
CHAPTER 81 

Irregular Wave Kinematics from a Pressure 
Record 

Christopher H. Barker1 and Rodney J. Sobey2 

Abstract: 
A local Fourier approximation method is presented for the prediction 
of the complete kinematics of irregular waves from a submerged pres- 
sure trace. The method seeks a potential function and local water 
surface elevation that fit the pressure record and the full nonlinear 
free surface boundary conditions very closely in a small window in 
time. The result is a complete prediction of the kinematics of the 
waves throughout the water column that satisfies the complete non- 
linear equations for irrotational gravity waves. Comparisons with the 
predictions of steady wave theory are excellent. 

Introduction 

A knowledge of wave kinematics is necessary for most aspects of coastal engineer- 
ing. Fluid velocities and accelerations are necessary for the study of the wave 
loading of structures through the use of the O'Brien-Morison equation. Knowl- 
edge of the kinematics near the sea bed are necessary for studies of sediment 
transport processes. High order steady wave theories are quite successful at the 
prediction of the kinematics of steady waves, but are not directly applicable to 
the irregular waves usually found in the field. 

Subsurface pressure transducers are a commonly used method for the mea- 
surement of waves in the near-shore zone, as they are relatively easy to deploy. 
They are frequently used in shallow and transitional depth water. Most methods 
currently in use for the interpretation of these measurements rely on linear wave 
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theory. Linear theory is appealing in that solutions are readily available and can 
easily be applied to a variety of situations. Unfortunately, linear theory is based 
on the assumption that wave amplitudes are small. It is also a Stokes theory, 
with optimum theoretical applicability in deep water. In fact, the cases of most 
interest in the interpretation of pressure measurements are for large waves in 
shallow water, exactly the conditions in which linear theory is least adequate. 

In this paper, a method is presented for the interpretation of a measured 
point pressure time history that preserves the full non-linearity of the process, 
and can be applied to an irregular sea in any depth of water. 

Global and Local Approximations 

Methods used for the interpretation of irregular wave records fall into two general 
categories, global and local approximations. Global methods are those that seek 
a solution that matches an entire measured record, or a single complete measured 
wave, from trough to following trough, or zero crossing to zero crossing. These 
methods apply the same frequency and wave number for all z (vertical variation) 
and t (time). 

Local methods seek an approximation to each small local segment of a mea- 
sured record. In these methods, the frequency and wave number vary, providing 
a separate solution for each small window in time. 

Global Methods 

The most commonly used global method for the analysis of irregular waves is 
spectral analysis, coupled with superposition of linear waves. This method has 
a number of shortcomings, including the high frequency contamination of the 
kinematics above the crest (Forristall, 1985; Sobey, 1992). Fundamentally, the 
difficulties arise from the approximations made by linear wave theory to the 
free surface boundary conditions. If the full nonlinear free surface boundary 
conditions are not satisfied, one can expect that the resulting predictions will be 
inaccurate, particularly near the free surface. Empirical modifications to linear 
theory have been adopted eg.(Wheeler, 1969), but these no longer conserve mass 
(Sobey, 1992). 

Other global methods rely on zero crossing analysis to identify particular 
waves that are then analyzed by using steady wave theory for a wave of the same 
height and period. This approach can provide an order of magnitude estimate 
for the kinematics, but does not take into account the detail of the record. Dean 
(Dean, 1965) extended his stream function method to irregular waves, seeking 
a Fourier expansion for the stream function that fit a water surface record from 
trough to following trough. While taking into account the detail of the record, 
the assumption that the wave is globally steady is a major compromise. 

