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Bragg Reflection of Shallow-Water Waves 
on a Sloping Beach 
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Abstract 

In this study a set of governing equations describing the evolution of 
modulated shallow-water waves over a sinusoidally varying topography on a 
sloping beach is derived. The governing equations include the nonlinear 
interactions among different wave components as well as the shoaling effect 
over a slowly varying topography. It has been shown that the incident 
waves could be resonantly reflected by the interaction with the rippled 
seabed under the Bragg reflection condition. The magnitude of the resonantly 
reflected wave is almost equal to those of the incident and the transmitted 
waves. 

1. Introduction 

Water waves, approaching the coastline from deep water, undergo many 
physical phenomena caused by combined effects of bottom topographical 
variations, interference with man-made structures and nonlinear interactions 
among different wave components. One fascinating but challenging feature 
among these phenomena is so called the Bragg reflection occurring when the 
wave number of incident wave is a half of that of the sinusoidally varying 
topography. The Bragg reflection is believed to play an important role in the 
formation of submerged offshore sandbars frequently observed in Danish 
coast, the Great Lakes, Japanese coast and many other open coasts. In 
general, typical offshore multiple sandbars exist on beaches milder than 5 per 
1000 and the number of sandbars varies 3 to 17 with a spacing of 10 m to 
480 m between two adjacent bars (Mei and Liu, 1993). 
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A lot of experimental and theoretical investigations have been performed 
to explain the possible formation mechanism of these sandbars as well as the 
effects of offshore sandbars on the change of the coastal morphology and the 
wave characteristics (Davies and Heathershaw, 1984; Mei, 1985; Yoon and Liu, 
1987; Hara and Mei, 1987; Kirby and Vengayil, 1988; Liu and Cho, 1993). 
Through the laboratory experiment Carter et al. (1973) found that the 
formation of offshore sandbars is probably triggered by mass transport 
velocity near the seabed under partially reflected waves. They also pointed 
out that the incipient reflection coefficient for the sandbar formation is about 
0.414. According to Mei and Liu (1993), a special bottom topography can 
reflect a significant amount of wave energy, and therefore can protect the 
beach from the possible erosion and deposit, that is, the strong reflection of 
incident waves could be the cause and the effect of offshore multiple 
sandbars. 

Yoon and Liu (1987) investigated the near resonant reflection of periodic 
waves in shallow water over a sinusoidally varying topography. Since they 
were interested in near resonant reflection, only self-product terms of 
propagating wave components were considered. In this paper, we extend 
Yoon and Liu's study to examine the effects of the cross-product terms of 
oppositely propagating wave components and the number of seabed ripples. 
Thus, Yoon and Liu's study can be viewed as a limiting case of the present 
study. We also investigate the effect of a sloping beach on the reflection. 
Since the domain is fixed in shallow water, the Boussinesq equations are 
adequate to describe wave fields. The resonant reflection of incident periodic 
waves from a sinusoidally varying seabed laid on a sloping beach will be 
examined by solving a set of coupled nonlinear, ordinary differential 
equations. The effects of nonlinear interactions among different harmonics 
will also be examined for different numbers of seabed ripples. 

In the following section, a set of governing equations describing 
modulation of shallow-water waves is first derived. These governing 
equations include effects of nonlinearity, dispersion, shoaling and interactions 
among different wave components. In section 3, two coupled ordinary 
differential equations are derived to describe evolution of water waves over a 
slowly varying topography. Numerical examples are given in section 4. 
Finally, concluding remarks are made in section 5. 

2, Modulation Equations 

By using   a0'  as the characteristic wave amplitude,   h0'  as the water 

depth and&' as the wave number, we introduce the following nondimensional 
variables: 

(x, y)  =   k'(x'.y'),      z =   ~fr,      h =   -jL, 

h ' (1) 

t =  k' V W t',      K =   -±r ,      u = —yy-hsm u' • a0   ' a0'(gk0') 



BRAGG REFLECTION 957 

incident wave 

Figure 1. Definition sketch of the seabed and incident waves. 

in which £" represents the free surface displacement and u does the 
depth-averaged horizontal velocity vector. We also introduce following two 
parameters: 

a0 2 

h U'V)2 (2) 

in which e and n represent the nonlinearity and the frequency dispersion, 
respectively. In the Boussinesq equations, orders of magnitude of both 
parameters are assumed to be equal and small enough. Using nondimensional 
variables the Boussinesq equations can be written in the following form 
(Yoon and Liu, 1987; Liu and Cho, 1993): 

-§J + V[(A + et)«]=0. (3) 

-|f +£«-V«+vr=//2(}4 V[V-(AII)]-|A
Z
-^V(V.«)}.   (4) 

It is noted that equation (3) is an exact expression, while equation (4) is 
truncated at the order of   0(e2, efi2,/*4). 

