
CHAPTER 85 

A Statistical Approach for Modeling Triad Interactions 
in Dispersive Waves 

Y. Eldeberky1*, V. Polnikov2+, and J.A. Battjes3 

Abstract 

The feasibility of a statistical approach to model the effect of triad interactions on 
the evolution of wave spectrum is investigated. The approach is based on the 
Zakharov kinetic integral for resonant triad interactions in capillary gravity waves. 
For application to dispersive gravity waves, the kinetic integral is modified by 
inclusion of a spectral filter (smeared delta function), to allow for the cross-spectral 
energy transfers in dispersive wavefields, with bandwidth to be determined 
empirically. Numerical investigation of the resulting expression indicates that the 
energy flux from the spectral peak region toward higher harmonics increases with 
decreasing water depth. 

The interaction integral has been cast into an energy source/sink term and 
implemented in an energy balance equation that describes the evolution of a 
unidirectional energy spectrum in shoaling regions. The evolution model is 
investigated using observations of harmonic generation. Qualitatively the 
comparisons have shown the ability of the model to generate higher harmonics and 
a consequent upward shift in the mean frequency. However, quantitatively the 
model performance needs improvement. 

1. Introduction 

The evolution of wave spectra in shallow water is significantly affected by the 
cross-spectral energy transfers between various wave components due to triad 
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interactions. Boussinesq equations have been used to establish evolution equations 
for the complex amplitudes of waves propagating over slowly varying topography, 
simulating harmonic generation (Madsen and S0rensen, 1993). 

For computational efficiency in practical applications, phase-averaged energy-based 
models are preferred. Abreu et al. (1992) have presented a statistical model for the 
nonlinear evolution of the frequency-directional spectrum, suitable as a source term 
in a spectral energy balance equation. The model is based on the nondispersive, 
nonlinear shallow-water equations and an asymptotic closure (Newell and Aucoin, 
1971) for directionally spread nondispersive waves. The restriction to nondispersive 
waves is easily violated in practical application. The consequence of this is an 
unwanted behavior of the high-frequency part of the spectrum (dispersive waves). 

The purpose of this paper is to investigate the feasibility of a statistical approach 
to model the average effects of triad interactions in dispersive surface gravity 
waves. The arrangement of this paper is as follows. In section 2, the kinetic 
integral for triad wave interactions in gravity waves is presented. The kinetic 
integral is numerically investigated and the results are analyzed in section 3. In 
section 4, the kinetic integral is used as an energy source/sink term in a spectral 
evolution model for investigation against observations of harmonic generation. 
Finally a discussion and conclusions are given in section 5. 

2.  Kinetic integral for triad interactions in surface gravity waves 

The nonlinear triad interactions in surface gravity waves are treated mathematically 
using the Zakharov kinetic integral (Zakharov, 1968). The evolution equation of the 
spectral "energy" density nk due to the triad interaction between (k,o>), (kuo>i) and 
(#2,0)2), where k and o> are the wavenumber vector and the angular frequency 
respectively, is 

dt 
4 J J" dk&lVtv NkU ^ 8M -2V?k2Nlk2 %_1+2 8k_U2]        <D 

Here V is the interaction coefficient and 

^12   =   "l«2 -«*("l +«2> (2) 

in which the density nk is related to the surface elevation wavenumber energy 
spectrum E(k) by 

„(*) =  Ql£* E{k) (3) 

The factor fj.k.U2 in (1) is defined as 
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CH-J 
$2 

(w^-COj-COj)  + 12 
(4) 

$2 is an auxiliary frequency parameter which is small compared to the spectral peak 
frequency (U<o}p). The factor \x functions as a frequency filter. It is useful to gain 
insight in its behavior. Using the shorthand notation Aw=o)k-o3l-w2 and \i, for \x,k_x_2, 
Fig. 1 shows /i (in Hz'1) plotted versus Aw (in Hz) for various values of 12. The plot 
indicates that the filter becomes narrower and more spiky by decreasing the value 
of fi, but the integral always equals IT independent of (2. 

a. 

-7.5 -5.0 

Fig. 1  n plotted versus Aw for various values of Q. Dashed line: £2=1.0; Dot- 
dashed line: Q=0.5; Solid line: 9=0.1. 