Baldock and Swan (Baldock and Swan, 1994) presented a method for the 
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analysis of a point water surface record that includes unsteady motion. Their 
method employs a potential function in the form of a double Fourier expansion 
in time and space. The coefficients of the expansion are found by minimizing 
the errors in the full non-linear free surface boundary conditions over a grid 
of nodes in time and space. While comparisons of their results with laboratory 
data were quite good, the method involves a huge matrix of unknown coefficients 
and must solve for the water surface far from the actual measurement location. 
While making no assumptions about the steadiness of the wave field, the method 
requires an assumed periodicity (usually the length of the record). In order to 
obtain a good fit to the measured record, a substantial weighting function must 
be applied to assure that the errors in the boundary conditions are small at 
the measured location. This need for a weighting function suggests that a local 
solution may be advantageous. 

Local Methods 

The Nielsen method (Nielsen, 1986; Nielsen, 1989) uses a local frequency and 
linear wave theory to find the location of the water surface from a pressure 
record. Best results were achieved from a stretching method, similar to Wheeler's 
(Wheeler, 1969), or a semi-empirical transfer function derived from Fourier steady 
wave theory. In either case, the method does not supply the complete kinematics, 
and does not satisfy the governing equations. 

Fenton (Fenton, 1986) employed a local polynomial approximation to the 
complex potential function. In this method, the potential function is represented 
by a separate polynomial in each small window in time. Coefficients of the poly- 
nomial are sought that fit the measured pressure record, and the full nonlinear 
free surface boundary conditions. This approach provides the complete kinemat- 
ics and satisfies the full governing equations. Based on a polynomial variation 
with depth, it should work well in shallow water, but may have difficulty in 
transitional or deep water. 

Sobey's Locally Steady Fourier Method (LSFI) (Sobey, 1992) employs a po- 
tential function represented by a low order Fourier expansion in a small window 
in time. It is a method derived for the analysis of a point water surface trace. 
Local frequency, wave number, and Fourier coefficients are sought that fit the 
measured record and the full free surface boundary conditions. This method 
provides the complete kinematics, satisfies the full governing equations, and is 
successful in all depths of water. The method presented in this paper is an 
adaptation of Sobey's method to the analysis of a measured pressure trace. 

Governing Equations 

The formulation of the problem of uni-directional irregular waves is similar to 
that for classical steady wave theory.   The flow is taken to be incompressible 
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and irrotational.   The kinematics can therefore be represented by a potential 

function, </>, where 

d<f> d(f> . . 
M = ^ w = Tz (1) 

where u and w are the horizontal and vertical velocities, respectively.   Mass 
conservation then becomes the Laplace equation: 

^ - d+d = ° (2) 

The boundary conditions are the bottom boundary condition (BBC), 

w = — = 0        at        z = —h (3) 
az 

the kinematic free surface boundary condition (KFSBC), 

d-q        dn ... 
w~m-uYx=Q    at     z = n (4) 

and the dynamic free surface boundary condition (DFSBC), 

-^ + \y-2 + \•2 + gri-B = o      at      z = n (5) 

where r\ is the location of the free surface and B is the Bernoulli constant. 
In steady wave theory, periodic lateral boundary conditions are imposed, 

forcing the solution to be periodic in space and time. With irregular waves, there 
is no periodicity. Rather, a solution is sought that fits a local segment of the 
record, the Laplace equation, bottom boundary condition, and both nonlinear 
free surface boundary conditions. 

A form for the potential function in each window is motivated by Fourier 
steady wave theory. This is the same form as that used by Sobey (Sobey, 1992). 

,/        ,\ \^ ,. coshjk(h + z)   .    ... . .„. 
4>{x, z, t) = UEX + YJ Aj -~~ sin3{kx - ut) (6) 

£{ coshjkh 

UE and h are the known depth uniform Eulerian current and water depth, J is 
the truncation order of the Fourier series, Aj are the local Fourier coefficients, 
and u> and k are the local fundamental frequency and wave number. This form 
exactly satisfies mass conservation and the BBC. A different set of parameters is 
found for each segment of the pressure record. While this form for the potential 
function is periodic, the periodicity is not defined apriori, but found to fit the 
record, defining a local frequency and wave number. 
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Fitting to a Pressure Record 

