functions of time. For 
any given n, it is these A coefficients which must be chosen to best satisfy the 
boundary value problem. Because of the complex formulation used, Equation (1) is 
identically satisfied. With the introduction of subdomains, two additional constraints 
are introduced: the velocity potential, <j>, and its normal derivative, d<p/dx, must be 
continuous across subdomain boundaries. 

The velocity potential (j> may be made analytically continuous across subdomain 
boundaries through a transformation of basis functions which, in addition, almost 
halves the number of independent coefficients. However, d(f>/dx will still be discon- 
tinuous across boundaries. (Details of the transformation may be found in Kennedy 
and Fenton, 1995.) In a domain with M subdomains, the revised basis functions 
may now be though of as having n independent coefficients defined at each internal 
boundary between subdomains, plus n coefficients at each of the left and right global 
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Figure 1: Definition sketch for local polynomial approximation 
boundaries, for a total of (M - 1) n + 2n — (M + 1) n independent coefficients. The 
constraints on these are as follows. At each internal boundary between subdomains, 
the free surface velocity potential is set to the specified value, satisfying (2). Next, the 
bottom boundary condition (3) is imposed, using the average value of d<j>/dx across 
the boundary. The remaining n — 2 constraints at each internal boundary match the 
horizontal velocity, dcfr/dx, across the boundary at n - 2 discrete points. For overall 
continuity, these collocation points are here set to the Gauss-Legendre points for level 
N = n — 2, using the free surface (or still water level for the expansion method) and 
bed as limits. At each of the left and right global boundaries, (2) is also specified 
at the surface and (3) at the bed. However, instead of a velocity match as with the 
internal boundaries, the horizontal velocity at the boundary, d<j>/dx, is instead set to 
the known value at n — 2 collocation points, satisfying (4). 

All of these constraints result in a set of block banded linear equations. These may 
be solved using any banded or block banded matrix solver, both of which have 
a computational cost which is directly proportional to the number of subdomains, 
M. This allows for the computation of wave evolution over reasonably large areas 
without great expense. Traditional methods which use global approximation usually 
have a computational cost proportional to the second or third power of the number 
of computational points. 

Linear Dispersion Characteristics 

Here, as a test of the ability of polynomials to describe the flow field, we consider what 
results they give for the linear phase speed, compared with traditional approximation 
by periodic functions in x and hyperbolic functions in y. As subdomain lengths go 
to zero, a set of differential equations for the velocity potential results, which may be 
easily solved for the case of small amplitude waves over a level bed. Figure 2 shows 
the LPA small amplitude phase speed relative to the exact relationship for the levels 
n = 3,4,5,7, with collocation points set to the Gauss-Legendre points for JV = n - 2. 
Accuracy for the level of approximation n = 3 is poor in anything other than shallow 
water but increasing to n = 4 gives usable small amplitude results past the nominal 
deep water limit of kd — -K (L/d = 2). The level of approximation n = 5 (usually 
used with the LPA expansion method) has good dispersion characteristics even for 
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very short waves with kd = 2ir (L/d = 1), while with n = 7, phase speeds remain 
excellent past a dimensionless wavenumber of kd = 3n (L/d = 2/3). 
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Figure 2: LPA linear phase speed 

Fully Nonlinear LPA 

The fully nonlinear version of LPA can provide excellent accuracy for finite depth 
potential flow calculations. There are two main steps: Laplace's equation is solved 
exactly as described earlier, and a time stepping method (here usually third or fourth 
order Adams-Bashforth) is then used to solve the evolution equations (5) and (6) to 
advance the solution to the next time step. If the Gauss-Legendre points of level 
N = n — 2 are used as collocation points, then the first n — 3 weighted moments 
of flow will be conserved between subdomains, as well as having velocity matches 
at the collocation points. For an accurate potential flow method, computations are 
also quite efficient. For a very large computational run with 900 subdomains and 
4000 time steps, total run time for the level n = 7 would be about 3.5 hours on a 
Pentium 150 personal computer. Figure 3 shows the shoaling of a solitary wave of 
initial height H/d = 0.15 as it propagates onto a shelf of depth 0.5d. The classical 
fissioning into multiple solitons is clearly evident, with the leading wave reaching 
a final dimensionless height on the shelf of 0.507. As an independent estimate of 
computational accuracy, relative energy fluctuations were less than 2 x 10"4. 