To investigate resonant reflection and shoaling of incident waves over a 
slowly varying topography the water depth is defined as (see figure 1): 

h(x, y) = h(x, y) + fc(x, y) (5) 
in which 

h(x, y) ~ 0(1),      £(*, y) ~ 0(p2) (6) 
and 

|VA|~0(^2),      |v£|~O0i2). (7) 

Following Yoon and Liu  (1987) the free surface displacement and the 
velocity can be expressed in Fourier series. That is, 
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rU,y.0 = |2r,Uy)e-,'"t, (8) 

«(x,y,0=|S Un(x,y)e~inl (9) 

in which a periodic motion in time has been assumed and   « = 0, ±1, ±2,*". 
In equations (8) and (9),   £_„ and   t/-„ are the complex conjugates of   f„ 

and   £/„, respectively. For simplicity, the symbols of   0(e) and   0(e2) will 

be used to represent 0(e,/J.
2
) and 0(e2,eu2,M ), respectively throughout 

the study. 

By substituting equations (5)-(9) into equations (3) and (4), the 
following continuity and momentum equations are obtained for the nth 
Fourier components: 

C+v- (hU„)+  |£2v-(rsE/_) = 0, (10) 

-in U„ + \ e~£ U,- v U„-s+ v Kn 

i , (ID 
= -finft* /*   v(v-t/„)=0(£2), 

in which s=0, ±1, ±2,"\ The leading order terms of equations (10) and 
(11) give 

£, = --£* v-CT-. + CKe), (12) 

^" = -i v?„ + 0(£) (13) 
for  w=£0 and 

U0=  -vr^i^s+0(e!), (14) 

Co = - J £ 2 £/,• tf_. + 0(e2) (15) 

for w = 0. Equations (14) and (15) represent steady components which have 
no contribution to other harmonics up to 0(e). Thus, the steady components 
are excluded in this study. By eliminating the velocity vector from equations 
(10) and (11) and using equations (5), (12) and (13), we can obtain the 
following combined equation: 

w2r„+  v-(/zvU-e|  2  —r1—-\ v-[(vf,- v)v£:„_,] 
" "        2   S+O.K s(n—s) 

+ \-fizh3v%+ef s „^v.(rsvrB-s)=o(£
2). 

The leading orders of equation (16) yield 

v2?B=--^r„. a?) 

By substituting equation (17) into equation (16), we also obtain 

(16) 
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!V^K+v(A+/z)-vtK + ^ I-4-QVA»2' h     o 
(18) 

where   | d£/ dy\2 ~ 0(e, fi2) has been assumed. 

3. Evolution Equations 

In this section we derive a set of coupled ordinary differential equations 
to describe evolution of waves over a slowly varying topography. After 
omitting   v-direction components equation (18) can be rewritten as: 

h   dx2        dx    Ax +n I1      h     3^ hn   *>" 
Ay    A? (19) 

= ^r   2 (n2^s2)^n.s-§   2  •^±^-^-%=i+0(ez). 2h stS.n n s    2 s£o.nn-s   dx      dx 

The homogeneous leading order of equation (19) is the long wave equation 
and implies that wave components propagate both in + x and - x directions. 
Thus, the wave field can be split into the right- and the left-going 
components as (Liu and Cho, 1993): 

Kn=C^K~n (20) 

where f„ and f» represent the right- and the left-going wave components, 
respectively. Then, the following coupled relationships can be obtained (Liu 
and Cho, 1993): 

dx -VT r" + F"•   ~&~-~7fr" " " 
in which F„ is an unknown coupling term. By substituting equations (20) 

and (21) into equation (19) and after lengthy algebra, the coupling term Fn 

is determined as: 

F = L/.l .dA+_di;\/f+_r) + _tn_/ I + I„VlW++n 
2h\2   dx+  dxT"    in)+2\h\      A 

+
 3

A
""7

?
"
+5

"
; 