In the limit of £2-»0, the filter becomes a dirac delta function and ^.1.2=7r6(wrw1- 
w2). Zakharov et al. (1992) use this limit, which upon substitution in (1) results in 
the kinetic integral for resonant three-wave interactions. The kinetic integral for 
resonant interactions gives nonzero contributions only for waves satisfying the 
resonance conditions 

co(k) - co(£j) - o)(k2) 

k-kx-k2 = 0 

0 
(5) 

Exact resonance cannot be satisfied for surface gravity waves in water of arbitrary 
depth (Phillips, 1960; Hasselmann, 1962) with the following frequency dispersion 

co2 = gk\a.r&).{kh) (6) 

Thus for practical applications in intermediate depth, a formulation which allows 
for a degree of phase mismatch between the interacting waves is required to model 



TRIAD INTERACTIONS 1091 

the cross-spectral energy transfers. 

For the problem of off-resonant energetic triad interaction, Holloway (1980) 
suggested to use (4) for /jkl2 with a small but finite value of fi instead of its limit 
for Q-^0. Thus instead of replacing equation (4) by a dirac delta function we use 
a smeared delta function (finite value of Q) to allow for spectral energy transfers 
in dispersive wavefields. Here we treat Q as a constant to be determined 
empirically. The feasibility of this approach will be investigated in the following. 

Substituting equation (4) into equation (1) and integrating in k space yield the time 
evolution of the spectral "energy" density nk due to triad interaction between 
components k, k{ and k2 

^=4 f dK{VlnN      O^V?^- ?^r-r} (7) 

This is the final equation describing the slow time evolution of the wave spectrum 
due to triad interactions. Assuming that the spectral energy is of second-order in 
nonlinearity: n(k)~e2, one can define the time scale h=tpe

2 for the slow variation 
of the wave spectrum. An appropriate value for the filter band-width Q should be 
of the order Qs/i'=c2o, 

In application to spectral wave models based on the energy (or action) balance 
equation, source/sink terms are normally expressed in terms of energy (or action) 
density function E(w,6) of the sea surface elevation. The relation between the 
wavenumber spectrum E{k) and the frequency-directional spectrum £(co,0) is 

E(k) = If* E(w,0) (8) 
03 

The evolution equation of the frequency-directional energy spectrum E(u>,&) can be 
found by substitution of (8) into (7) and rearranging 

dEM) = i6^/f ]*>& Mi(r;12 - 2rU2) (9) I' 
Here 

w*2 co.2 

T^VU-^E^-^E^-^E^J ^___      (10) 
c
t
c

tJt cics2 cic*i K-^-ft^ + 02 

Tm = Vik2[^l-EkE1-^LEkE-^LElE1U ±__      (11) /2 r  co,    trv_^_EE_J^_EE, 0_ 
cicei   

k  l   ckcgJC   '  
2  (^-o1+co2)

2 + fi2 

Note that the units of E(u,0) is m2/Hz/rad. The interaction coefficient V is given 
by 
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,1/2 
\l/2 

8w\/2 n9N 
+ [k-k2-{uko>1lgY} (co,/^)1'2 {U) 

*  [*1-*2 + (co,«2/«)2]   (CO/^O),)1'2 } 

Equations (9-11) describe the time evolution of wave energy spectrum E(u,0) due 
to triad interactions. The first term of the integrand T£2 represents the sum 
interaction (k=ki+k2), the second T'm the difference interaction (k-k^-k^. The 
present formulation is directionally coupled and thus allows for both colinear and 
noncolinear interactions. Note that the resonance condition (5) does not necessarily 
have to be fulfilled in (7). 

3.  Numerical investigation of energy transfer rate 

Aim and method of discretization 
The general purpose of the investigations is to study the characteristics of the 
kinetic integral and the dependence of the nonlinear rate (NLR) of energy transfer 
on the filter bandwidth 0 and relative depth kh. The Jonswap spectrum is used to 
describe the frequency distribution of the wave energy and a cos2-distribution is 
used for the directional spreading. The kinetic integral is calculated by means of 
simplest trapezium method of integration. 

