
CHAPTER 83 

BOUSSINESQ EQUATIONS WITH IMPROVED DOPPLER SHIFT AND 
DISPERSION FOR WAVE/CURRENT INTERACTION 

Qin Chen1, Per A. Madsen2, Ole R. S0rensen2 and David R. Basco3 

Abstract 

Boussinesq-type equations with improved dispersion characteristics for the combined motion 
of waves and currents are introduced. The ambient current is assumed to be uniform over depth and 
to have a magnitude as large as the shallow water wave celerity, allowing for the consideration of wave 
blocking of fairly long waves. The temporal variation of the current is ignored, while the spatial 
variation is assumed to vary on a larger scale than the wave-length scale. Boussinesq-type equations 
are derived by explicit use of four scales v, 6, e and p representing the particle velocity and the surface 
elevation of the total wave-current motion, as well as the wave-nonlinearity and the wave-dispersion, 
respectively. Firstly, equations are derived in terms of the depth-averaged velocity to obtain a 
generalization of the equations of Yoon & Liu (1989) to allow for stronger currents. Secondly, these 
equations are formulated in terms of the velocity variable at an arbitrary z-location resulting in an 
improved dispersion relation which corresponds to a Pade [2,2] expansion in the wave number of the 
squared intrinsic celerity for the fully dispersive linear theory. For vanishing currents, these equations 
reduce to the equations of Nwogu (1993). Finally, this formulation is enhanced to achieve Pade [4,4] 
dispersion characteristics. Model results for monochromatic and bichromatic waves being fully or 
partly blocked by opposing currents are given and the results are shown to be in reasonable agreement 
with theoretical calculations based on the wave-action principle. 

1. Introduction 

Various forms of lower-order Boussinesq equations are reported in the 
literature and they may be classified into three groups as follows: (1) the classical 
Boussinesq equations for wave motion (e.g. Peregrine, 1967); (2) the Boussinesq-type 
equations with improved linear dispersion properties (e.g. Madsen et al., 1991; 
Nwogu, 1993; Schaffer and Madsen, 1995); (3) the Boussinesq equations derived for 
the combined motion of waves and ambient currents (e.g. Yoon & Liu, 1989 and 
Priizer & Zielke, 1990). As shown by Chen et al. (1996), only the equations in the 
third group incorporate a correct form of Doppler shift in connection with wave- 
current interaction. Their dispersion relation, however, suffers the same inaccuracy 
as the classical Boussinesq equations for higher wave numbers. In case of opposing 
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currents this limitation quickly becomes critical for the applicability of the equations 
as wave numbers increase with the current speed. It is therefore desirable to improve 
the equations to achieve Pade-type expansions of the dispersion relation similar to 
what has been achieved by e.g. Madsen et al. (1991) and Schaffer & Madsen (1995) 
for the case of pure wave motion. First attempts in this direction were made by 
Kristensen (1995). 

This paper focuses on the derivation and analysis of Boussinesq-type 
equations with Pade [4,4] dispersion characteristics for coupled wave-current motion. 
A one-dimensional version of the new equations is solved by the finite-difference 
method and simulation results of waves blocked by a strong, opposing current are 
presented. 

2. Scaling Assumptions and Governing Equations 

As a starting point we consider the combined motion of waves and ambient 
currents and split the velocity variable into two parts, a wave orbital velocity, uw and 
a current velocity, uc, which is assumed to be uniform over depth. This splitting is 
only made for scaling purposes and it does not appear in the final equations. A 
Cartesian coordinate system with the x'-axis and y'-axis located at the still water level 
(SWL) and the z'-axis pointing vertically upwards is employed. The free surface is 
defined by z'=t]'(x',y',t') while the sea bed is defined by z'=-h'(x',y'). Non- 
dimensional variables are used as follows: 
x=x'/r0,    y=y'/l'0,    z=z'/h'0>    t=t'J(gh'0)/V0 (2.1) 
where prime denotes dimensional variables and h'0 and 1'0 denote a characteristic 
water depth and wave length, respectively. In the following discussion of scales of 
waves and currents in shallow water we respectively utilize the linear and nonlinear 
version of the shallow water equations (SWE). The discussion is kept brief and 
detailed analyses can be found in the work by Chen et al. (1996). 

