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A Fully Nonlinear 3D Method for the Computation of 
Wave Propagation 

Andrew B. Kennedy1 and John D. Fen ton1 

Introduction 

The computational capabilities for calculating nonbreaking wave evolution have ad- 
vanced a great deal in recent years. For fully nonlinear models, the adoption of 
multi-subdomain techniques (Wang et al., 1995, de Haas et al., 1996) has provided 
much greater efficiency while still allowing the calculation of wave transformation up 
to overturning. Still, computational times remain great enough that the application of 
these methods to three dimensional domains remains somewhat limited. The variable 
depth Boussinesq equations were originally developed with the twin assumptions of 
mild nonlinearity and frequency dispersion (Peregrine, 1967), but recently, beginning 
with Witting (1984), there have been concerted efforts to increase their range of ap- 
plicability. Papers of particular note include Madsen and Serensen (1992), Nwogu 
(1993), Wei et al. (1994), Schaffer and Madsen (1995), and Gobbi and Kirby (1996) 
(GK). Of these, all but GK assume a flow field that varies quadratically in the vertical 
coordinate y, while GK derive their equations for a quartic vertical variation in the 
velocity potential. All of these methods have at least one free parameter which is 
invariably used to calibrate model linear phase speed, linear shoaling, second order 
transfer functions, or some combination of the three, to known analytic results over 
a level bed or small slope. For these special conditions, the accuracy of the various 
Boussinesq equations may be greatly improved and, in fact, the above papers have 
shown that accuracy is also improved for conditions which differ significantly from 
the idealised situations used for tuning. However, it is not possible to place confi- 
dence in velocities, pressures, and higher order free surface nonlinearities calculated 
by any of these methods except in reasonably shallow depths. The one exception to 
this are the GK higher order Boussinesq equations, which are quite complex. 

In Kennedy and Fenton (1995) a method was developed to calculate wave evolution 
over varying topography for one dimension in plan. The flow field was locally rep- 
resented by a polynomial of arbitrary degree which analytically satisfied Laplace's 
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equation. By applying continuity conditions between subdomains, an overall solution 
to the boundary value problem was obtained and highly accurate time stepping solu- 
tions could be obtained. A summary of this, plus another related method appears in 
Fenton and Kennedy (1996). 

In this paper, a method is developed which uses some of the same ideas but is valid 
for three dimensional fluid motion (two dimensions in plan). Again, the velocity 
potential is represented in the vertical by a polynomial of arbitrary degree but here, 
a set of differential equations results for a local polynomial approximation (LPA) to 
the exact solution. This is shown to provide excellent linear and nonlinear results 
for a wide range of waves. The degree of polynomial may also be easily changed to 
give the level of accuracy desired for a particular problem. 

Solution of Laplace's Equation 

For nonbreaking wave motion, the flow field is usually represented by a velocity po- 
tential, <f>(x,z,y,t), and fluid velocities are thus (u,w,v) — (d^>/dx,d</>/dz,dct)/dy), 
where x and z are the horizontal coordinates and y is the vertical coordinate. The 
continuity equation for fluid flow to be satisfied at every point in the domain then 
becomes „ 

^ + ^ + ^ = 0, (1) 
9a;2      dy2      dz2 

which is simply Laplace's equation in three dimensions. At any time t0 this velocity 
potential is subject to the boundary conditions 

0 = <j)s    on y = 7?, (2) 

^ ^_^^_^£^=o =h (3) 
dy     dx dx     dz dz 

where h(x, z) is the bed elevation, and the free surface elevation ry (x, z, t) and velocity 
potential <pa (x, z, t) are both known at time t0. With the addition of appropriate 
conditions on the horizontal boundaries, these two conditions (2) and (3), along with 
the field equation (1) completely specify the problem and may be used to solve for 
the flow field. 

The velocity potential function used here assumes a polynomial variation in the ver- 
tical coordinate such that 

r 

cp(x,z,y,t) = J2Aj(
x>z>t)yJ> (4) 

where r > 2, and the A, coefficients are independent and may vary in time. 

From here, there are many directions that could be taken. The Boussinesq approach 
would be to create a Taylor series expansion about some point in the water column 
which satisfies the bottom boundary condition (3) to the order of accuracy desired, 
and proceed from there. However, it is desired here to use an approximation which 
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distributes error more evenly than is possible with a Taylor series, where error quickly 
increases away from the expansion point. The obvious approach would now be some 
sort of finite element method, but this would involve volume integrals, which are 
slow to compute. Furthermore, unless higher order elements were used, convergence 
would be slow, and introducing them would increase computational costs significantly. 