LPA Free Surface Expansion Method 

The free surface expansion method is somewhat more complex, with two major 
differences from the fully nonlinear version. The first difference is that, instead of 
solving Laplace's equation using the free surface and the bed as limits, it is instead 
solved between the still water level and the bed. The mode coupling free surface 
expansion of Dommermuth and Yue (1987) is then used to relate the value of <j> at the 
free surface to the value of <p at the still water level. The order of expansion may be 
easily changed to accommodate the level of nonlinearity of the problem considered. 



SHOALING OF NONLINEAR WAVES 1135 

/V-TY-TT^I ^ A ^ A 

Figure 3: Results from the LPA method for the propagation of a 
wave over a shelf of depth 50% 
Accuracy is still, of course, less than the fully nonlinear version for higher waves, 
but there is one major advantage: since the upper limit of the computational domain 
remains constant through time, a matrix equation must only be filled and decomposed 
once, rather than at each time step as with fully nonlinear LPA. This decomposed 
matrix is then solved with different right hand sides at each time step, which is much 
faster. 

It is worthwhile to implement the second major change only if the computational 
domain is invariant with time, as is the case here. This involves another change 
of basis functions, so that there is only one independent variable per computational 
point. Details of this transformation may be found in Kennedy (1997). With the new 
basis functions, all conditions but (2) are automatically satisfied, so this constraint is 
used at every computational point to generate a new set of linear matrix equations 
for the LPA solution to Laplace's equation. The new matrix is purely banded and has 
both fewer variables and a smaller bandwidth than with the previous basis functions. 
Computational speeds are therefore further increased. A reasonable analogy may be 
made between the new basis functions and B-splines, as both are piecewise continuous 
polynomials which use a set of interpolation conditions to reduce the number of 
independent computational variables to one per computational point. These new 
basis functions could also be computed for the fully nonlinear version, but to retain 
full accuracy, they would have to be recomputed at each time step as the free surface 
moves. This would slow down computations, which is why they were not used. 
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The two parameters which control the accuracy of the LPA expansion method are the 
degree of the polynomials, n, and the order of free surface expansion, Q. While the 
fully nonlinear LPA was developed to calculate potential flow problems with very 
high accuracy, the LPA expansion method is viewed as a tool for more practical 
problems. To give reasonable nonlinear accuracy, which is mostly controlled by the 
order of free surface expansion, Q, and good frequency dispersion, which is only 
affected by the LPA level, n, the parameters Q = 3 and n = 5 were generally used. 

For an example of the capabilities of the method, computations here will be compared 
with the experimental results of Beji and Battjes (1993) as reported by Ohyama etal. 
(1994). In this experiment regular waves were propagated over a two dimensional 
bar-trough setup and time series of surface elevations were taken at various points. 
Two wave trains were considered - both were initially of reasonably small amplitude 
in intermediate depths, but became significantly nonlinear over the bar. 