In connection with pure wave motion in shallow water we introduce the 
classical measures of nonlinearity and frequency dispersion by 
e=a'</h'0    ,   ii=h'o/l'0 (2.2) 
where a'0 denotes a characteristic wave amplitude. As in conventional Boussinesq 
theory we shall assume that e = 0(/x2) and e < < 1. Linear long-wave theory can be 
employed to estimate the order of magnitude of the wave particle velocities (u'w, w,w) 
the free surface elevation (x],w) and the pressure(p'w) as well as their temporal and 
spatial variation. 

For pure current motion, the temporal variation of the current is ignored as 
it is assumed to be several orders of magnitude slower than that of the wind waves. 
The spatial variation of the current is closely related to the variation of the bottom 
bathymetry and we generally assume this to vary on a larger spatial scale than the 
wave-length scale. This can be expressed by u'c=u'c{ox,oy), r\'c=r\":(ax,ay) and 
h'=h'(ax,ay), where o denotes the slow scale, which is yet to be chosen. Coastal 
currents are typically stronger than the wave particle velocity and weaker than the 
wave celerity, but in the derivation we use the shallow water wave celerity as the 
scale of the current speed in order to be able to consider wave-blocking in shallow 
water. Consequently, we express the order of magnitude of the current velocity by 
u'c=0{\) V(gh'0) in which e< v ^1. The corresponding surface elevation due to the 
current is expressed by r)'c=0(8) h'0 where 6=0(v2) as analysed in Chen et al. 
(1996)'s work. In comparison, Yoon & Liu (1989) used \=n and 8=/x2 so that wave- 
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blocking in shallow water was not allowable under their assumptions. By the use of 
o, v, 6 and ju. we can also determine the order of magnitude of the temporal and 
spatial variation of the variables. 

On the basis of the scaling analyses for pure wave and pure current motion, 
the scaling of variables in case of coupled wave-current motion becomes 
«'   = 0(e,v) J(gh'0) ;     w'   = 0(eM,avM) Agh'o) (2.3) 
TI'   = 0(e,v2) h'0; p'    = 0(e,v2) (pgh'0) (2.4) 
The order of magnitude of the leading terms in the continuity equation of the SWE 
becomes 
r\',. = Oie^Agh'o);   h' u'x. = O(e^a^W(gh'0);   u' h'x. = O(e^avixW(gh'0) 

(2.5) 
The order of magnitude of the terms in the momentum equation of the SWE becomes 
u't. = 0(efj.) g;   gx)'x. = 0(eix,ov2iJ,) g;     u' u'x. = 0(e2/*,ovV) g (2.6) 

The spatial variation of the current and the bathymetry was defined by o 
which is rather arbitrary. We adopt the assumption in Madsen & Schaffer's (1996) 
work specifying h' u'cx. = 0(h' uw

x.). This assumption in combination with the 
expression in (2.5) yields 
o  =  0(e/v) (2.7) 
This means that strong currents (with v=0(l)) can be treated only in connection with 
weakly varying bathymetries, while weak currents (with e.g. v = 0(e)) do not imply 
any restrictions on the bathymetric variations. The condition expressed by (2.7) is 
basically in agreement with the assumptions by Yoon & Liu (1989) and Dingemans 
(1994), who used e=/n2, v=/x and o=/x. 

The governing equations serving as our starting point of derivation are the 
depth-integrated conservation laws for mass and momentum with the dimensionless 
variables as defined by 

U    =   —-—— , W    =    • ,        p   =   —^ , T)    -   —*- 

fiK' li^/ P«V V (2-8) 

where « = (u, v) is the horizontal velocity vector; w is the vertical velocity; p is the 
pressure and r\ is the free surface elevation of the combined wave and current 
motion. The actual magnitude of each term appearing in the derivation will be 
explicitly determined by the use of the scaling assumptions (2.3)-(2.7). 