Therefore, a different approach is used, which is simple in concept, and distributes 
the error in (1) over the water column. First, constraints are imposed so that the 
velocity potential satisfies (2) and (3). Next, the average and first r — 2 weighted 
averages of (1) over the water column are set to zero, such that 

•n . fd24>   d2<f>   d24>\       n    , 

The appropriate global horizontal boundary conditions finish the specification of the 
problem and a set of linear equations results, which may be solved as desired. 

Once the flow field is known, the free surface elevations and velocity potentials may 
be updated in time using the evolution equations 

dr]      d<j>     dr) dcj)     dr\ d(p _ ,,,. 
dt      dy     dx dx     dz dz 

94>s      „ 1 (d<f>2     d<f>2     d<t>2\     d4>dr) 

Alternate Formulations for the Velocity Potential 

It is possible to rearrange the form of the velocity potential given in (4) so that it has 
fewer parameters at each computational point. The velocity potential 

<t>{x,z,y,t)   =   4>s\V—\\   +A. 

where 

and 

r\ — hj 

dABdh(y-r})(y-h) 
dx dx j\ 

| dAB dh (y -n)(y- h) 
dz dz /i 

+A4(y-h)2(y-rl)
2 + .. 

+Ar(y-h)2(y-r1y-2, 

t      n      dh2     dh2 

dh dr]     dh dr\ 
dx dx     dz dz' 

(8) 

+ A3 (y - hf (y - rf) 

analytically satisfies both (2) and (3).  If made to satisfy (5), the resulting velocity 
potential will be identical to that described in the previous section. Furthermore, since 
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two fewer coefficients are defined at each point, computational speed should increase 
significantly. However, it is obvious that coding will be much more complex and, 
due to time constraints, and because the main thrust of this paper is to determine the 
accuracy of this LPA method, the velocity potential formulation of (8) was not used. 

Linear Properties 

Phase Speed 

Using linearised versions of the free surface conditions (6) and (7), analytic LPA 
solutions for a given level of approximation, r, may be found for a plane progressive 
wave train. For the level of approximation r = 2 (y2 terms included in <j>), the phase 
velocity c is 

(9) 
c 
gd 1 + | (kd) i' 

where g is the gravitational acceleration, d is the fluid depth, and k is the wavenumber. 
For the level of approximation r = 3 (y3 terms in <j>), the relationship is 

cf 
gd 

(kd)2 

1 + M {kdy + ± {kd) 

and using r = 4 (y4 terms in <j>), the phase velocity is 

c 
gd 

1 + M (*<*)' +IS, (*<*)• 

i + lH +m(kd) +<doo(kd)' 
6' 

(10) 

(11) 

1.05 

1.03 

S     101 
I 

^3      0.99 

0.97 

0.95 

 r=2 

 r=3 

 r=4 

 Exact 

-+- -+- 
3 4 

kd 

Figure 1. Small amplitude phase velocity 
These expressions are identical to those obtained for Green-Naghdi shallow water 
Theories I, II, and HI respectively (Shields and Webster, 1988).   All of these are 
approximations to the exact small amplitude relationship 

gd 
tanh(fcd) 

kd      ' 
(12) 



1106 COASTAL ENGINEERING 1996 

In both (9) and (10) errors are of O ((kd)4), while (11) contains errors of O ((kd)8). 
Figure 1 compares LPA and exact phase speeds. Using the LPA level r = 2, phase 
speeds are found to be quite reasonable until a dimensionless wavenumber of kd — 
1.25 (L/d = 5) is reached, while with r = 3, phase speeds are adequate up until 
the nominal deep water limit of kd = -n (L/d = 2). The level of approximation 
r = 4 gives very good results well into deep water and is usable even for a wave 
with kd = 2n (L/d ~ 1) which is a very pleasing result. 