By   assuming   a   periodic   motion   in   space   the   wave   components   can   be 
expressed as: 

£ = A„(x)eiHe,    rn=Bn{x)e~in& (23) 
in which   A„(x) and   B„(x) are complex amplitude functions for the right- 
and the left-going waves, respectively and the following definition is used: 

@= f-<k 
J \ h 

Substituting   equations   (22)   and   (23)   into  equation   (21),   a  set  of  coupled 
nonlinear ordinary differential equations can be obtained: 
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cM„ 
dx • + ink    ,  1    d  /,   T\ ,    1     dA      i   2 j/f 

- -#4, + \ 4r (In A) + 4= -# + j //Vy A 
2 to h     4   dx 

= NLTr+0(£2) 

where 

NLTr = 

2A   dx 
B„e 

A, 

-tine (24a) 

IS 

4A\ A  s*o.» 
(Asv4K_s+ -        J3sAM_se -'s-' ^w — s v 

4A\ A 

for right-going waves, 

-2»»0 

_4*» 
dx + 

2A\A      4   dx^m^+ 2A   dx + 6^^ 
B„ 

info 

= NLT,+0(£2) 

_ 2A\ A     4   dxv 2A   dx     6 H A„e 2in& (24b) 

where 

NLT, is 

4A\ A  s*o,« 
2 (»+s) (SSS„-S + w—2s 

+  - IE n—2s 
S  (»+s)U.^(,_f+

J5-^S.^--.e"!!,,w) 

-^•S^H-Se ) 

2in@ 

4A\ A L S*O.K w 

for left-going waves.  Equations  (24a) and (24b)  are evolution equations for 
waves propagating over a slowly varying topography. 

In summary, equations (24a) and (24b) are the governing equations for 
shallow-water waves forced by self- and cross-product wave components. In 
equation (24) the terms multiplied by the exponential function and Ah I dx 
are mathematically fast varying, whereas the other terms are slowly varying. 
The effects of the fast varying terms are generally insignificant, while they 
are significant if a phase is properly matched. Therefore, the present study is 
more general than Yoon ans Liu's (1987) in which all fast varying terms are 
ignored. The role of fast varying terms will be discussed in detail in the 
following section. After solving equation (24) the free surface profile of wave 
can be recovered as 

1 ?(x, t) = i SUKe in@+Bne ~'n0]e ~int (25) 

The corresponding velocity up to the leading order can also be obtained by 
substituting equation (25) into equations (9) and (13). 

4. Numerical Example 

An iterative scheme is employed to solve coupled equations  (24a) and 
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(24b) with prescribed initial conditions of A„. In the iterative scheme the 
transmitted wave field is first solved without considering the reflected wave 
field. The reflected wave field is then estimated with the calculated 
transmitted wave. The transmitted wave field is finally updated with the 
newly obtained reflected wave field. The procedure is repeated until the 
converged solutions are obtained. More detailed description of the iterative 
scheme and the convergence condition are given in Liu and Cho (1993). 

Now we examine the resonant reflection of incident periodic waves over 
a finite length of the rippled seabed. Although the shoaling effect is included 
in equation (25), we first focus on the Bragg reflection. Then, the shoaling 
effect over a sloping beach will also be examined later. In this study the 
nondimensional water depth is given as: 

h = 1 — Sx, x ^ 0, x> L (26) 
h = 1 — Sx — P$\XL(8X), §< X< L 

in which p is the amplitude, S is the beach slope and S is the wave 
number of the sinusoidally varying seabed. As mentioned in section 2, the 
orders of magnitudes of p and S are 0(^2) and 0(1), respectively. 
Figure 1 briefly illustrates the bottom topography consisting of sinusoidal 
ripples and a sloping beach as defined in equation (26). 

In the first numerical example, we investigate the Bragg reflection of a 
train of cnoidal waves over a sinusoidally varying topography. Following 
Yoon and Liu (1987), the initial conditions for incident cnoidal waves are 
given as: 

Ai = 0.8923, At = 0.4198, A3 = 0.1568, A4 = 0.0522, A5 = 0.0163. 
The  number  of harmonics   is  fixed   at  5  throughout  the   study.   Figure 2 
shows the free surface profile of a train of cnoidal waves obtained by using 
5 harmonics given above. 