In terms of the dimensionless variables defined by (2.1) and (2.8) we express 
the depth-integrated mass equation as 

r|( + V-  P udz =0 (2.9) 
•> -h 

where V = (d/dx, dIdy) is the horizontal gradient operator, and the depth-integrated 
horizontal momentum equations as 

1 nudz+A r\>dz+± nuvdz+± npdz-p\    hx = 0 (2.ioa) 
at J -h ox J -h ay J -h ox J -H 

±nvdz+±nuvdz+±r%^+±npdz-p\    h = 0 (2.iob) 
otJ-h ox J -h oy J ~h oy J-h 

while the pressure field reads 
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p(jt, y, z, t) = (n  - z) + /i2||-PH^Z + V-Tuwdz - w2\ (2.11) 

The vertical velocity w is evaluated by the vertical integration of the continuity 
equation from the sea bed to z and the use of the bottom boundary condition, which 
yields 

w = -V-fzudz (2-12) 

The above depth-integrated equations are as exact as their original continuity equation 
and the Euler equations of motion and the detailed derivation procedure can be found 
in the literature (e.g. Phillips, 1977). The closure of the equations (2.9)-(2.12) 
consists of determining the vertical distribution of the horizontal velocity vector u by 
the use of the vorticity equations of the fluid. As in Yoon & Liu (1989)'s work, the 
current field is allowed to be horizontally sheared while the vertical shear is limited. 
Hence, the vorticity equations read 
uz - p2Vw = 0(/) (2.13) 

«   - vx = 0(1) (2.14) 

3. Derivation of a Generalized Version of the Equations by Yoon & Liu (1989) 

In the previous section the governing equations were listed in non- 
dimensional form using n as the only explicit scaling parameter. In the following 
derivation of the horizontal and vertical particle velocities, the dynamic pressure and 
the resulting mass and momentum equations we introduce the parameters e, v, 5 and 
o as explicit measures of the order of magnitude of each term in the equations. As 
defined in Section 2 we take o=e/v and 5=0(e,v2). Further specifying e^v^l 
ensures that the equations will be also valid in the limit of vanishing currents. 
Generally, the order of magnitude of the different terms is determined as the 
maximum of all possible combinations of wave and current components and in this 
process the difference in horizontal scaling of current and wave components is taken 
into account. As a key step of the development of Boussinesq-type equations, we 
must determine the depth-dependence of the horizontal velocity field which can be 
expanded as a Taylor series with respect to the velocities u —u(x,y,0,t) at the still 
water level. 

u(x,y,z,t) = u(x,y,0,t)  + zuz(x,y,0,t) + -z2ua(x,y,0,t)  +   •• (3.1) 

We make use of the vorticity equations (2.13) and the local continuity equation to 
evaluate «z and «z in (3.1). By the use of the definition of the depth-integrated 
velocity, U and algebraic manipulation (see Chen et al., 1996 for details) we obtain 

u  =U  + —fi2 

v 

\ 
z2 

I   6 
V(V-ff) - | z + -I V[V-(fcl7)][ 

2 ' ' (3.2) 

-5-/t
2JifcV(V-£0--fcV[V-(/It/)]l+52-^ir1

2V(V-lO +0(-/) 
v        [6 2 J        v     6 v 

Substitution of (3.2) into (2.12) gives the vertical velocity in terms of U 
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w = - V-[(z + h)V\ + 0(^2) (3.3) 

By inserting (3.2) and (3.3) into (2.11) and determining the ordering, the pressure 
field may be expressed as 

1      8 
€    2 zV-(hU) + — V-U, 

' 2 ' 

in2 \ -difV-tf   + T\V-(hUt) 
[2 

ve 
(3.4) 