While the potential function provides the complete kinematics, the dynamics are 
found through the unsteady Bernoulli equation: 

* + i(l, + .,) + 5-z-. (7) 

where Pj, is the dynamic pressure (P^ = P — pgz). In steady wave theory, the 
Bernoulli constant is (Longuet-Higgins, 1975): 

B = gf}+^b (8) 

where Ub is the velocity at the bed, and the over-bars indicate time averaging. 
In this case, it will be different in each window. With z defined to be zero at 
the mean water level, and Eqn. 6 as the potential function, B becomes (Sobey, 
1992): 

B - \"i+\^Mir (9» 
thus all the terms in Eqn. 7 are defined by the potential function except the 
dynamic pressure, which is given by the measured record. 

Eqns. 6 and 7 apply to many periodic flows. There might be any number of 
these flows that could produce a given pressure record at a single location. It 
is the free surface boundary conditions (Eqn. 4 and 5) that identify a potential 
flow as a surface gravity wave. As the solution sought is a gravity wave, these 
boundary conditions must be included in the formulation. To include the free 
surface boundary conditions, the location of the water surface, together with the 
potential function, become the unknowns in each window. 

Locating the water surface 

The water surface is defined at N surface nodes in each window (r/(tn),n — 
1... N). The elevation of these nodes is unknown, and will be sought as part of 
the solution. Eqn. 5 is directly applied at each node. In order to apply Eqn. 4 at 
the surface, the time gradient is estimated by cubic spline interpolation among 
these nodes. This provides a smooth and consistent estimate at all locations 
within the window. The spatial gradient can be computed from the time gradient 
by assuming that the water surface is locally steady. This assumption follows 
from the steady form of the potential function, and is the same assumption used 
by Sobey. 
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dr) 
dx 

k dr] 

u dt 
(10) 

Including the water surface nodes as part of the sought solution introduces 
N additional unknowns for a total of 3 + J + N unknowns in each window 
(k,kx,w,Aj,rjn). Eqn. 4 is applied at the locations between the water surface 
nodes. Eqn. 5 is applied at each of the nodes, yielding 2N — 1 additional equa- 
tions. Eqn. 7 is applied at / nodes on the pressure record (P<i(ti),i = \ ... I) 
within the local window (see Fig. 1). 

z 
A 

MWL-1- 

Pd 

KFSBC 

r 
Bernoulli 

window 

Elevations of water surface 
nodes are sought 

Bernoulli equation applied 
at known pressure at zp 

-*• t 

Figure 1: Schematic of system of equations in a window 

The problem is uniquely specified for I + N = 4 + J and overspecified for 
I + N > 4 + «7- If overspecified, the solution is that which results in the minimum 
error in all equations, in the least squared sense. Overspecification, with addi- 
tional nodes on the pressure record, is likely to be advantageous for an actual 
record to minimize the effect of unavoidable measurement noise. 

Computation Methods 

Non-dimensionalization 
The comparisons of errors of different dimensional quantities would be meaning- 
less. All parameters and variables are scaled by factors computed from physi- 
cally identifiable parameters. These are the mass density of water, acceleration 
of gravity, and the mean zero crossing frequency. The characteristic length scale 
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is g/oul, time scale is l/uiz and the mass scale is p<73/wz where UJZ is the mean 
zero crossing frequency of the record. The familiar dimensional forms of the 
equations have been presented in this paper to aid in readability. The unknown 
parameter, x, appears in the equations only when coupled with the parameter, k. 
It is simpler to solve for the non-dimensional parameter, kx, essentially a phase 
parameter in the potential function. 

Initial Estimate 

The primary process in this LSFI-P method is nonlinear optimization to find the 
minimum error in a system of nonlinear algeraic equations typically involving 14 
equations in 12 unknown parameters. A system as complex as this is likely to 
have a number of local minima that result in spurious physical solutions. The 
best way to avoid these solutions, as well as to allow for efficient optimization, 
is to start with a good estimate for the unknowns in the system, and to have a 
basic set of criteria for identifying spurious solutions. 