y/d 

Horizontal Velocity Vertical Velocity 

Figure 2. Normalised fluid velocities under a small amplitude wave 

Fluid Velocities and Pressures 

Small amplitude LPA solutions for <j> may also be used to compare internal fluid 
velocities and pressures with Stokes first order results. Figure 2 shows the variation 
of the horizontal and vertical velocities, u and v, over the water column. For a wave 
with length kd = 7r/5 (L/d = 10), all levels of LPA approximation give a good result, 
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although the level r = 2 shows slight differences, with the vertical velocity looking 
least accurate. Decreasing the wavelength to kd = 27r/5 (L/d = 5) increases error 
for the level r = 2, although all other levels predict velocities well. At the nominal 
deep water limit of kd = n (L/d = 2), LPA levels r = 2 and r = 3 have significant 
errors in velocity, while with r = 4, the velocity is still modeled well. For a wave 
with length kd = 2-K (L/d = 1), all levels of approximation show error, although a 
convergence toward the exact solution is evident. Results for the dynamic pressure 
response factor f(y), which gives the ratio of dynamic pressure at any elevation to 
the dynamic pressure just below the still water level, are identical to the results for 
relative horizontal velocity. 

General Comments 

With an overall view of the linear properties, some judgements may now be made. 
The first is that the level of LPA approximation r = 2 is only suitable for waves in 
shallow and mildly intermediate depths. For all other waves, the assumed structure of 
the velocity potential is inadequate to describe the vertical variation of the fluid flow. 
For these reasons, and since other levels are much more accurate, the level r = 2 will 
be discarded. The LPA level r = 3 gives significantly better results through to near 
the nominal deep water limit of L/d — 2, both for phase speed and fluid velocities. 
The level of approximation r = 4 has very accurate linear properties into quite deep 
water, and an increase to an LPA level to greater than this does not appear to be 
justified at the present time. 

It is quite easy to introduce tuning parameters into the solution. By replacing (5) 
with the more general 

/>>(S + 0 + S)*-.    '--.'-» <'3) 
where wi(y) is some weighting function, sets {wi} were easily found which gave 
more accurate phase velocities for the LPA levels r = 3,4. However, any increase 
in accuracy of phase velocity was invariably coupled with a decrease in accuracy 
of some other quantity of interest. For example, a set {wi} was found where the 
approximation of (11) for the LPA level r = 4 had errors decrease from O ({kd)s) 
to 0((kd)10). However, errors in the horizontal velocity at the bed, which could 
be taken as another measure of accuracy, increased from O ((kd)8) to 0((kd)6). 
Because of results like this, and because the set of weighting functions {l,y,y2,...} 
is very general, no attempt was made to tune the model for any particular quantity. 

Nonlinear Properties 

The nonlinear properties implied by the LPA set of governing equations were in- 
vestigated by comparing their solutions for steady nonlinear waves with numerically 
exact solutions of the full potential flow equations. Numerically exact waves were 
generated using the Fourier method of Fenton (1988), while the fully nonlinear LPA 
solutions were found using the same general idea adapted to LPA. 
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Figure 3 compares LPA and numerically exact profiles for three highly nonlinear 
waves. The first wave generated is long, with a length to depth ratio of L/d = 20 
(kd = 7r/10), and a height of H/d = 0.6. Both LPA levels r = 3 and r = 4 predict 
the profile very well. The second wave has length L/d = 5 (kd = 2TY/5) and height 
H/d = 0.4. Once again, both LPA levels tested predict the nonlinear wave profile 
very accurately. The final wave in Figure 3 is at the nominal deep water limit, with 
a length to depth ratio of L/d = 2 (kd = if), and a height H/d — 0.2. For this wave, 
the LPA level of approximation r — 3 shows small errors, although the overall wave 
form is predicted well. However, the level r = 4 once again provides a solution 
which is indistinguishable by eye from the numerically exact profile. 

Nonlinear phase speeds may also be compared with exact solutions. Figure 4 plots 
LPA and exact speeds for waves with length L/d = 20, 5, and 2. Circles, triangles 
and squares show the highest wave computed for the levels r — 3, r = 4, and 
numerically exact solutions, respectively. These do not represent the limiting waves, 
but instead describe a failure of the solution method to solve the system of nonlinear 
equations past these points. 

x/L 

Figure 3. Nonlinear wave profiles 

Both LPA levels r = 3 and r = 4 give a very good estimate of phase speed up 
to the highest waves tested, with the only significant differences occurring using 
r = 3 with a wave of length L/d = 2. However, even here the trend is followed 
quite well. The results for the level r = 4 and the wave with length L/d = 5 are 
especially noteworthy. Here, LPA solutions were found close to the limiting height 
which predicted the maximum and subsequent decrease in wave speed shown by 
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Cokelet (1977). This good representation of highly nonlinear waves gives additional 
confidence in the accuracy of the 3D LPA method. 