+  /i2 \zU-V[(V-(hU)]  + — U-V(V-U) 

vep2{ -brfv-V(V-U) + r|J7-V[V-(/jl7)][ + 0(—/*2 e   4, 

Use of the definition of depth-averaged velocity in (2.9) and substitution of (3.2) and 
(3.4) into the depth-integrated equations (2.10) lead to a modified version of the 
equations by Yoon & Liu (1989) for wave/current interaction in shallow water as 
follows, 

•n( + V-(hU) + 6nV-l7 + vU-Vr\ = 0 

and 

Ut   + \{V-V)V + Vn 

+ v2lK + vA,' + 6(A/ + vA3') + 82(A4' + vA5')] = 0(eM
2, /) 

where 

A,' = *rf;      A( = (W)(hr') 

Al = - nfr' + V[V-(Atf()]};    A3 = - r)(u-V){r' + V[V-(*«7)]} 

Ai -T12V(V-P(); A,' -Ti2(J7-V)[V(V-l/)] 

(3.5) 

(3.6) 

(3.7a) 

(3.7b) 

(3.7e) 

where 

r' = -V(v-u) - -v[V-(/ij7>] 
6 2 

(3.7f) 

In comparison with the original Yoon & Liu's equations, the new scaling assumptions 
result in additional terms A^, A3, A4' and A5. These terms take into account the 
change in the mean water level due to an ambient current and should be included if 
we consider v = 0(l). The Doppler shift properties of both sets of equations 
however, remain identical and correspond to the Pade [0,2] expansion of the linear 
dispersion relation of fully dispersive waves. When the speed of an ambient current 
becomes as weak as the wave particle velocity, all n2-terms in the momentum 
equation except for A^ will become negligible in the lower-order Boussinesq-type 
equations. Then this set of equations reduces to the equations by Peregrine (1967). 
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4. Equations with Pade [2/2] Characteristics for Wave-Current Interaction 

It is desirable to improve the dispersion accuracy of the modified equations 
we obtained in the last section. For pure wave motion, Nwogu (1993) introduced an 
alternative to the Madsen & S0rensen (1992)'s equations with improved linear 
dispersion properties. Nwogu's equations are formulated in terms of the velocity at 
an arbitrary level instead of depth-integrated or depth-averaged velocities. As shown 
by Chen et al. (1996), the equations by Nwogu (1993) are not applicable to coupled 
wave/current motion due to the lack of accuracy in Doppler shift. We shall start our 
derivation from the generalized version of the equations by Yoon & Liu (1989) (i.e. 
(3.5) & (3.6)) and consistently replace the depth-averaged velocities by the velocities 
at an arbitrary elevation by keeping the same scaling assumptions as discussed in 
Section 2. This also demonstrates an alternative approach to obtaining Nwogu's 
equations directly from the equations by Peregrine (1967). 

As shown in Chen et al. (1996)'s work, the relation between the depth- 
averaged velocity, U and the velocity at an arbitrary level, Mamay be expressed by 

U = ua + V1 

I V 

/ 

V[V-(fc«0)] + 
\ 

6 ) 
V(V-«a) 

(4.1) 

^2Jlv[V-(/,«a)]-^V(V-«J -^ViTfV(V-«a)+0   V 
v       6 I v 

Substitution of (4.1) into the continuity equations (3.5) and the momentum equations 
(3.6) leads to a set of equations formulated in terms of the velocities at an arbitrary 
elevation as follows 

\   + v'<^"«) + 6rlv-»a + v«a-Vn 

+ n'dC + 6i4 + &m'a2 + 63r4) = o^\ ^ 
where 

K> = v-*ri - v-j^V(V-„a) - ^V[V-(A*B)]| ;     C = ^< 

(4.2) 

(4.3a) 

K* = - ^-V-{V[V-(*«B)]} nL -V-[V(V-«a)] (4.3b) 

in which 

K = f V(V-„a) + zaV[V'(hua)] 

and 

Ua,+   V("a'V)"a   +  VT1 

(4.3c) 