For a sufficiently fine grid (w,0) resolution, the values obtained for the kinetic 
integral do not significantly depend on the choice of grid. This choice is important 
from the point of view of good resolution of spectral form E(w,6) and covering a 
proper interval of frequencies and directions for the output rate dE/dt. After some 
test calculations, we used a logarithmic frequency distribution with 48 discrete 
frequencies in the range 0.265^co/w„^4, and a uniform directional grid with 24 
discrete components. 

Results of calculations and analysis 
The calculations of the kinetic integral have been carried out for a range of relative 
depths £p/z=3, 1.2, 0.6, and 0.3. Two values for the nondimensional parameter 
Q/wp are considered, these are 0.01 and 0.1. 

Fig. 2 shows NLR for Jonswap spectrum for ^=0.3 and Q/a>p=0.01. The results 
are given in one-dimensional form, i.e., integrated over directions. The results 
show an energy flux from the region near the primary peak toward the higher 
harmonics. The behavior of the NLR indicates the following two features. First the 
maximum of the positive lobe occurs at f/fp=1.9 (less than the location of the first 
harmonic 2fp). This is due to the fact that a triad of waves is considered such that 
two wave components (o}uki) and (<j}2,k2) can force a motion at the vector sum or 
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difference wavenumber k=kx±k2 and frequency w(k). This consideration implies 
that the first harmonic appears in the wavenumber spectrum at 2kp, which 
corresponds to a peak in the frequency spectrum at a><2a>p (in intermediate water). 
The second feature is that the area under the positive lobe is smaller than the area 
under the negative lobe, implying attenuation in the total energy. 

4000 

2000 

-2000 

-4000 
12 3 4 

f/fp 

Fig. 2 Nondimensional rate of energy transfer in Jonswap spectrum, 
G/a>p=0.01, kph=0.3, directional spreading; cos2-distribution. 

For quantitative analysis of the calculations we used the following characteristics: 
- maximum value of positive lobe of two-dimensional NLR: MT; 
- maximum absolute value of negative lobe of two-dimensional NLR: MT; 
- ratio of total NLR (two-dimensional NLR integrated over frequency and direction) 
to the absolute value of the total negative part of NLR: D 

Table 1 summarizes the results for various relative depths and 0-values. Note that 
the parameter D is a measure of energy conservation within the system. Positive 
values of D indicate energy gain and negative values indicate energy attenuation. 
Table 1 indicates that NLR is roughly proportional to the value of fi. 

Table 1 Statistics of nonlinear rate (NLR) of energy transfer for Jonswap 
spectrum with direction spreading of cos2-distribution 

v 3 1.2 0.6 0.3 

fi/up 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 

MT 0.1 1.1 1.1 10.7 48 401 2,031 11,071 

MT -0.6 -6.1 -1.9 -18.4 -64 -548 -2,566 -17,646 

D -0.48 -0.48 -0.26 -0.32 +0.16 -0.13 +0.12 -0.07 
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The parameter D measures the percentage of energy gain/loss from the total energy 
flux across the spectrum. In deep water D reaches large values but there the energy 
transfers are weak, so that the nonconservation of energy is weak also. As the 
water depth decreases in shallow water, the NLR increases strongly. In shallow 
water, although the values of D decrease, the energy attenuation becomes 
significant because of the strong increase in the NLR values. In fact for Wa>p=0.01, 
D indicates an energy gain in shallow water (k^i=0.6, 0.3). 
The preceding analysis permits to state the following characteristics of NLR of 
energy transfers due to off-resonant triad interactions: 
1. NLR strongly depends on the relative depth kji. With decreasing kji, the 
intensity of NLR increases. 
2. NLR has a non-conservativity feature.  Generally it results  in an energy 
attenuation in intermediate and shallow water depths. 
3. The intensity of NLR varies in proportion to 0. 

4.  Spectral evolution 

4.1 Model formulation and implementation 

Assessment of the characteristics of the kinetic integral for triad interactions 
requires verification with observations. For simulation of the spectral evolution, we 
need to develop a spatial evolution model for the energy spectrum with a 
source/sink term representing the effect of triad wave interactions. Since the 
observations used here are measured in flume experiments that are characterized by 
long-crested waves, the following one-dimensional energy balance equation is used 

A-[cgk E(a,k)] = Sk (13) 