The first wave train had an initial height of H0/d = 0.05 and a period of TJg/d = 
9.903. Figure 4 shows a comparison between computed and experimental values 
at Stations 1, 3, 5 and 7, which are, respectively, just before the bar, on the bar 
crest, on the downslope and in the trough. Agreement is quite good, with the LPA 
expansion model accurately predicting the steepening of the wave as it progresses up 
and sheds secondary waves on the bar, and its decomposition into higher harmonics 
on the downslope. As the wave progresses, computations begin to overestimate 
wave heights slightly due to the lack of dissipation in the model, and a small phase 
difference appears. However, similar differences were also noted in the fully nonlinear 
boundary element computations of Ohyama et al. (1994). 
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Figure 4: Measured and computed time series, H0/d — 0.05, TJg/d = 9.903. 
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Figure 5 shows results for the second wave train which was shorter, with a period of 
Tsjgfd - 6.189 and an initial height of H0/d = 0.0625. Due to its shorter length, 
this wave did not evolve as much passing over the bar, but the model still predicts 
the features of its evolution well. A small phase lag is visible at the last station. The 
fully nonlinear results of Ohyama et al. (1994) were similar to those here, although 
the phase lag at Station 7 was somewhat smaller. Overall, the expansion model 
predicts wave evolution quite well, and may be relied on to provide a good estimate 
of nonlinear wave evolution for a wide range of waves. 
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Figure 5:  Measured and computed time series, H/d = 0.0625, TJg/d = 6.189. 
Solid lines - computations, dashed lines - experiment 

Computations with the expansion method are quite fast. For example a computation 
with 900 subdomains and 4000 time steps would have a total run time on a Pentium 
150 personal computer of about 10 minutes for the LPA level n = 5 and expansion 
level Q = 3, compared with 3.5 hours for the fully nonlinear version using n = 7. 

A new boundary integral equation method 

Introduction 

The approach of using boundary integral equations for the study of waves in deep 
water was initiated by Longuet-Higgins and Cokelet (1976), who set up and solved 
a boundary integral equation with a logarithmic kernel. A different approach was 
introduced by Vinje and Brevig (1981), who used the Cauchy integral theorem in 
terms of a complex potential function.   A number of powerful results have been 
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obtained in recent years for waves over topography, including Dold & Peregrine 
(1985), Grilli et al. (1989, 1994), and Subramanya & Grilli (1994). A brief history 
of various attempts using BIEM is described by Liu et al. (1992). 

A quicker but less accurate approach was introduced by Leitao and Fernandes (1992), 
who took as the upper surface of the computational domain the undisturbed water 
surface, and used a second-order Taylor expansion there. As with the LPA expansion 
method described above, their computational domain was constant, and they only had 
to solve a matrix equation once rather than at each time step. 

Fenton (1992 & 1996) has developed a method for the solution of Laplace's equation 
in two dimensions which has some advantages over traditional methods: it is simpler 
in theory and implementation, yet is more accurate. Of particular importance to 
the problem of shoaling waves, is that it allows the use of iterative methods for 
solution which are rapidly convergent because of the nature of the equations and 
because information from previous time steps can be incorporated. A preliminary 
study applying that method to shoaling waves has been published (Fenton, 1993), but 
in that work it was concluded that the method advocated, despite its high accuracy for 
fixed domains, was somewhat fragile for shoaling. Here, the method will be briefly 
described and the results of rather more robust computations will be described. 

Theory 

Consider a two-dimensional region such as that shown in Figure 1 containing an 
incompressible fluid which flows irrotationally, in which case a scalar potential func- 
tion (j> exists and satisfies Laplace's equation: V2^ = 0. As <j> is an harmonic 
function, another function ip exists, related to <f> by the Cauchy-Riemann equations: 
d<f)/dx = dipjdy and 84>/dy = -dip/dx. It can be shown that if these relations 
are satisfied, then the complex function w = <f> + ii/j, where i = y/—l, has a unique 
derivative with respect to the complex variable z = x + iy, satisfies the integral 
equation 

•»W-»fen)(b = 0, (8) f z- z„ 
for a reference point m. In this equation, unlike other formulations, the integrand is 
everywhere continuous, even at z = zm, and its numerical approximation should be 
simpler and potentially more accurate. It will be shown below that using this form 
leads to a system of algebraic equations which are all nearly diagonally dominant, 
giving desirable numerical properties. 