The first step in each window is to establish a initial estimate for the opti- 
mization procedure. Linear wave theory can be used to produce estimates for 
the parameters of approximately correct magnitudes. 

Nielsen (Nielsen, 1986; Nielsen, 1989) established a method for determining 
the parameters of a local linear approximation to waves from a pressure record. 
A similar method is used here. Frequency of a sinusoidal signal of the form 
Pd = a cos (kx — ut) is available from the second derivative: 

.2 
UJ 

d2pd/dt2 _ I d2Pd/dti 
Pd 

(ii) 

Once the frequency is known, the amplitude and phase of a particular segment of 
record can be found by rearranging the equation as a linear least squares problem 
by separating the cosine and sine components: 

Pd  = a cos (kx —cot)  = 6i cos ut + b^ sin u>t (12) 

The linear terms (a and kx) are a function of u>, reducing the nonlinear problem 
to one variable (Lawton and Sylvestre, 1971). The estimates for LO, a, and kx are 
refined by optimizing for the frequency that results in the least error throughout 
the current window, using Eqn. 11 as a first estimate. 

Once the optimum frequency is found, the wave number is estimated from 
the linear dispersion relation, and the first estimate for the Fourier amplitudes 
are assigned as follows: 

/awcosh k(h + x)/cosh kh 3 J 
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a = 0.1 was found to be satisfactory. The location of the water surface is esti- 
mated from the linear pressure response function with stretching (Nielsen, 1986). 

= PdCoshk(h + {Pd/pg)) 
V     pg      coshk(h + z) [ 

An estimate for the values of the second time derivative of the record in 
each window is required. This is accomplished by a least squares fit of a third 
order polynomial to the record in each window. The derivatives can then be 
computed from this polynomial.This approach was very successful in the analysis 
of artificially generated noisy records, resulting in reasonable estimates for the 
value at the middle of the window, as well as both derivatives at that point. 

Optimization 

Once there is a reasonable first guess for all the parameters, nonlinear optimiza- 
tion routines can be applied to this system. For the results in this paper, the 
Leavenburg-Marquart algorithm was used as implemented by the Matlab Op- 
timization Toolbox. If the optimization routine successfully finds a minimum, 
the solution is checked to see if a clearly spurious solution is found. Spurious 
solutions can be identified by the following criteria: very large or highly variable 
errors, first order amplitude smaller than higher order amplitudes, unrealistically 
large or small frequency or wave number. It is unusual for the routine to converge 
to a spurious solution. It is far more common for the routine not to converge at 
all. 

If no solution or a spurious solution is found, it is necessary to revise the 
parameters of the solution to make another attempt. For the next attempt, the 
window width is increased by a factor of 1.5, and the procedure is repeated. 
If this is not successful, the window width is increased once more to twice the 
standard width. When increasing the window width is not successful, the order 
of the potential function is decreased until a solution is found. If none of these 
adjustments result in a reasonable solution, the window is skipped, and future 
analysis must be interpolated through that point. These adjustments are most 
likely to be needed in the long, flat trough of a shallow water wave, where the 
window needs to be expanded to include some curvature to indicate the frequency. 
There can also be difficulties near zero crossings, where there is little curvature 
in the record, and the effects of amplitude and frequency are not independent. 
Widening the window to include more of the surrounding record is generally 
successful in this situation as well. 