+ ^[Ko + vA., + 5(A^2 + vA^) + 52(A^4 + vAj,)] = 0(e^,^) 
(4.4) 



where 
<o   = r' • * at ' 

<2    = -nV[V-(A«„)] 
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K> - («.-V)C (4.5a) 

A«3 = - TK«a-V)V[V-(A«B)] (4.5b) 

A«4 = - ^2V(V-uar) ; A^5 = - ^T!2(«a-V)[V(V-«a)] (4.5c) 

equations (4.2) to (4.5) form a new set of equations with the improved Doppler shift 
corresponding to the Pade [2,2] expansion of the linear dispersion relation given by 
the first order Stokes theory by choosing the appropriate zaas suggested by Nwogu 
(1993). We shall analyse the dispersion properties in Section 6. When the speed of 
an ambient current becomes as weak as the wave particle velocity, those terms 
U'al (i = i,2,3) in (4.3) and A^. (» = 1,2,3,4,5) in (4.5) will become negligible in 
the lower-order Boussinesq-type equations. Then this set of equations reduces to the 
equations by Nwogu (1993) for pure wave propagation in nearshore regions. 

5. Further Enhancement of the Dispersion Accuracy 

It is possible to improve the Doppler shift accuracy of the equations we 
obtained in the last section even further. Starting from (4.2) to (4.5), we shall 
formulate another set of Boussinesq-type equations by consistent incorporation of the 
Pade [4,4] expansion of the Doppler shift relation predicted by the first order Stokes 
theory for waves on uniform ambient currents. Following Schaffer & Madsen (1995), 
we introduce four free parameters (pt, P2, yl, y2) which are less than or equal to 
0(1). Use of each of the operators -p,(t2V-(A2V ) and p^2V-V(A2 ) on the 
continuity equation (4.2) leads to 

P1H
2{V-(ft2Vri/) + V-{A2V[V-(A«B)]} 

-5r|V-[A2V(V-Ka)] + VMa-V(^2V2T])} = 0(en2,n4) + ( 
(5.1) 

and 

P2H2{V-[V(fc2r|,)] + V-iV[h2V-(hua)]} 

+ 6r|V-[V(ft2V-Ma)]   + v«a-V[V-(/*2Vr|)]} = 0(en2,n4) 
(5.2) 

Similarly, employing each of the operators -y1\i
2h2V(V-   ) and y2\i

2hVC\7-h   ) 
on the momentum equations (4.4) yields 
-y,n2/*2 [V(V-«„.) + V(V-Vri)] 

(5.3) 
-Y,vn2/,2(«a-V)[V(V-«a)]  = O (en2, n4) 

and 
Y2n

2ft {V[V-(A«„)] + V[V-(fcVr,)]} 
(5.4) 

+ Y2V|i2/K«a-V)[V(V-fc«a)]  = 0(en2, n4) 
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Adding (5.1) and (5.2) to (4.2), we obtain a new continuity equation 
n,   + V-(**0) + 6nV-«a + v«a-Vn 

(5.5) 

(5.6a) 

+ ^(C + vC + 6tf4 + S2^ + tflft) = 0(e^, ^) 

where 

C = n'„0 
+ v-{p2V[ft2v-(ft«j] - p.^viv-c*^)] 

+ v-{p2v(ft2n,) - p.^vnj 

n«, = «a-V[p2V-(ft2Vn) - P1V(A
2
V

2
T1)] (5.6b) 

I& = tfal + nV-^V^V-i,,) - P,ft2V(V-»0)] (5.6c) 

while nf, = n'„2> nf, = n'a3, If = r*B as defined by (4.3b-c). Similarly, adding (5.3) 
and (5.4) to (4.4) leads to new momentum equations 

»« + VK-V)"« + VT1 

+ n2[A£ + v< + 6(A£ + vA£) + 62(A£ + vA£)) = 0(6|i2,n4) 

where 
A"„ = C   - Ylft

2V(V-„M) + Y2*V[V-(*«M)] 
(5.8a) 