Boundary conditions: On the sea bed, assumed impermeable here, the condition 
that flow does not cross the boundary is tp = 0. On the free surface, denoted by 
y = r](x,t), the governing equations are nonlinear, partly because the location of the 
free surface also appears in them. There are two equations: one is the kinematic 
condition that the velocity of a particle on the surface is equal to the fluid velocity 
at that point. These have been described above. A slight difference here is that 
a Lagrangian description is used, like other BIEM, such that surface particles are 
followed and it is necessary to update the <j> on the surface.  This necessitates the 
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computation of the material derivative which can be shown to become 

(9) 
D<fim ,    1 
Dt """     2 

dw 
dz 

a differential equation for 4>m at the free surface particle. This gives us a way of 
calculating <f> as time evolves so that at any instant it is known at all points on the 
free surface, while we know that %jj = 0 on the sea bed. Hence we have enough 
boundary information to obtain a solution of equation (8) at each time step, namely 
to obtain the values of tj> on the bottom and tp on the free surface, so that w = <j> 4- iip 
is known at all points, dw/dz can be calculated, the solution advanced, and so on. 

Numerical scheme using periodicity around the contour 

Around the boundary all variation is periodic, for in a second circumnavigation of 
the boundary the integrand is the same as in the first, and so on. This suggests the 
use of methods that exploit periodicity to gain handsomely in accuracy. A continuous 
co-ordinate j is introduced here, which is 0 at some reference point on the boundary, 
and after a complete circumnavigation of the boundary has a value N, which will be 
taken to be an integer. The integral in equation (8) can be written 

^ «,(*(,-»-u,(«,)g 
{ ZU) - Z• «? 

Now a numerical approximation is introduced to transform the integral equation into 
an algebraic one in terms of point values. The integral in equation (10) is replaced 
by the trapezoidal rule approximation: 

g^)-^),,s0| (11) 
j=o       zi     z• 

where Zj = z(j) and z'j = dz(j)/dj, but in which after the differentiation, j takes 
on only integer values. In this case the trapezoidal rule has reduced to the simple 
sum as the end contributions are from the same point, ZQ = ZN because of the 
periodicity. This is a particularly simple scheme when compared with some such as 
Gaussian formulae which have been used to approximate boundary integrals. Where 
the integrand is periodic, as it is here, the trapezoidal rule is capable of very high 
accuracy indeed, a fact which is relatively little-known. 

In the form of equation (11), the expression is not yet useful, as the point j = m 
has to be considered. It is easily shown that in this limit, the integrand (and hence 
the summand) becomes dw(m)/dm, and extracting this term from the sum gives the 
expression with a "punctured sum" j ^ m: 

3=0, j£m   Z3       zm 
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for m = 0, 1, 2,..., N — 1, and where the obvious notation Wj = w(j) etc. has 
been introduced. The notation dw(m)/dm means differentiation with respect to the 
continuous variable m, evaluated at integer value m. It is convenient here to introduce 
the symbol Qmj for the geometric coefficients: 

z'- 

whose real and imaginary parts are the coefficients amj and (3mj. One is free to 
use either the real or imaginary part of the integral equation and of the sum which 
approximates it, equation (12). The two parts can be extracted to give 

JV-l 

(m.\ 4- 
drn ^ (•) +       E       [<W& -   <M - P•Mi   ~   V>m)]   = 0 (14) 

.7=0, j£m 

and 
dip N~1 

(m)+      ]£      [amj(lpj - 1pm) + Pmj{(j)j   -   (j>mj\   = 0. (15) 
dm . n  ., 1=0, ]i=rn 

One of these equations can be used at each of the N computational points, provided 
either d<f>/dm or dip /dm is known that point, which can be done from the boundary 
conditions as described above. Each equation is written in terms of the 2JV values of 
<pj and ipj . If N of these are known, specified as boundary conditions, then there 
are enough linear algebraic equations and it should be possible to solve for all the 
remaining unknowns. 

As equation (14) can be used on the free surface where dcp/dm can be evaluated and 
where ipm is the unknown and (15) on the sea bed where dip jdm = 0, and where 
(j>m is unknown, examination of the coefficients shows that the system of equations is 
nearly diagonally dominant, which suggests a certain computational robustness, and 
the possibility of iterative solution. 