Another complication can be a record that is symmetric about the crest of 
a wave. In this case, the equations on either side of the crest are not inde- 
pendent. This situation is unlikely to arise in a field record, and can easily be 
accommodated by using an asymmetric distribution of points in that window. 
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Results 

In order to remove complications from measurement error in the initial testing of 
the method, pressure records generated by Fourier Steady wave theory (Sobey, 
1989) were used. This also has the advantage of providing a solution with the 
complete kinematics, to compare with results from the LSFI-P method. High 
order Fourier wave theory is essentially an exact solution for irrotational steady 
waves that can be applied at any depth (Rienecker and Fenton, 1981; Sobey, 
1989). Fig. 2 presents the results after the first guess, before optimization. This 
is a window near the crest of a steep, shallow water wave generated by 18th order 
Fourier theory. The predictions for the dynamic pressure are approximately 
correct, and the water surface estimate is in the vicinity of the actual water 
surface. Note that the location of the actual surface is given in the plot, but it is 
not available to help determine the solution. These points were all generated by 
the method outlined in the previous section, with only the pressure record as a 
guide. The third plot shows the non-dimensional errors in the Bernoulli equation 
and the free surface boundary conditions. The errors are of order .03 and show a 
systematic pattern, particularly in the Bernoulli equation. It is clear from these 
plots that a better solution can be found. 

The results after optimization are given in Fig. 3. At this point the prediction 
for the dynamic pressure is essentially exact. This is virtually always the case, 
as the pressure record is available, and the parameters are found to fit that 
record. The predictions for the water surface are also extremely close. This is 
an impressive achievement, as location of the water surface was found only by 
minimizing the errors in the free surface boundary conditions. In this case, the 
LSFI-P method was able to accurately capture the crest of a steep shallow water 
wave. 

Fig. 4 shows the results of the method for the complete wave. The parameters 
of the wave are: 5m water depth, 3m wave height, and 10s period, with the 
pressure record measured on the bottom. The LSFI-P method finds the water 
surface and the kinematics on the surface essentially exactly. While these results 
show the complete wave, it is important to keep in mind that each of the indicated 
points is in the center of a separate window, and was computed completely 
independently of the other windows. In this case, the standard window width 
was 2s, with a sixth order potential function and seven water surface nodes. The 
2s window width is one fifth of the period of the wave, and is a reasonable length 
of time to extend the locally steady approximation. It is not expected that the 
standard window width will exceed about one fifth of the zero crossing period of 
a record, nor the solution to be of order higher than six. 

The dotted lines on the plot are the water surface and horizontal velocity at 
the surface as predicted by the linear wave theory pressure response function. It 
is clear that this method completely misses the high, sharp crest, and the large 
velocities at the crest. 

Fig. 5 shows the results of the LSFI-P method for an entire deep water wave. 
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Figure 2: Results in a window after first estimate 

The wave was generated by 12th order Fourier wave Theory, with parameters: 
100m water depth, 10m wave height, and 10s period, with the pressure record 
measured 10m below the mean water level. Standard window width is Is, with 
a fourth order potential function and five water surface nodes. Once again the 
LSFI-P solution matches the actual solution exactly. In the case of deep water, 
linear wave theory performs fairly well on steady waves, but is not applicable to 
irregular records, as there is no clearly defined single frequency or wave number. 

Conclusions 

While the given results are on artificially generated steady wave records, they 
show the potential for the method for a variety of conditions. In the case of 
steady waves, the LSFI-P method accurately computed the detail of the wave, 
using only data from a small window in time. In particular, the method was 
able to capture the pronounced sharp crest of a steep, shallow water wave. It is 
expected that it will perform well on segments of an irregular record. 

The analysis of regular waves provides guidelines for the parameters to be 
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Figure 3: Final results in a window 

used in the analysis of irregular waves. Higher order solutions and wider windows 
must be used in shallow water than in deep. Window widths of one fifth of the 
zero crossing period and a sixth order potential function are adequate for the 
shallowest waves, and window widths as small as one tenth of the zero crossing 
period and a third order potential function are adequate for deep water. 

The Locally Steady Fourier approximation for irregular waves is an effective 
method for the computation of the kinematics of irregular waves from a point 
pressure record. The method results in a complete description of the water 
surface and kinematics of the waves that fit the given pressure record and the 
full free surface boundary conditions very closely in a small window in time. 
Comparisons with the predictions of steady wave theory are excellent. 
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Figure 5: Results for a deep water wave 
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