Time Stepping Solutions 

Time stepping solutions of the governing equations may be divided into two main 
tasks: the LPA solution of Laplace's equation, and the advance of the solution to 
the next time step. Of the two, the second is the most straightforward, as (6) and 
(7) were used with either a second order leapfrog or third order Adams-Bashforth 
technique to update the free surface elevations and velocity potentials. As neither of 
these methods are self starting, a fourth order Runge-Kutta technique was used for 
the first few time steps. 
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Figure 4. Nonlinear wave speeds 
To solve Laplace's equation, all coefficients were represented using fifth degree two 
dimensional B-splines (see de Boor, 1978), which are simply the product of one 
dimensional B-splines in x and z which have the same centre. Solutions were also 
computed using third degree B-splines, but convergence was found to be poorer 
than desired. The sparse system of linear equations which results from the B-spline 
representation was solved using a line by line successive under-relaxation technique. 
Using this representation, errors in the LPA solution are theoretically proportional to 
(AZ)4, where AZ is mesh size. This was tested by computing the maximum relative 
error in vertical velocity at the free surface for a flow field with a flat bed and 
surface, and free surface velocity potential <f>s = cos (kx), where kd = 7r/10 (L/d = 
20). Figure 5 shows the relative error, plotted alongside (L/AZ)4 for comparison. 
Convergence is seen to follow the theoretical behaviour closely. Furthermore, even 
for a very coarse representation of Al/L = 1/6 (6 points/wavelength), relative errors 
are still only two parts in a thousand, which allows confidence to be placed in 
computations with relatively coarse resolution. 
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Figure 5. Convergence of the numerical scheme 

Figure 6. Bottom topography for solitary wave reflection 

The Runup of a Focused Solitary. Wave on a Vertical Wall 

For a first test, a solitary wave of height H/d = 0.2 was propagated over topography 
which tended to focus the wave, which was then reflected by a vertical wall. Com- 
putations were performed using the LPA level r = 4. Figure 6 shows the focusing 
topography which consisted of a flat bed followed by a double cosine variation in the 
x and z directions with an amplitude of O.ld. However, for all x, the average bed 
elevation still remained y = 0. Different scales Lx and Lz as marked would focus 
the wave to different degrees, leading to a varying runup on the vertical wall. This 
numerical experiment could be thought of as representing the effect on solitary wave 
runup of small variations in topography about a mean. Figure 7 shows a snapshot 
of the wave's surface profile slightly after maximum runup. The three dimensional 
effects can clearly be seen. 

Figure 8 shows the maximum runup of the wave for varying Lx and Lz. The computed 
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runup for a level bed and predicted runup for a wave propagated onto an infinite two 
dimensional shoal of depth da/d0 = 0.9 are also shown. The latter result was predicted 
using the KdV results of Johnson (1973) and the solitary wave runup formula of Su 
and Mirie (1980). For small spatial scales, the topography has very little effect on 
runup but, as the scale increases, runup also increases significantly. Although the 
maximum value for the focused runup is only slightly greater than the predicted 
result for an infinite shoal, it is by no means clear that the limiting runup has been 
reached, and a further increase in Lx and Lz might well give significantly higher 
values. 

Figure 7. The reflection of a focused solitary wave by a vertical wall 
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-± Lx=10 

-X Lx=20 

-bc=40 

- level bed 

Infinite 2D shoal 

Figure 8. Maximum runup of a focused solitary wave 
Since all of the above computations were performed in an enclosed space with no 
dissipation, conservation of energy could be used as an independent check on ac- 
curacy. For all tests, the maximum fluctuation in total energy at any point in time 
relative to the initial value was.less than 2 x 10-4. 

The propagation of regular waves over Whalin's topography 

For a final test of the LPA method, the propagation of regular waves over Whalin's 
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topography was computed. In a series of experiments, Whalin (1971) propagated 
waves over a semicircular shoal which tended to focus waves on the flat behind 
the shoal. Many investigators have since performed computations over the same 
topography. 