- Vj/i2V(V-Vn) + Y2fcV[V-(/iVr|)] 

Af, = («K-V)rf   - Y^2(«a-V)[V(V-«a)] + Y2H«a'V)[V(V^«a)] (5.8b) 

while AS = A'M, Af3 = Aj,, Af4 = A^, A£ = Aj,, if = I*, as defined by (4.5b-c) and 
(4.3c). Equations (5.5)-(5.8) form a new set of Boussinesq-type equations for 
wave/current interaction applicable up to even shorter waves for a suitable choice of 
the free parameters (p,, p2, y,, y2) and za as analysed by Schaffer and Madsen 
(1995) for pure wave motion. In the following section, we shall analyse the Doppler 
shift behaviour of this new set of equations in comparison with the Stokes theory. 

6. Analysis of Linear Dispersion Characteristics 

We shall use dimensional form in this chapter and drop primes for 
convenience. The one-dimensional version of (5.5) and (5.7) with constant water 
depth can be expressed as 

(6.1a) 
a - P + - \P + (a - P)fc2r| - ~hr\2 - -if 

3 

and 
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+ *% + ««"«x - ys*% 

(a - y)h- t]h 1     2 ("„ 
(6.1b) 

aUttxxx' 

where a = zjh + 0.5 {zjhf, P = Pi - p2, Y - Y( ~ Y2- By me use of Fourier 
analysis we obtain the linear dispersion relation of the new equations (5.5) to (5.8) 
as 

(w - uckf 
1 a P + j|(**)2 [1 + y(kh)2)k2gh 

(6.2) 

[1 + p(kh)2] [1  - (a - y)(kh)2) 

Different choices of the parameters in (6.2) result in different Doppler shift accuracy. 
For example, (a, p, Y) = (_2/5, 0, 0) gives 

(a) - uckf 
1   + —klh 

15 
k2gh 

1  + - k2h- 
5 

(6.3) 

This is the Pade [2,2] approximation of the linear dispersion relation given by the 
first-order Stokes theory. It turns out that (6.3) is also the linear dispersion relation 
of (4.2) to (4.5). Choosing (a, p, Y) = (-1/3, 0, 0) yields 

(co - uck) 2   _ k2gh 

1  + -k2h2 

3 

(6.4) 

which corresponds to the linear dispersion relation of the original and generalized 
versions of the equations by Yoon & Liu (1989) using the depth-averaged velocities 
as variables. 

Schaffer and Madsen (1995) obtained four sets of coefficients. Each of them 
leads to the highly accurate linear dispersion relation 

(w-uck) 
l+±-k2h2+ — k*hA\k2gh 

9 945 

J_ 
63 

(6.5) 

which is correct to fourth-order in (kh)2 in comparison with the first-order Stokes' 
solution. Linear shoaling analyses by Schaffer & Madsen (1995) show that these four 
sets of parameters all give accurate linear shoaling behaviour. The influence of these 
four sets of parameters on the nonlinearity of the new equations can be analysed by 
examination of the transfer functions for sub-harmonics and super-harmonics as 
discussed in Madsen & Schaffer's (1996) work. The best set of parameters can 
therefore be chosen based on accuracy in the nonlinear properties. We adopt the one 
recommended by Madsen & Schaffer (1996) as follows. 