Here E(o)^) is the frequency energy density, cgk is the one-dimensional group 
velocity and Sk is the net source/sink term. To implement the effect of triad wave 
interactions in equation (13), the kinetic integral (9-11) is cast in an energy 
source/sink term for unidirectional waves as follows: 

c,c„ 
S„(ak) = I6ir2g Uco.^-4   (Tkl2 - 2Tm) 

T;n = VH«k,»0l^E1E2--?l-EkEi-^l-EkE2]  °_^       ("> 
ckcg,k C2C«2 

cic«i K-a>rw2)
2 + Q2 

2 2 2 
0)i 0)i 0)t " 

Tm = VK.coJ[—£^ - —E& --^EXE2]. 
C!CS1 C2CS2 V,,* K-C01+O>2)

2
+Q2 
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The energy source/sink term given in (14), for the effect of triad wave interactions, 
represents a (positive/negative) contribution to the temporal rate of change of 
spectral density. The energy balance equation (13) comprises a set of first-order 
ordinary differential equations that describe the evolution of the energy spectrum 
E(oi). Giving the initial energy spectrum at the upwave boundary, equation (13) has 
been numerically integrated using a fourth-order Runge-Kutta method. 

4.2 Simulation of spectral evolution 

In this section, the evolution model (13) together with the triad source term (14) is 
investigated using observations for harmonic generation in random waves 
propagating over a shallow bar (Beji and Battjes, 1993) as well as over a beach 
profile (Arcilla et al., 1994). 

The investigation of the nonlinear rate (NLR) of energy transfers presented in 
section (3) has shown that the present formulation is not conservative. To ensure 
energy conservation in the simulation of spectral evolution the following ad hoc 
method is used. First the NLR of energy transfer is estimated as a first guess using 
the present formulation. Next the integral (of NLR) over the spectrum which 
represents the total energy gain/loss / is computed. The NLR of energy transfer is 
then rescaled by adding (or subtracting) the quantity /. If / is negative, implying 
energy loss, then the area of negative lobe is reduced with / in proportion to the 
values of the NLR. On the other hand if / is positive, implying energy gain, then 
the area of positive lobe is reduced with / in proportion to the values of the NLR. 

To simulate energy dissipation due to wave breaking over a beach profile, the 
energy balance equation (13) is supplemented with a source term for depth induced 
wave breaking after Eldeberky and Battjes (1996), in which the total energy 
dissipation due to breaking in random waves is calculated according to Battjes and 
Janssen (1978) and spectrally distributed in proportion to the spectral levels. 

Wave 
maker 

0.40 

Wave gauges 
2  345678 
1,1   .1  ' 1    1|1 

6.00 6.00 2.00    3.00     1 95 
-+ * y # 

18.75 

Fig. 3  Layout for the experimental setup of Beji and Battjes (1993). All lengths 
are expressed in meters. 
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Fig. 4 Bed profile and locations of wave gauges (Arcilla et al., 1994) 

To examine the sensitivity of the spectral evolution to the choice of 0, two values 
are used in the computations: 0/^=0.01 and 0.1. The computed spectra are 
compared to the measured ones in nonbreaking waves propagating over a bar (Fig. 
3) and breaking waves over a beach profile (Fig. 4). The results are given in Figs. 
5 and 6 respectively. The comparisons indicate the following characteristics of the 
triad source term: 
1. The intensity of energy transfers from the primary spectral peak to the higher 
frequencies is mainly controlled by the choice of Q-value. Increasing ft-value results 
in stronger energy transfers, extended to higher frequencies. 
2. The energy transfers to higher harmonics are underestimated when Q/wp=0.01, 
and overestimated when G/cop=0.1. The latter results in an unwanted behavior for 
the energy spectrum at the high frequency range (spectral tail). 
3. The second spectral peak (in frequency-domain) is shifted to a lower frequency 
compared with observation. It appears at a frequency less than two times the 
primary peak. This is ascribed to the fact that triads are considered such that 
k=kl+k2, which results in uk<ul+u2 in intermediate water depths. 