In these computations, regular waves were generated from one boundary using as 
input the time series of velocity from the fully nonlinear LPA wave forms. Odd 
derivatives of surface elevation were also specified at the boundary. On the trans- 
mitting boundary, a small amplitude boundary condition was combined with a zone 
where the evolution equations (6) and (7) gradually changed to become the advection 
equations 

d ( dr\\ d  fdrjS 

dt \dx dx \dx 

and 

dt l dx I dx \ dx 

(14) 

(15) 

where c is some characteristic phase velocity on the shelf. These equations were 
solved in finite difference form using an upwinding scheme. This type of area around 
the boundary makes it very difficult for errors due to an imperfect boundary condi- 
tion to propagate back into the domain, as they are continuously pushed out by the 
advection equations. All computations shown use the level of approximation r = 3. 

1 

10 15 

Distance (m) 

Figure 9(a). Harmonic Amplitudes along centreline of Whalin's topogra- 
phy, T = 3s, Ai = 0.0146m. Solid lines indicate present results; dashed 
lines show results of Rygg (1988); symbols are experimental results of 
Whalin (1971). Chain-dashed line shows beginning of dissipating beach, 
which was not reproduced in computations. 

Figure 9 shows the experimental and computational harmonic amplitudes along the 
centreline for the highest waves with experimental periods T = Is, 2s, 3s. Also in- 
cluded are the results of Madsen and S0rensen (1992) using their extended Boussinesq 
equations for the T = Is case and the results of Rygg (1988) using the Boussinesq 
equations of Peregrine (1967) for T = 2s, 3s. 
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For the longest wave, with T = 3s, both computational methods severely overpredict 
the amplitude of the first harmonic and moderately underpredict the amplitude of the 
second and third harmonics. Although the LPA results for r = 3 are shown, increasing 
the level to r = 4 (not shown here) provides no real change. This is somewhat 
distressing, as both LPA models and the extended Boussinesq equations should operate 
best in this range. However, the experimental topography used by Whalin was made 
up of a series of steps and only approximated the smooth topography used in the 
computations. Consequently, dissipation, neglected in computations, was significant 
in the experiments, especially for high, long waves. This is speculated to be the 
major source of discrepancies for this wave. 

For the next wave, with T = 2s, computations agree somewhat better with experi- 
mental data. Once again, the first harmonic is overpredicted and so, to some degree, 
is the second harmonic, while the third harmonic is predicted relatively well. Both 
LPA and Bouusinesq computations predict similar features, although there are dif- 
ferences. One strange feature of this wave is that the initial amplitude of the first 
harmonic used to calculate the incoming waves, which is given as A\ = 0.0149m, 
appears to be too high. In actual fact, it appears to be approximately Ai = 0.0135m. 
Figure 9(c) shows LPA results for a wave with this initial amplitude, and agreement 
is much better. The final wave tested had a period of T = Is, which gave it an initial 
length to depth ratio of L/d = 3.27. Of all waves, this was the best predicted. The 
computational values of the first harmonic are still slightly high on the final shoal 
but, aside from some numerical noise near the wave generator, the second harmonic 
is extremely well predicted. In contrast, the extended Boussinesq equations tend to 
somewhat underpredict the amplitude of the second harmonic. 

f < 

10 15 

Distance (m) 

Figure 9(b). T = 2s, Ax = 0.0149m. Dashed lines here are the Boussi- 
nesq results of Rygg (1988) 

Overall, agreement between experiment and computations is not as good as would be 
hoped, possibly because of the neglect of dissipation in computations. It is worthwhile 
to note that for the cases T = 2s, 3s, where computations and experiments differed, 
both computational models behaved similarly. Therefore, it is believed that the dis- 
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crepancies result from something other than an inaccurate solution of the potential 
flow problem. 

10 15 

Distance (m) 

20 

Figure 9(c).   Experimental results from Whalin (1971) T = 2s, Ax = 
0.0149m. Computational results T = 2s, Ax = 0.0135m. 
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Figure 9(d).   T = Is, A\ = 0.0195m.   Dashed line shows extended 
Boussinesq results of Madsen and S0rensen (1992). 

Conclusions 

The local polynomial approximation method developed here has excellent linear and 
nonlinear properties for a wide range of waves. The simplicity of its formulation 
makes it an easy task to change the level of approximation, and thus the accuracy, of 
the method. Computations over varying topography show good accuracy for highly 
unsteady, nonlinear cases. For accurate potential flow computations in three dimen- 
sions, the LPA method is therefore an excellent choice for the numerical modeler. 
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