WAVE/CURRENT INTERACTION 1069 

(-0.39476,   -0.54122 ) 

(P,  P,,  P2)   = (0.03917,   -0.12919,   -0.16836) 

(Y. Yi. Y2)  
= (0.01052,  -0.07327,  -0.08379) 

(6.6) 

With this set of parameters, equations (5.5) to (5.8) are applicable to deeper water 
for waves on ambient currents. For waves on following currents, the currents 
increase the wave length, thus the application range of the new equations exceeds that 
of the corresponding equations for pure wave motion. For waves on opposing 
currents, the currents reduce the wave length so that the applicable area depends on 
the ambient current speed. We use the linear dispersion properties of the first-order 
Stokes theory to estimate the applicable range of various forms of the Boussinesq-type 
equations for wave/current interaction. Solving the linear dispersion relations (6.4) 
& (6.5) gives two sets of curves corresponding to the dimensionless wave number 
(kh), relative water depth (h/Lo) and Froude number Fr = Uc/Jgh) Figs. 7.1a-b 
illustrate the applicable areas of the new equations (5.5) & (5.7) and the equations by 
Yoon & Liu (1989) in case of opposing currents, respectively. The 5% error contour 
for kh as compared with the first-order Stokes' solution is also shown. Obviously, the 
new form of the equations gives a much larger applicable range than those of Yoon 
& Liu's equations. 

It deserves to be mentioned that Madsen & Schaffer (1996) recently derived 
equations with equivalent properties for wave-current interaction by following a 
different line of derivation: In their work Boussinesq-type equations were derived on 
the basis of the two wave scales /x and e, while the ambient current was not explicitly 
considered during the derivation procedure. In contrast to the present work, however, 
Madsen & Schaffer allowed 6=0(1) rather than e = 0(/i2) and retained all nonlinear 
terms to the particular order of dispersion. In retrospect this is the reason why their 
equations could account also for the case of ambient currents, as it turns out that the 
equations derived in this paper appear as a subset of the former equations by Madsen 
& Schaffer (1996). Since the extra nonlinear dispersive terms included by Madsen & 
Schaffer (1996) are expected to be minor in the present applications, the code 
developed for their equations is adapted for the following numerical experiments. 

7. Numerical Solutions for Wave-Current Interaction 

A one-dimensional version of the equations (5.5) to (5.8) is solved by the 
finite-difference method. The equations are discretized on a space staggered grid by 
means of fourth-order central differencing for first derivative terms in space and 
second-order central differencing for second and third spacial derivatives. The time- 
integration of the governing equations consists of the third-order Adams-Bashforth 
predictor and fourth-order Adams-Moulton corrector schemes. This numerical 
method was utilized in the work by Wei et al. (1995) and Banijamali (1997) and 
essentially designed to eliminate the truncation errors which mathematically have the 
same form as the Boussinesq-type terms due to the use of conventional second-order 
schemes for pure wave motion. It can be adapted for modelling fully coupled 
wave/current motion. For the case of strong ambient currents with significant 
nonlinear advection a smaller convergence criterion for the iterating corrector step 
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Fig. 7.1 Illustration of the applicable ranges of the equations with (a) the Pade [4,4] expansion 
(i.e.(5.5) & (5.7)) and (b) the Pade [0,2] expansion (i.e.(3.5) & (3.6)). The area below the 
5% lch-error limit predicts the applicable regime. 

is required, which leads to more iterations. A prototype of the numerical model for 
pure wave motion developed by Banijamali (1997) is adopted in the present work. We 
incorporate the model with non-reflective boundary conditions for fully coupled 
wave/current motion. The sponge layer technique (Larsen & Dancy, 1983) applicable 
to absorption of short waves is combined with the Sommerfeld radiation condition for 
radiating long waves or currents. We shall present some model results in connection 
with waves blocked by strong opposing currents. 

The first test case considers monochromatic waves propagating against a 
current in a channel with a submerged bar. A sketch of the bathymetry is shown in 
Fig 7. la. The channel is 60m long, 0.8m deep on both sides of the bar and 0.2m deep 
on top of the bar. The western and eastern slopes of the bar are 1/50 and 1/20, 
respectively. Bed friction is modelled by the use of the Chezy friction law, using a 
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Chezy coefficient of 300 m"2/s in the sections 0 < x < 37m and 55m < x < 60m, 
and a coefficient of 30 m1,2/s in the section 37m < x < 55m. The relatively strong 
friction in the latter section serves as a stabilizing factor for the flow simulation. 
Initially we impose a constant velocity of -0.17 m/s at the eastern boundary and a 
radiating condition at the western boundary. This leads to an increase in the surface 
elevation at the western boundary of approximately 0.05m. Fig 8.1b shows the 
computed spatial variation of the velocity, which is found to be in fairly good 
agreement with conventional theory neglecting the vertical accelerations of the flow. 