Distribution of computational points: The linear algebraic equations approximat- 
ing the integral equations have been expressed relatively simply in terms of the 
coordinates of the computational points Zj and the derivative around the boundary, 
z'j. The accuracy of the method depends on how continuous the latter are, and in 
Fenton (1992, 1996) some effort was spent in ensuring continuity across corners of 
the boundary. In fact it was found that even if no special spacing was used, the 
accuracy was still surprisingly high. 

Numerical computation of coefficients: In problems of wave shoaling, the bound- 
ary of the computational region, including the sea bed and the free surface, is quite 
irregular. The periodicity around the boundary may be exploited to give a simple 
scheme for computing the necessary derivatives around the boundary. The main 
problem is to compute values of the z'j. Also, it is convenient to be able to use a 
means of interpolation between the computational points for plotting purposes which 
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has the same accuracy as the underlying numerical method. Both can be accom- 
plished simply and economically using Fourier approximation, once again exploiting 
periodicity as the boundary is traversed. If fast Fourier transform programs are avail- 
able, the z'j may be computed easily and accurately in 0(N log N) operations, where 
there are N boundary points. 

Set-up and solution of system of equations: When the Zj have been obtained, the 
coefficients flmj = amj+i/3mj can be calculated and used in expressions (14) and (15), 
one for each point at which an unknown exists. As the equations are nearly diagonally 
dominant, however, it should be possible to exploit the simple Gauss-Seidel iterative 
procedure, particularly for timestepping problems such as those for wave propagation, 
and in practice this was found to work very well indeed. The computational effort is 
0(N2) per iteration, and the happy result was found in the present work, that as all 
boundary points are interpreted as Lagrangian particles, and carry the geometry of 
the problem with them, then the coefficients are very slowly varying, and a forward 
extrapolation of previous results gave such an accurate initial estimate that typically 
only five iterations were necessary each time step. Much programming detail can be 
avoided if the step of assembling into a matrix is bypassed. In this case, equations 
(14) and (15) may simply be rewritten: for points on the free surface to give an 
equation for ipm, and for points on the sea bed an equation for cj)m. 

In practice, a procedure of over-relaxation can be adopted to give faster convergence. 
It was found convenient in the present work where the coefficients changed slowly, 
not to store all the coefficients amj etc., as this requires storage of O (N2), but to 
generate the coefficients necessary for each equation every time it had to be evaluated 
such that the storage was O(N), and large numbers of points could be used. Overall, 
the implementation of the scheme in the form described here was particularly simple. 

Results 

The only results reported here are for a wave height H/d = 0.25 and a length 25 
times that of the depth, rather higher than that used in Figure 3 above. The initial 
conditions were computed using an accurate Fourier method. The wave was allowed 
to propagate across a shelf with a cosine profile, which shoaled to 1/4 the depth in a 
distance of roughly half the horizontal length scale of the wave, a rather more abrupt 
case than Figure 3, and corresponding to the shoaling of a wave on a coral reef. 
Results are shown in Figure 6, and they show some of the interesting phenomena 
associated with this nonlinear problem. After the wave travelled almost right across 
the shelf, quite quickly it started to grow in height, travelling over water of constant 
shallower depth, and the large feature of a shelf developed behind the wave, which 
seemed to be in the process of separating from the main wave and possibly becoming 
part of an oscillatory tail. At the final stage a sharp crest began to form, which 
turned over as shown, the surface particles in this latter stage experiencing very large 
accelerations. 
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Figure 6: High wave on a steeply-shelving beach showing overturning 

Conclusions 

The local polynomial methods were found to be robust, accurate, and efficient, and 
may provide a useful practical means of computing nonlinear wave propagation over 
extended regions and times. The boundary integral method can be used to simulate 
shoaling considerably faster than other similar methods, and it has the potential to be 
more accurate than them. It can describe wave overturning with relatively few points, 
but for some problems it was found to be not as robust as had been hoped. Its most 
appropriate application might be to methods such as those of Leitao and Fernandes 
(1992) which use such a fixed domain with approximate boundary conditions. 
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