4.3 Sensitivity to the filter bandwidth 

The previous results for the computed spectral evolution have shown dependence 
of the NLR of energy transfer on the choice of the filter bandwidth Q. Additional 
numerical simulations for wave propagation over a shallow bar and beach profile 
have been carried out with different values of Q. To evaluate the variation in the 
spectral evolution for various values of Q, the variations in the mean frequency of 
the spectrum are computed. The mean frequency of the energy spectrum is defined 
as 

f 
\-K \ E(o))dw 

(15) 
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Fig. 5 Energy spectra from experiments (solid lines) and from the evolution 
model: with Q/up=0.01 (dashed lines) and Q/wp=0.1 (dot-dashed lines) for 

waves propagating over a shallow bar. 
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Fig. 6 Energy spectra from experiments (solid lines) and from the evolution 
model: with Q/wp=0.01 (dashed lines) and fi/cop=0.1 (dot-dashed lines) for 

waves propagating over a beach profile. 
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Fig. 7 shows the observed variations in the mean frequency in waves passing over 
a shallow bar and those computed by the evolution model with different values of 
0/a>p. The observed variation in the mean frequency shows a rapid increase (from 
0.43 Hz to 0.85 Hz) over the upslope side and the horizontal part of the bar, which 
is ascribed to generation of higher harmonics. Beyond the bar crest, the mean 
frequency remains at a high level without significant change. The computed 
variations in the mean frequency using the evolution model show a strong 
dependence on the value of the parameter 0. The larger the value of Wo3p, the 
stronger the energy transfers and hence the shift in the mean frequency to higher 
harmonics. From the results one can see that the best choice for the parameter 
ti/o)p, for best simulation of the observed shift in the mean frequency, in this case 
is between 0.01 and 0.03. 
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Fig. 7 Spatial variation of mean frequency fm in waves propagating over a 
shallow bar. Solid line: experiment; Dashed lines: evolution model using 

different values for fi/a>„ 

Fig. 8 shows the observed variations in the mean frequency in waves propagating 
over a beach profile and those computed by the evolution model with different 
values of fl. The observed variation in the mean frequency shows a rapid increase 
in intermediate water from 0.14 Hz to 0.21 Hz due to harmonic generation. In very 
shallow water, the mean frequency nearly attains a constant level. The computed 
variations in the mean frequency using the evolution model show a strong 
dependence on the value of 0. In intermediate water depths (between stations 1 and 
3) computations with Q/cop=0.04 and 0.05 seem to best match the observed shift 
in the mean frequency. In shallow water, all computations with different values of 
0 result in a trend which differs strongly from the observed one, significantly 
overestimating the mean frequency. 
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Fig. 8 Spatial variation of mean frequency fm in waves propagating over a beach 

profile. Solid line: experiment; Dashed lines: evolution model using different 
values for Q/cop 

5.  Discussion and conclusions 

The feasibility of a statistical approach to model the average effects of triad 
interactions on the evolution of wave spectrum is investigated. The approach is 
based on the Zakharov kinetic integral for resonant triad interactions in capillary 
gravity waves. For application to surface gravity dispersive waves, the kinetic 
integral is supplemented with a frequency filter to allow for the off-resonant 
energetic interactions. The filter bandwidth fi is of small but finite value resulting 
in a smeared delta function, fl is treated as a constant to be determined empirically. 
The interactions integral is used as a source term in an evolution model to simulate 
observations of harmonic generation in waves propagating over a shallow bar as 
well as over a beach profile. In general the comparisons have shown the ability of 
the model to generate higher harmonics and a consequent upward shift in the mean 
frequency. 

The consequences of treating the filter bandwidth fl as a constant have resulted in 
an energy attenuation and unguaranteed spectral evolution in some cases. Holloway 
(1980) proposed to treat fl as a prognostic variable with magnitude related to the 
rate of interaction of the three components involved in the interaction and increases 
with increasing nonlinearity. In Holloway's approach, the magnitude of fl for the 
interaction between /, m, and n needs to be determined first by solving three 
equations representing the interaction rates of the three components. These three 
equations for each possible triad together with the spectral evolution equations 
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represent a closed set of equations guiding the evolution of the energy density 
spectrum. 

In principle the approach of Holloway (1980) sketched above may be applied to 
provide an estimate for the parameter 0. This may achieve a better prediction of 
the evolution of the energy spectrum. On the other hand the extensive 
computational efforts required to resolve the closed set of equations are a concern. 
For computational efficiency in practical applications, we recommend a 
parametrized source term for triad wave interactions (Eldeberky, 1996, Chapter 7 
and Eldeberky and Battjes, 1997) 
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