(a) 

20 30 40 

Distance (m) 

60 

(b) 

-r 
20 30 40 

Distance (m) 

60 

Fig. 8.1   Steady open channel flow predicted by the model (dotted line) and the nonlinear shallow 
water equations (solid line), a) Submerged bar topography; b) Particle velocity. 

As the next step we impose a sinusoidal wave train on top of the steady 
current field. This is done by specifying a velocity condition at the western boundary 
including the local current obtained in the previous calculation. At the eastern 
boundary we use a sponge layer which absorbs the short waves while allowing the 
current to pass through. The incoming wave has a period of 1.2s and an initial height 
of 0.02m. The grid size and the time step are chosen to be 0.02m and 0.005s, 
respectively. Fig 8.2 shows the computed surface elevation for the combined wave- 
current motion. We notice that the oscillatory motion is stopped at the position 
x=33.5m where wave blocking occurs because the local current velocity exceeds the 
local group velocity of the wave. The dotted line in Fig 8.2 indicates the theoretical 
solution obtained by the principle of wave action and we notice a good agreement 
with the computations with respect to amplitude amplification as well as the position 
of the blocking point. 

The theory of wave action based on linear progressive wave motion 
obviously fails close to the blocking point as it predicts the wave height to go to 
infinity, which does not happen in reality (nor in the model). As suggested by Smith 
(1975), Stiassnie & Dagan (1979) and Shyu & Phillips (1990) the wave action is 
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eventually reflected at the blocking point and energy is transferred to much higher 
wave numbers. Furthermore, the wave numbers of the reflected waves will decrease 
rapidly with the distance from the blocking point due to the decreasing current. 

0 10 20 30 40 50 60 

Distance (m) 

Fig. 8.2 Monochromatic wave propagation on a spatially-varying, opposing current. 

In Fig. 8.3, a bichromatic wave train on a spatially-varying current is 
simulated. The same bathymetry, steady current field, grid size and time step as in 
the simulation of the monochromatic wave are employed. The bichromatic waves 
consist of a 1.2s wave and a 3.0s wave. Both of them have the same wave height of 
0.02m. The model predicts that the shorter wave of 1.2s is blocked by the opposing 
current at the positionx=33.5m (as before) while the longer wave of 3.0s propagates 
through the blocking point and reaches the eastern boundary where a sponge layer 
efficientiy absorbs the wave energy. The wave profile in Fig. 8.3 with bichromatic 
and regular wave forms before and after blocking, respectively, illustrates the 
blocking of the shorter wave in the bichromatic wave train. 

30 40 
Distance (m) 

50 60 

Fig. 8.3 A bichromatic wave train propagating on a spatially-varying, opposing current. 

9. Conclusions 

This paper deals with the derivation and application of Boussinesq-type 
equations with Pade [4,4] dispersion characteristics for the combined motion of waves 
and currents in nearshore areas. The waves are assumed to be weakly nonlinear and 
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the ambient current is assumed to be uniform over depth. In order to allow for the 
treatment of wave blocking in shallow water we assume the magnitude of the current 
to be as large as the shallow water celerity. A one-dimensional numerical model has 
been implemented on the basis of the new equations and as demonstrated it can 
simulate the complicated phenomenon of monochromatic and bichromatic waves 
being fully or partly blocked by opposing currents. Further verification of the model 
against measurements is obviously required, but the results obtained so far are 
promising and show that the new equations make it possible to simulate a range of 
complicated phenomena related to the interaction of waves and depth-uniform 
currents in coastal regions. 
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