127T 

Figure 2. Free surface profile of the incident cnoidal waves at   £=0. 
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Figure 3. Reflected amplitude   |BJ   of cnoidal  wave  for 
» = 5, £ = 0.0881, P

2
 = 0. 1067, P = 0.15. 

To examine the effect of ripples on the reflection we calculate the 
reflected waves for three different numbers of ripples, that is, m = 6, 8 and 
10 with m being the number of sinusoidal ripples. The reflection becomes 
stronger as the number of ripples increases as shown in figure 3. Therefore, 
the strongest reflection occurs when m = 10. We briefly explain the 
mathematics involved in the Bragg reflection. From equation (26) 

dh 
dx 

dh 
dx 

-   =  —pScos(Sx) 

=  -PS e     + e 
(27) 

By substituting equation (27) into equation (24b) the third term in the second 
parenthesis becomes 

L    dk       2in0 
2~h    ** (28) 

_    ___P_Sr     i(S+2n)x,       i(-8+2n)x-\ 

We can see that the  second term  of equation  (28)  becomes  the unity  if 
d=2n. The second term of equation (28) varies slowly, whereas the first 

term does fast. Since the first harmonic dominates the incident wave system 
(Yoon and Liu,  1987), the forcing term of equation (24b) becomes  largest 
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when 8=2, that is, the wave number of the ripple is twice that of the first 
harmonic of incident wave. As plotted in figure 3, the maximum reflection 
occurs at   £~2. The reflection coefficient is greater than 0.414 even for  m=6. 

The reflected waves for the first and the second harmonics are plotted 
with L=6TT and L=1QK in figures 4 and 5, respectively. The amplitude of 
the seabed ripple is fixed as (0 = 0.1 for both cases. The reflected waves 
without considering fast varying terms are slightly larger than those with 
considering fast varying terms. As stated previously, the magnitude of the 
first harmonic component is much larger than that of the second harmonic 
component. The difference between without considering and with considering 
fast varying terms is not surprising but appreciable. The beach slope is not 
considered both in figures 4 and 5. 

In figure 6, the reflected waves for the first harmonic are plotted for 
L=10TT and p = 0.1 with three different nonlinear effects. The strength of 

reflection is rapidly decreasing as the nonlinearity increases. This is because 
wave energy transfers more actively as the nonlinearity increases. That is, 
more wave energy transfers to higher harmonic components. The peak is 
also moving leftward as the nonlinearity increases. 
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Figure 4. Reflected amplitudes of cnoidal wave for  L-&K,   S=0.0, 
£=0.10,   ^2=0.1067,   p=0.10. 
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Figure 5. Reflected amplitudes of cnoidal wave for  L=10K, S=0.0, 
£=0.10,   ^=0.1067,   p=0.10. 
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Finally, the first harmonic components of reflected waves are plotted in 
figures 7 and 8 for   L=6TT and   L=10TT with two different beach slopes, 
S=0  and   S= 0.005. The amplitude of the seabed ripple is also fixed as 
p — 0.1.   The  magnitudes  of reflected  waves  remain  almost  the  same  in 

figures 7 and 8, respectively. This is because the beach slope   S= 0.005  is 
too mild to affect to the magnitude of the reflected wave. As discussed in 
section 2, the order of magnitude of a beach slope is assumed to be 0(fi ) 
in this study. However, the slope used in figures 7 and 8 is 0.005 much 
smaller than 0(fi2). The peak moves slightly leftward as the beach slope 
increases. 

5. Concluding Remarks 

In this study a set of governing equations is derived from the 
Boussinesq equations to examine the evolution of periodic waves over a 
sinusoidally varying topography laid on a sloping beach. The derived 
governing equations are used to study the evolution of cnoidal waves over a 
slowly varying topography. It has been shown that reflected waves can be 
resonantly amplified under the Bragg reflection condition.. 

1.0 

3.0 

Figure 7. Comparison of reflected amplitudes for  L=6K,   E =0.075, 
A<2=0.10,   p=0.10. 
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3.0 

6 
Figure 8. Comparison of reflected amplitudes for   L =10 n, £=0.075, 
p2=0.10,   ,0=0.10. 

In very shallow water the nonlinear effect may dominate the entire 
wave system. Especially, just before the breaking point waves might be 
highly nonlinear. Futhermore, the bottom friction becomes increasingly 
important as the water depth decreases. An extension with inclusion of 
highly nonlinear terms and the bottom friction is now progressing. The result 
will be reported in future. 
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